Syllabus for Advancement to Candidacy Exam in the area of Computer Networks

Affiliated Faculty
 Bao, El Zarki, Jain, Suda, Venkatasubramanian, Yang

Main Topics

- The ISO/OSI network architecture reference model
 - The advantage of layered architecture
 - Physical layer, data link layer, network layer, transport layer, session layer, presentation layer, application layer
 - Differences between networking devices: hub, repeater, switch, bridge, router, gateway
 - Differences between data units: data frame, datagram, packet, segment, message
 - Differences between connections, and which layer offers which kind of connections: connection-oriented, connection-less
 - Differences between networking services: peer-to-peer, end-to-end, point-to-point, hop-by-hop

- Current Internet architecture based on TCP/IP (questions can be based on the protocol operations)
 - Data framing: error detection (CRC), error correction (Hamming code)
 - Ethernet, MPLS, Token Ring, ATM, (VLAN), frame relay
 - IP, AAL, IPv6
 - TCP, UDP
 - RTP, RTCP
 - SMTP, IMAP, SNMP, HTTP, FTP, TELNET
 - DNS
 - Records and meanings of certain types: A - address record, NS - DNS name server name, CNAME - canonical name record for an alias, MX - mail server name record.

- Network control protocols:
 - DHCP, ARP, ICMP
 - Multicast: IGMP, PIM-SM, PIM-DM
 - Differences between ALOHA, Slotted-ALOHA, CSMA, CSMA/CA, CSMA/CD
 - Basic flow control protocols: sliding window, go-back-N, selective repeat
 - TCP flow control algorithm: maximum segment size (MSS), send window, receive window
 - TCP congestion control algorithm: congestion window, slow-start, additive increase multiplicative decrease (AIMD)
 - Routing scaling: hierarchical routing, autonomous systems, IGP, EGP
 - The basic routing algorithms: distance vector -- Bellman-Ford, link state -- Dijkstra's, path vector
• The representative protocols based on the above algorithms: DV-RIP, LS-OSPF, PV-BGP

• Network designs:
 o The relationship CSMA/CD data frame length and the network segment length
 o Quality of service: IntServ, DiffServ differences, MPLS
 o IPv6 improvement over IP: address space, ease of allocation, autoconfiguration, mobility support (type 2 routing header)
 o Network addressing: interface, MAC address, IP address, port, URL
 o NAT - network address translation

• Advanced topics:
 o Mobility
 o Queuing

Recommended readings:
• J. Kurose, K. Ross, Computer Networking: A Top-Down Approach Featuring the Internet, Addison-Wesley, '00
• Richard Stevens, TCP/IP Illustrated, Vol.1, Addison-Wesley, '94.

Sample Curriculum:
• CS 200: Seminar in Research
• CS 260: Fundamentals of the Design and Analysis of Algorithm
• CS 250A: Computer Systems Architecture
• CS 241: Advanced Compiler Construction
• CS 230: Distributed Computer Systems
• CS 232: Computer Networks
• At least four other courses relevant to the student’s research (e.g., CS 233-237)