CS 143a
Discussion 3

Harishankar Vishwanathan

Overview

e Executable-and-linkable format (ELF) files
e Statically linked programs on linux
e Understand program entry point

Statically linked programs

- Program doesn’t require any shared objects to run (not even 1libc)
In reality, this isn’t true, programs almost always will require shared objects

Program execution

- Always begins in the kernel
- A process will call exec, which ends up issuing sys_execve system call

- The kernel supports different binary formats for an executable
- It will try every format one-by-one until it succeeds.

- We will focus on ELF
- Xvb6/exec.c

int
exec(char *path, char **argv)

{

// Check ELF header

if(readi(ip, (char*)&elf, 0, sizeof(elf)) != sizeof(elf))
goto bad;

if(elf.magic != ELF_MAGIC)
goto bad;

ELF format

- Used by:

- Linker: combines multiple ELF files into an executable or ELF Hisaner
Iibrary Program header table
- Loader: loads the executable in the memory of the (s
process
- Both linker and loader need two views of the rodata
same elf file: [
T =

- Linker (detailed view): needs to know DATA, TEXT, BSS

Section header table

sections to merge them from with other sections from

other objects
- Loader (simpler view): needs to know only which parts of

the ELF are executable, writable, read-only.

ELF format

The ELF binary is composed of:

_ ELF header ELF header
- Program Header Table Rrogramihesder tbie
- Section Header Table (-
- ELF is mainly composed of segments and
sections f s
- Segments: 1 i

- Portions of the binary that are actually loaded into
memory at runtime (composed of one or more sections)

Section header table

- Sections:
- Actual program code and data that is available in memory
when a program runs
- Metadata about other sections used only in the linking
process

ELF format

Proatfosn
Heavur
TABLE
(Potwters
o UgeonenTs v >

PRl
(Fum-rers o
Usecrion s)

)

\ ,‘4—Se&NeM

' Used vy TRE
Nmsee _ _ (f‘;%e\q
VT T — e sediong

¢ t (Lseb B
S Tre dukes

Reading ELF

Kernel reads ELF

Maps programs segments into memory
according to the PHT.

Passes execution

Directly modifying EIP register, to the entry
address read from ELF header of the program
Arguments are passed to the program on the
stack

High address

Low address

envp(1]

envp[0]

argv(1]

argv(0]

Program entry point

- Several object files are linked into an executable ELF binary by using the
linker 1d

- The linker looks for a special symbol called _start in one of the object
files

- Sets the entry point to the address of that symbol.This is where the program
starts execution.

- main is really not the entry point of the program!

Demo : Program entry point in .asm

; file: nasm_rc.asm

section .text
; The _start symbol must be declared for the linker (1d)
global start

_start:
; Execute sys exit call. Argument: status -> ebx
mov eax, 1 ; system call 1: sys exit
mov ebx, 42 ; pass arguments to sys exit
int Ox80 ; call into kernel

- This simple program simply returns 42.

10

Demo : Program entry point in .asm

Compile with
nasm -f elf32 nasm_rc.asm -0 nasm_rc.o
Link with

ld -m elf i386 -0 nasm_rc nasm_rc.o

Read the elf header, what entry point do you see?
readelf -h nasm_rc

Is it the same as the address of _start?
objdump -M intel -d nasm_rc

Run the program and check its exit code:

$./c_rc

$ echo $? # return code of a program

42

11

Demo : Program entry point in .c
/* file c_rc.c */

int main() {
return 42;

}

12

Demo : Program entry pointin .c

- Use the -c flag in gcc to compile but not link.
gcc -c¢ -m32 -fno-pic c_rc.c
- When we ask gcc to just compile (but not link), the generated object file object
file is minimal:
- objdump -M intel -d c_rc.o
- Does it have an _start symbol?

- Now, link with
ld -m elf i386 -0 ¢ _rc c_rc.o

- Does the linker give you a warning?

- What happens if you try to execute c_rc?

- How is c_rc different from c_rc.0?
objdump -M intel -d c rc.o

13

Demo : Program entry pointin .c

- Since we just compiled (did not link) our minimal C file, the linker cannot
find the entry point (it tries to guess).

- The linker clearly needs some additional object files, where it will find the
entry point i.e. the _start symbol.

- We can specify the additional object files to the linker, but since we don’t
know what those files exactly are, we will use gcc'’s help.

- Gcce when invoked without the -c flag, will invoke the linker with the required
object files

14

Demo : Program entry pointin .c

- Since this talk is about how statically linked programs work, we will specify
the -static flag to gcc (the flag is passed on to the linker internally, since
we are invoking gcc and the linker together).
gcc -o ¢c_rc -m32 -static c_rc.o

- Run the program and check its exit code:
$./c_rc
$ $?

15

Demo : Program entry pointin .c

- How does gcc manage to do the linking correctly?

- To see a list of all the libraries the gcc passed on to the linker:
gcc -Wl,-verbose -m32 -0 c_rc -static c_rc.o

- We see that there are some additional object files needed (the whole static
libc, 1ibc.a).

16

Demo : Program entry point in .c

- C code does not live in a vacuum!
- It has several dependant objects, most notably libc.

17

Exercise

- Our code was clearly linked correctly and it worked: it should have the start
symbol.

- Check out if it does in objdump -d c_rc | less, (searchfor start)and if
the address matches the entry point in readelf -h c_rc

- The code at the symbol _start should call a libc related function:
__libc_start_main.

- What are the arguments to __ 1ibc_start main?

- One of them should be the address of our main function!

18

__libc_start main

int _ libc_start main(
/* Pointer to the program's main function */
(int (*main) (int, char**, char**),
/* argc and argv */
int argc, char **argv,
/* Pointers to initialization and finalization functions */
__typeof (main) init, void (*fini) (void),
/* Finalization function for the dynamic linker */
void (*rtld fini) (void),
/* End of stack */
void* stack _end)

19

__libc_start_ main

What does it do?

Figure out where the environment variables are on the stack

Initialize libc

Call the program initialization function through the passed pointer (init)
Register the program finalization function (fini) for execution on exit
Call main(argc, argv, envp)

Call exit with the result of main as the exit code

20

Conclusion

- How statically linked programs work
- Linux kernel, compiler, linker, the C library co-operate in the program
execution process

21

HW3: Reading elf

- readelf is your friend

- Use it to figure out what exactly the binary of an executable contains, and at offset
locations in that binary

- You have to, finally, load the ELF binary called elf into memory and run it.

- Two structs are provided to you, read into these structs and fill them up.
- elfhdr
- Proghdr
- lseek, open, read, mmap are the syscall wrappers you would need to
work with.

22

References

https://eli.thegreenplace.net/2012/08/13/how-statically-linked-programs-run-on-linux

23

https://eli.thegreenplace.net/2012/08/13/how-statically-linked-programs-run-on-linux

