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Two programs one memory



  

Two programs one memory

● How can we do 
this? 



  

Relocation

● One way to achieve this is to relocate program 
at different addresses
● Remember relocation (from linking and loading)



  

Relocate binaries to work at different
addresses



  

● One way to achieve this is to relocate program 
at different addresses
● Remember relocation (from linking and loading)
● This works! But not ideal.

● What is the problem?



  

● One way to achieve this is to relocate program at 
different addresses
● Remember relocation (from linking and loading)
● This works! But not ideal.

● What is the problem?
● Isolation can be enforced in software
● Software Fault Isolation (SFI)

– Google NaCl (Chrome Sandbox)
– WASM (Web Assembly, another sandbox standard)



  

● Another way is to ask for hardware support



  

Segmentation



  

What are we aiming for?

● Illusion of a private address space
● Identical copy of an address space in multiple 

programs
● Simplifies software architecture

– One program is not restricted by the memory layout of 
the others



  

Two processes, one memory?



  

Two processes, one memory?

● We want hardware to add base value to every 
address used in the program 



  

Seems easy

● One problem
● Where does this base address come from? 



  

Seems easy

● One problem
● Where does this base address come from? 
● Hardware can maintain a table of base addresses

– One base for each process
● Dedicate a special register to keep an index into 

that table 



  

● One problem
● Where does this base address come from? 
● Hardware can maintain a table of base addresses

– One base for each process
● Dedicate a special register to keep an index into 

that table 



  

Segmentation: example



  

Segmentation: address consists of two parts

● Segment register contains segment selector

● General registers contain offsets

● Intel calls this address: “logical address”



  

Segmentation: Global Descriptor Table

● GDT is an array of segment descriptors

● Each descriptor contains base and limit for the segment

● Plus access control flags



  

Segmentation: Global Descriptor Table

● Location of GDT in physical memory is pointed by the GDT 
register



  

Segmentation: base + offset

● Segment register (0x1) chooses an entry in GDT

● This entry contains base of the segment (0x110000) and limit 
(size) of the segment (not shown)



  

Segmentation: base + offset

● Physical address: 

● 0x410010 = 0x300010 (offset) + 0x110000 (base)

● Intel calls this address “linear”



  

Segmentation: process 2

● Each process has a private GDT

● OS will switch between GDTs



  

New addressing mode:
“logical addresses”



  

All addresses are logical address
● They consist of two parts

● Segment selector (16 bit) + offset (32 bit)



  

● Segment selector (16 bit)
● Is simply an index into an array (Descriptor Table)
● That holds segment descriptors

– Base and limit (size) for each segment



  

Elements of the descriptor table are 
segment descriptors

● Base address
● 0 – 4 GB

● Limit (size)
● 0 – 4 GB

● Access rights
● Executable, readable, writable
● Privilege level (0 - 3)



  

● Offsets into segments (x in our example) or 
“Effective addresses” are in registers



  

● Logical addresses are translated into physical
● Effective address + DescriptorTable[selector].Base



  

● Logical addresses are translated into physical
● Effective address + DescriptorTable[selector].Base



  

● Logical addresses are translated into physical
● Effective address + DescriptorTable[selector].Base



  

● Logical addresses are translated into physical
● Effective address + DescriptorTable[selector].Base



  

● Physical address = 

Effective address + DescriptorTable[selector].Base
● Effective addresses (or offsets) are in registers
● Selector is in a special register



  

Segment registers

● Hold 16 bit segment selectors
● Indexes into GDT

● Segments are associated with one of three 
types of storage
● Code
● Data
● Stack



  

Segmented programming (not real)

static int x = 1;

int y; // stack

if (x) {

    y = 1;

    printf (“Boo”);

} else

    y = 0;

ds:x = 1; // data

ss:y;     // stack

if (ds:x) {

   ss:y = 1;

   cs:printf(ds:“Boo”);

} else

   ss:y = 0;



  

Programming model

● Segments for: code, data, stack, “extra”
● A program can have up to 6 total segments
● Segments identified by registers: cs, ds, ss, es, fs, gs

● Prefix all memory accesses with desired segment:
● mov eax, ds:0x80    (load offset 0x80 from data into eax)
● jmp cs:0xab8          (jump execution to code offset 0xab8)
● mov ss:0x40, ecx    (move ecx to stack offset 0x40)



  

Programming model, cont.

● This is cumbersome, 
● Instead the idea is: infer code, data and stack 

segments from the instruction type:
● Control-flow instructions use code segment (jump, 

call)
● Stack management (push/pop) uses stack
● Most loads/stores use data segment

● Extra segments (es, fs, gs) must be used 
explicitly



  

Code segment

● Code
● CS register
● EIP is an offset inside the segment stored in CS

● Can only be changed with 
● procedure calls, 
● interrupt  handling, or 
● task switching



  

Data segment

● Data
● DS, ES, FS, GS
● 4 possible data segments can be used at the same 

time



  

Stack segment

● Stack
● SS

● Can be loaded explicitly
● OS can set up multiple stacks
● Of course, only one is accessible at a time



  

Segmentation: what did we achieve

● Illusion of a private address space
● Identical copy of an address space in multiple 

programs
– We can implement  fork()

● Isolation
● Processes cannot access memory outside of their 

segments



  

Segmentation works for isolation, i.e., it does 
provide programs with illusion of private memory



  

Segmentation is ok... but



  

What if process needs more 
memory?



  

What if process needs more 
memory?



  

You can move P2 in memory



  

Or even swap it out to disk



  

Problems with segments

● Segments are somewhat inconvenient
● Relocating or swapping the entire process takes 

time
● Memory gets fragmented

● There might be no space (gap) for the swapped out 
process to come in

● Will have to swap out other processes



  

Paging



  

Pages



  

Pages



  

Paging idea

● Break up memory into 4096-byte chunks called 
pages
● Modern hardware supports 2MB, 4MB, and 1GB pages

● Independently control mapping for each page of 
linear address space

● Compare with segmentation (single base + limit)
● many more degrees of freedom



  

How can we build this translation 
mechanism?



  

Paging: naive approach: translation array

● Linear address 0x410010

● Remember it’s result of logical to linear translation (aka 
segmentation)

– 0x410010 = 0x300010 (offset) + 0x110000 (base)



  

Paging: naive approach: translation array

● Linear address 0x410010

● Remember it’s result of logical to linear translation (aka 
segmentation)

– 0x410010 = 0x300010 (offset) + 0x110000 (base)



  

What is wrong? 



  

What is wrong? 

● We need 4 bytes to relocate each page
● 20 bits for physical page number
● 12 bits of access flags

● Therefore, we need array of 4 bytes x 1M entries
– 4MBs



  

Paging: naive approach: translation array



  

Paging: array with size

● The size controls how many entries are required



  

But still what may go wrong?



  

Paging: array with size



  

Paging: array with size



  

Paging: array with chunks



  

Paging: array with chunks



  

Paging: page table



  



  



  



  



  



  

● Result: 
● EAX = 55



  

Page translation



  

Page translation



  

Page directory entry (PDE)

● 20 bit address of the page table



  

Page directory entry (PDE)

● 20 bit address of the page table
● Wait... 20 bit address, but we need 32 bits



  

Page directory entry (PDE)

● 20 bit address of the page table
● Wait... 20 bit address, but we need 32 bits

● Pages 4KB each, we need 1M to cover 4GB
● Pages start at 4KB (page aligned boundary)



  

Page translation



  

Page table entry (PTE)

● 20 bit address of the 4KB page
● Pages 4KB each, we need 1M to cover 4GB



  

Page translation



  

Benefit of page tables

… Compared to arrays?
● Page tables represent sparse address space more 

efficiently
● An entire array has to be allocated upfront
● But if the address space uses a handful of pages
● Only page tables (Level 1 and 2 need to be allocated to 

describe translation)
● On a dense address space this benefit goes away

● I'll assign a homework!



  

What about isolation?

● Two programs, 
one memory?

● Each process has 
its own page table
● OS switches 

between them



  

P1 and P2 can't access each 
other memory



  

Compared to segments pages 
allow ...

● Emulate large virtual address space on a 
smaller physical memory
● In our example we had only 12 physical pages
● But the program can access all 1M pages in its 4GB 

address space
● The OS will move other pages to disk



  

Compared to segments pages 
allow ...

● Share a region of memory across multiple programs
● Well… segments allow this too
● Communication (shared buffer of messages)
● Shared libraries



  

Recap: complete address 
translation



  



  



  



  



  



  



  



  



  

32bit x86 supports two page sizes

● 4KB pages
● 4MB pages



  

Page translation for 4MB pages



  

Page translation for 4MB pages



  

● Virtual addresses 
are 47 bits

● Physical addresses 
are 52 bits

Page translation in 64bit modePage translation in 64bit mode



  

Questions?



  

What pages are used for

● Protect parts of the program
● E.g., map code as read-only

– Disable code modification attacks
– Remember R/W bit in PTD/PTE entries!

● E.g., map stack as non-executable
– Protects from stack smashing attacks
– Non-executable bit



  

More paging tricks

● Determine a working set of a program?



  

More paging tricks

● Determine a working set of a program?
● Use “accessed” bit



  

More paging tricks

● Determine a working set of a program?
● Use “accessed” bit

● Iterative copy of a working set?
● Used for virtual machine migration



  

More paging tricks

● Determine a working set of a program?
● Use “accessed” bit

● Iterative copy of a working set?
● Used for virtual machine migration
● Use “dirty” bit



  

More paging tricks

● Determine a working set of a program?
● Use “accessed” bit

● Iterative copy of a working set?
● Used for virtual machine migration
● Use “dirty” bit

● Copy-on-write memory, e.g. lightweigh fork()?



  

More paging tricks

● Determine a working set of a program?
● Use “accessed” bit

● Iterative copy of a working set?
● Used for virtual machine migration
● Use “dirty” bit



  

TLB

● Walking page table is slow
● Each memory access is 240 (local) - 360 (one QPI 

hop away) cycles on modern hardware
● L3 cache access is 50 cycles

cr3



  

TLB

● CPU caches results of page table walks
● In translation lookaside buffer (TLB)

Virt Phys

0xf0231000 0x1000

0x00b31000 0x1f000

0xb0002000 0xc1000

- -



  

TLB invalidation

● TLB is a cache (in CPU)
● It is not coherent with memory
● If page table entry is changes, TLB remains the 

same and is out of sync

cr3 Virt Phys

0xf0231000 0x1000

0x00b31000 0x1f000

0xb0002000 0xc1000

- -

Same
Virt Addr.

No 
Change!!!



  

TLB invalidation

● After every page table update, OS needs to 
manually invalidate cached values
● Flush TLB

– Either one specific entry
– Or entire TLB, e.g., when CR3 register is loaded
– This happens when OS switches from one process to 

another
● This is expensive

– Refilling the TLB with new values takes time



  

Tagged TLBs

● Modern CPUs have “tagged TLBs”, 
● Each TLB entry has a “tag” – identifier of a process
● No need to flush TLBs on context switch

● On Intel this mechanism is called
● Process-Context Identifiers (PCIDs)

Virt Phys Tag

0xf0231000 0x1000 P1

0x00b31000 0x1f000 P2

0xb0002000 0xc1000 P1



  

When would you disable paging?



  

When would you disable paging?

● Imagine you're running a memcached
● Key/value cache

● You serve 1024 byte values (typical) on 10Gbps 
connection
● 1024 byte packets can leave every 835ns, or 1670 

cycles (2GHz machine)
● This is your target budget per packet



  

When would you disable paging?

● Now, to cover 32GB RAM with 4K pages
● You need 64MB space
● 64bit architecture, 4-level page tables (or 5-levels now)

● Page tables do not fit in L3 cache
● Modern servers come with 32MB cache

● Every cache miss results in up to 4 cache misses 
due to page walk (remember 4-level page tables)
● Each cache miss is 250 cycles

● Solution: 1GB pages



  

Back of the envelope
● If a page is 4K and an entry is 4 bytes, how many 

entries per page?



  

Back of the envelope
● If a page is 4K and an entry is 4 bytes, how many 

entries per page?
● 1k



  

Back of the envelope
● If a page is 4K and an entry is 4 bytes, how many 

entries per page?
● 1k

● How large of an address space can 1 page represent?



  

Back of the envelope
● If a page is 4K and an entry is 4 bytes, how many 

entries per page?
● 1k

● How large of an address space can 1 page represent?
● 1k entries * 1page/entry * 4K/page = 4MB



  

Back of the envelope
● If a page is 4K and an entry is 4 bytes, how many 

entries per page?
● 1k

● How large of an address space can 1 page represent?
● 1k entries * 1page/entry * 4K/page = 4MB

● How large can we get with a second level of 
translation?



  

Back of the envelope
● If a page is 4K and an entry is 4 bytes, how many 

entries per page?
● 1k

● How large of an address space can 1 page represent?
● 1k entries * 1page/entry * 4K/page = 4MB

● How large can we get with a second level of translation?
● 1k tables/dir * 1k entries/table * 4k/page = 4 GB
● Nice that it works out that way!



  

Segment descriptors



  

Page translation



  

Page translation



  

Page directory entry (PDE)

● 20 bit address of the page table



  

Page directory entry (PDE)

● 20 bit address of the page table
● Wait... 20 bit address, but we need 32 bits



  

Page directory entry (PDE)

● 20 bit address of the page table
● Wait... 20 bit address, but we need 32 bits

● Pages 4KB each, we need 1M to cover 4GB
● Pages start at 4KB (page aligned boundary)



  

Page directory entry (PDE)

● Bit #1: R/W – writes allowed? 
● But allowed where? 



  

Page directory entry (PDE)

● Bit #1: R/W – writes allowed? 
● But allowed where? 
● One page directory entry controls 1024 Level 2 

page tables
– Each Level 2 maps 4KB page

● So it's a region of 4KB x 1024 = 4MB



  

Page directory entry (PDE)

● Bit #2: U/S – user/supervisor
● If 0 – user-mode access is not allowed
● Allows protecting kernel memory from user-level 

applications



  

Page translation



  

Page table entry (PTE)

● 20 bit address of the 4KB page
● Pages 4KB each, we need 1M to cover 4GB

● Bit #1: R/W – writes allowed? 
● To a 4KB page

● Bit #2: U/S – user/supervisor
● If 0 user-mode access is not allowed

● Bit #5: A – accessed
● Bit #6: D – dirty – software has written to this page



  

Page translation



  

Questions?
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