Syllabus and Suggested Curriculum for Candidacy Exam in CS IBAM (Informatics in Biology and Medicine)

Suggested Curriculum:

Core Material (all on list)

CS 284A Representations and Algorithms for Molecular Biology
CS 284B Probabilistic Modeling of Biological Data
CS 284C Computational Systems Biology

Artificial Intelligence/ Machine Learning/Data Management/Networks (three from list)

CS 215 Data Mining
CS 271 Introduction to Artificial Intelligence
CS 273A Machine Learning
CS 273B Kernel-Based Learning
CS 274A Probabilistic Learning: Theory and Algorithms
CS 274B Learning in Graphical Models
CS 276 Network-Based Reasoning/Belief Networks
CS 222 Principles of Data Management
CS 288A Biological Networks

Algorithms (one from list)

CS 260 Fundamentals of the Design and Analysis of Algorithms
CS 263 Analysis of Algorithms
CS 265 Graph Algorithms
CS 266 Computational Geometry

Probability and Statistics (one from list)

CS 206 Principles of Scientific Computing
Stat 200A Intermediate Probability and Statistical Theory
Stat 210 Statistical Methods I: Linear Models
Stat 225 Bayesian Statistical Analysis
Stat 230 Statistical Computing Methods
Reading for Candidacy Exam

Core Reading

Bioinformatics: Sequence and Genome Analysis, by David Mount
Cold Spring Harbor Laboratory Press

Bioinformatics: the Machine Learning Approach, by P. Baldi and S. Brunak
MIT Press (Second Edition)

Additional Reading

Biological Sequence Analysis by R. Durbin, S. Eddy, A. Krogh, G. Mitchison

Biochemistry: A Short Course by Harry R. Matthews, Richard Freedland, and Roger L. Miesfeld.

Introduction to Protein Structure by Carl Branden and John Tooze.

Molecular Modeling: Principles and Applications by A.R. Leach.

Introduction to Computational Molecular Biology by Joao Setubal and Joao Meidanis.

Computational Molecular Biology: An Algorithmic Approach by Pavel A. Pevzner

Handbook of Graphs and Networks: From the Genome to the Internet by Bornholdt and Schuster (Editors), Wiley, 2003.

Computational Modeling of Genetic and Biochemical Networks by Bower and Bolouri (Editors), 2001.

DNA Microarrays and Gene Expression, by P. Baldi and G.. W. Hatfield

An Introduction to Chemoinformatics, by A. R. Leach and V. J. Gillet
Topics for Candidacy Exam

Overview:

Basic understanding of molecular biology: atoms, nucleotides, DNA, RNA, amino acids, genes, chromosomes, peptides, proteins, enzymatic reactions, metabolic networks, signaling networks, regulatory networks, cellular organization

Basic understanding of main databases: GenBank, Swissprot, PDB, Medline, etc.

Good understanding of modern AI, statistical machine learning, data mining, and scientific modeling methods and algorithms, Bayesian methods, evolutionary algorithms, reinforcement learning, neural networks, graphical models, kernel methods

Excellent understanding of computational analysis and prediction of the structure, function, interactions, and evolution of DNA, RNA, proteins, molecules, and processes.

Specific Topics:

Sequence modeling, similarity, and alignment: graphical models, basic Markov models; global and local dynamic programming alignment; BLAST, sequence database searching

Models of evolution: phylogenetic tree reconstruction, parsimony, maximum likelihood, neighbor joining; multiple alignments, HMMs, profiles

Sequence patterns: pattern matching, pattern induction, signal peptides, k-mer analysis, Gibbs sampling, expectation-maximization (EM); gene finding, regulatory regions, intron/exon calling, splice site prediction

Protein structure prediction: homology modeling, fold recognition, threading, ab-initio; secondary structure prediction: various methods including neural networks

Atomic Force Fields: functional form, parameterization, molecular mechanics

Rational drug design: docking algorithms; rational drug discovery: small molecules, QSAR, combinatorial methods, basic chemoinformatics

Microarray data, differential analysis, clustering

Modeling regulatory, signaling, and metabolic reactions and networks: reaction rates, stoichiometric constants, mass action, stochastic modeling and master equation, ordinary and partial differential equation models

Network representation of biological data; network models, properties, analysis; and complexity; graph clustering; graph alignment heuristics (e.g. PathBLAST).