
University of California, Irvine 1

ICS 52: Introduction to Software
Engineering

Fall Quarter 2004
Professor Richard N. Taylor

Lecture Notes: CM, Management, and Evolution
Several Illustrations from Ian Sommerville’s text…

http://www.ics.uci.edu/~taylor/ICS_52_FQ04/syllabus.html
Copyright 2004, Richard N. Taylor . Duplication of course

material for any commercial purpose without written permission is prohibited.

University of California, Irvine 2

A “Survival Fare” of Topics

Configuration Management
Maintenance and Evolution
Project Management

University of California, Irvine 3

New versions of software systems are created as they
change
– For different machines/OS
– Offering different functionality
– Tailored for particular user requirements

Configuration management is concerned with managing
evolving software systems
– System change is a team activity
– CM aims to control the costs and effort involved in

making changes to a system

Configuration management

University of California, Irvine 4

System families

University of California, Irvine 5

Configuration Hierarchy (for 1 family member)

University of California, Irvine 6

All CM information should be maintained in a
configuration database

This should allow queries about configurations to be
answered
– Who has a particular system version?
– What platform is required for a particular version?
– What versions are affected by a change to component

X?
– How many reported faults in version T?

The CM database should preferably be linked to the
software being managed

 The configuration database

University of California, Irvine 7

Version An instance of a system which is
functionally distinct in some way from other
system instances

Variant An instance of a system which is
functionally identical but non-functionally
distinct from other instances of a system

Release An instance of a system which is
distributed to users outside of the development
team

Versions/variants/releases

University of California, Irvine 8

Version identification

Procedures for version identification should
define an unambiguous way of identifying
component versions

Three basic techniques for component
identification
–Version numbering
–Attribute-based identification
–Change-oriented identification

University of California, Irvine 9

Version derivation structure

University of California, Irvine 10

Version management tools (e.g. CVS and
Subversion)

Version and release identification
– Systems assign identifiers automatically when a new

version is submitted to the system
Storage management.

– System stores the differences between versions rather
than all the version code

Change history recording
– Record reasons for version creation

 Independent development
– Only one version at a time may be checked out for

change. Parallel working on different versions

University of California, Irvine 11

Delta-based versioning

University of California, Irvine 12

System building
 Building a large system is computationally expensive and may take several

hours
 Hundreds of files may be involved
 System building tools may provide

– A dependency specification language and interpreter
– Tool selection and instantiation support
– Distributed compilation
– Derived object management

Make-oids

University of California, Irvine 13

Component dependencies

University of California, Irvine 14

Maintenance to repair software faults
– Changing a system to correct deficiencies in the way

meets
its requirements

Maintenance to adapt software to a different operating
environment
– Changing a system so that it operates in a different

environment (computer, OS, etc.) from its initial
implementation

Maintenance to add to or modify the system’s
functionality
– Modifying the system to satisfy new requirements

Types of maintenance

University of California, Irvine 15

Distribution of maintenance effort

University of California, Irvine 16

Management of Software Engineering
 Planning

– Objectives
– Necessary resources
– How to acquire resources
– How to achieve goals

 Organizing
– From small group structure to large organizations

 Staffing: the key resource in software development
 Directing

– ensure continuing understanding and buy-in
 Controlling

– Measure performance and take corrective action when necessary

University of California, Irvine 17

Project Control: Task-based
 Work Breakdown Structures

– Hierarchical statement of the tasks to be performed
» a subset of a statement of the process which will be followed

 “Off-line” management schemes
– Gantt charts

» Bar charts where length of bar proportional to the length of time planned for the
activity

» Can be used as a statement of schedule
» Useful for analysis of resource deployment (e.g. maximum number of

engineers needed at any one time)
– PERT charts

» A network of activities showing dependencies (precedence relationships
» Exposes critical path
» Shows maximal possible parallelism in project execution

University of California, Irvine 18

Gantt Chart Example

Jan 1, 94Apr 1, 94 Jul 1, 94 Oct 1, 94 Jan 1, 95 Apr 1, 95

design

build scanner

build code generator

integration testing

 build parser

start

finish

 write manual

University of California, Irvine 19

PERT Chart Example

write manual

build scanner

build parser

build code
generator

designstart

integration
testing

finish

Jan 1, 94 Jan 3, 94

Mar 3, 94

Mar 17, 95
Nov 14, 94Mar 8, 94

Mar 12, 94

Feb 4, 94

