
Requirements Engineering is
SO Twentieth Century...

Richard N. Taylor
Institute for Software Research
University of California, Irvine
http://www.ics.uci.edu/~taylor

10/1/01 © 2001 Richard N. Taylor

The Voices of the Sages

� Pappus, a.d. 300: “In analysis we start from what is
required, we take it for granted, and we draw
consequences from it,till we reach a point that we can
use as [a] starting point in synthesis.”

� Polya “How to Solve it”:
� First, you have to understand the problem.
� Second, find the connection between the data and the

unknown. You should obtain eventually a plan of the solution.
� Third, carry out your plan.
� Fourth, examine the solution obtained.

10/1/01 © 2001 Richard N. Taylor

Problem Frames

� “The central part of this paper sketches an approach to problem
analysis and structuring that aims to avoid the magnetic
attraction of solution-orientation. The approach is based on the
idea of a problem frame [1-3]. A problem frame characterises a
class of elementary simplified problems that commonly occur as
subproblems of larger, realistic, problems. The intention is to
analyse realistic problems by decomposing them into constituent
subproblems that correspond to known problem frames. This
analysis guides the decomposition, gives warning of the concerns
and difficulties that are likely to arise, and provides a context
in which previously captured experience can be effectively
exploited.” — Michael Jackson, August 2000

10/1/01 © 2001 Richard N. Taylor

Others

� “… systematic derivation of architectures
from requirements” — vaguely after van
Lamsweerde

� Various OO approaches: essentially building
applications as a simulation of the world

� The title of this workshop: “From Software
Requirements to Architectures”

10/1/01 © 2001 Richard N. Taylor

Why the Primacy of Requirements?

� Parnas’s Washing Machines
� Remember the automated rock basher

example?
� Avoid implementation bias
� Allow innovation
� Ease analysis: complete, consistent

10/1/01 © 2001 Richard N. Taylor

Why Are Requirements Done After the Fact,
If at All, in So Many Applications?

� Standard answers:
� Bad engineering
� Bad discipline
� Lack of a good mathematical training
� Lack of time

10/1/01 © 2001 Richard N. Taylor

Maybe the Reason Is Different

� Maybe it is because it hasn’t proven useful
� Maybe it is because you can’t do a good job

with requirements until the architecture is in
hand

� Maybe it is a matter of size and complexity?
� Abstract requirements may work on small(er) problems: Why? you

can think of many solutions quickly, or there may only be a small
number of solutions AND the total time involved in finding one
solution is not so great that anyone will much notice

� Maybe Petroski is right: failure is the driver
of engineering and the basis for innovation

10/1/01 © 2001 Richard N. Taylor

Twin Peaks Model (Nusibeh)

� Simultaneously develop requirements and
architectures

� Incrementally elaborate detail
� Keeps both communities happy and doesn’t

prescribe an approach too different from
common practice

� — but I’ll let Bashar present and defend his
approach later today…

10/1/01 © 2001 Richard N. Taylor

What Happens If We Follow the Money?

� Do new companies start with a good list of
requirements?

� Do VC’s (that are still in business) buy a nice
list of requirements?

� What do marketeers focus on?
� How do you build market niche?
� How do you minimize your time to market?

10/1/01 © 2001 Richard N. Taylor

The Starting Point, IMHO, is thus:

� Characterizing what you
� Have
� Know what would be better with

improvement
� Can/can’t change

� Thus, let the architecture(s) drive the
requirements

10/1/01 © 2001 Richard N. Taylor

Architectures in the Lead

� Think of requirements as incremental improvements
needed to existing architectures, or as compositions of
architectures

� Architectures provide a frame of reference
� a vocabulary
� a basis for describing properties
� a basis for analysis

� Create new architectures based upon experience with
and improvement to pre-existing architectures

� Beware analogies; beware conceptual predecessors

10/1/01 © 2001 Richard N. Taylor

Conceptual predecessors v.
Physical predecessors

� Physical predecessors: architecture-based evolution
� Conceptual predecessors provide a vision (high

risk/high innovation)
� Ascension: steps, ladders, elevators, airplanes, rockets
� Parnas’s washing machine example: makes an amusing

anecdote , but doesn’t reflect how we actually got washing
machines

� … but requirements should be stated in terms of
architectural compositions or improvements if at all possible

� Moral: greenfields are minefields in seductive
disguise
� (Quickly start looking for physical predecessors when faced

with a new vision)

10/1/01 © 2001 Richard N. Taylor

Are All Architectures up to the Task of
Being “Improved” in a Cost-effective Way?

� Adaptable architectures; composable
elements

� Not all architectural styles are created
equal
� And are not necessarily up to the task

posed by my position

10/1/01 © 2001 Richard N. Taylor

So, Do We Need Requirements at all?

� You do have to know your objective before
you start new work.

� You do need a contract with the customer
� (but when you are building to a market?)

� But let architectures:
� Provide the vocabulary
� Provide the basis for discussion
� … as well as being the solution basis

� Thus: new objectives and solutions, from old
problems and old solutions

10/1/01 © 2001 Richard N. Taylor

So the Workshop Is Mis-Directed

� It should be:

 “From Architectures to New
Architectures, With a Requirements
Sidebar”

