

Operating Systems

Address translation
(Segmentation and Paging)

Anton Burtsev

Two programs one memory

Two programs one memory

● How can we do
this?

Relocation

● One way to achieve this is to relocate program
at different addresses
● Remember relocation (from linking and loading)

Relocate binaries to work at different
addresses

● One way to achieve this is to relocate program
at different addresses
● Remember relocation (from linking and loading)
● This works! But not ideal.

● What is the problem?

● One way to achieve this is to relocate program at
different addresses
● Remember relocation (from linking and loading)
● This works! But not ideal.

● What is the problem?
● Isolation can be enforced in software
● Software Fault Isolation (SFI)

– Google NaCl (Chrome Sandbox)
– WASM (Web Assembly, another sandbox standard)

● Another way is to ask for hardware support

Segmentation

What are we aiming for?

● Illusion of a private address space
● Identical copy of an address space in multiple

programs
● Simplifies software architecture

– One program is not restricted by the memory layout of
the others

Two processes, one memory?

Two processes, one memory?

● We want hardware to add base value to every
address used in the program

Seems easy

● One problem
● Where does this base address come from?

Seems easy

● One problem
● Where does this base address come from?
● Hardware can maintain a table of base addresses

– One base for each process
● Dedicate a special register to keep an index into

that table

● One problem
● Where does this base address come from?
● Hardware can maintain a table of base addresses

– One base for each process
● Dedicate a special register to keep an index into

that table

Segmentation: example

Segmentation: address consists of two parts

● Segment register contains segment selector

● General registers contain offsets

● Intel calls this address: “logical address”

Segmentation: Global Descriptor Table

● GDT is an array of segment descriptors

● Each descriptor contains base and limit for the segment

● Plus access control flags

Segmentation: Global Descriptor Table

● Location of GDT in physical memory is pointed by the GDT
register

Segmentation: base + offset

● Segment register (0x1) chooses an entry in GDT

● This entry contains base of the segment (0x110000) and limit
(size) of the segment (not shown)

Segmentation: base + offset

● Physical address:

● 0x410010 = 0x300010 (offset) + 0x110000 (base)

● Intel calls this address “linear”

Segmentation: process 2

● Each process has a private GDT

● OS will switch between GDTs

New addressing mode:
“logical addresses”

All addresses are logical address
● They consist of two parts

● Segment selector (16 bit) + offset (32 bit)

● Segment selector (16 bit)
● Is simply an index into an array (Descriptor Table)
● That holds segment descriptors

– Base and limit (size) for each segment

Elements of the descriptor table are
segment descriptors

● Base address
● 0 – 4 GB

● Limit (size)
● 0 – 4 GB

● Access rights
● Executable, readable, writable
● Privilege level (0 - 3)

● Offsets into segments (x in our example) or
“Effective addresses” are in registers

● Logical addresses are translated into physical
● Effective address + DescriptorTable[selector].Base

● Logical addresses are translated into physical
● Effective address + DescriptorTable[selector].Base

● Logical addresses are translated into physical
● Effective address + DescriptorTable[selector].Base

● Logical addresses are translated into physical
● Effective address + DescriptorTable[selector].Base

● Physical address =

Effective address + DescriptorTable[selector].Base
● Effective addresses (or offsets) are in registers
● Selector is in a special register

Segment registers

● Hold 16 bit segment selectors
● Indexes into GDT

● Segments are associated with one of three
types of storage
● Code
● Data
● Stack

Segmented programming (not real)

static int x = 1;

int y; // stack

if (x) {

 y = 1;

 printf (“Boo”);

} else

 y = 0;

ds:x = 1; // data

ss:y; // stack

if (ds:x) {

 ss:y = 1;

 cs:printf(ds:“Boo”);

} else

 ss:y = 0;

Programming model

● Segments for: code, data, stack, “extra”
● A program can have up to 6 total segments
● Segments identified by registers: cs, ds, ss, es, fs, gs

● Prefix all memory accesses with desired segment:
● mov eax, ds:0x80 (load offset 0x80 from data into eax)
● jmp cs:0xab8 (jump execution to code offset 0xab8)
● mov ss:0x40, ecx (move ecx to stack offset 0x40)

Programming model, cont.

● This is cumbersome,
● Instead the idea is: infer code, data and stack

segments from the instruction type:
● Control-flow instructions use code segment (jump,

call)
● Stack management (push/pop) uses stack
● Most loads/stores use data segment

● Extra segments (es, fs, gs) must be used
explicitly

Code segment

● Code
● CS register
● EIP is an offset inside the segment stored in CS

● Can only be changed with
● procedure calls,
● interrupt handling, or
● task switching

Data segment

● Data
● DS, ES, FS, GS
● 4 possible data segments can be used at the same

time

Stack segment

● Stack
● SS

● Can be loaded explicitly
● OS can set up multiple stacks
● Of course, only one is accessible at a time

Segmentation: what did we achieve

● Illusion of a private address space
● Identical copy of an address space in multiple

programs
– We can implement fork()

● Isolation
● Processes cannot access memory outside of their

segments

Segmentation works for isolation, i.e., it does
provide programs with illusion of private memory

Segmentation is ok... but

What if process needs more
memory?

What if process needs more
memory?

You can move P2 in memory

Or even swap it out to disk

Problems with segments

● Segments are somewhat inconvenient
● Relocating or swapping the entire process takes

time
● Memory gets fragmented

● There might be no space (gap) for the swapped out
process to come in

● Will have to swap out other processes

Paging

Pages

Pages

Paging idea

● Break up memory into 4096-byte chunks called
pages
● Modern hardware supports 2MB, 4MB, and 1GB pages

● Independently control mapping for each page of
linear address space

● Compare with segmentation (single base + limit)
● many more degrees of freedom

How can we build this translation
mechanism?

Paging: naive approach: translation array

● Linear address 0x410010

● Remember it’s result of logical to linear translation (aka
segmentation)

– 0x410010 = 0x300010 (offset) + 0x110000 (base)

Paging: naive approach: translation array

● Linear address 0x410010

● Remember it’s result of logical to linear translation (aka
segmentation)

– 0x410010 = 0x300010 (offset) + 0x110000 (base)

What is wrong?

What is wrong?

● We need 4 bytes to relocate each page
● 20 bits for physical page number
● 12 bits of access flags

● Therefore, we need array of 4 bytes x 1M entries
– 4MBs

Paging: naive approach: translation array

Paging: array with size

● The size controls how many entries are required

But still what may go wrong?

Paging: array with size

Paging: array with size

Paging: array with chunks

Paging: array with chunks

Paging: page table

● Result:
● EAX = 55

Page translation

Page translation

Page directory entry (PDE)

● 20 bit address of the page table

Page directory entry (PDE)

● 20 bit address of the page table
● Wait... 20 bit address, but we need 32 bits

Page directory entry (PDE)

● 20 bit address of the page table
● Wait... 20 bit address, but we need 32 bits

● Pages 4KB each, we need 1M to cover 4GB
● Pages start at 4KB (page aligned boundary)

Page translation

Page table entry (PTE)

● 20 bit address of the 4KB page
● Pages 4KB each, we need 1M to cover 4GB

Page translation

Benefit of page tables

… Compared to arrays?
● Page tables represent sparse address space more

efficiently
● An entire array has to be allocated upfront
● But if the address space uses a handful of pages
● Only page tables (Level 1 and 2 need to be allocated to

describe translation)
● On a dense address space this benefit goes away

● I'll assign a homework!

What about isolation?

● Two programs,
one memory?

● Each process has
its own page table
● OS switches

between them

P1 and P2 can't access each
other memory

Compared to segments pages
allow ...

● Emulate large virtual address space on a
smaller physical memory
● In our example we had only 12 physical pages
● But the program can access all 1M pages in its 4GB

address space
● The OS will move other pages to disk

Compared to segments pages
allow ...

● Share a region of memory across multiple programs
● Well… segments allow this too
● Communication (shared buffer of messages)
● Shared libraries

Recap: complete address
translation

32bit x86 supports two page sizes

● 4KB pages
● 4MB pages

Page translation for 4MB pages

Page translation for 4MB pages

● Virtual addresses
are 47 bits

● Physical addresses
are 52 bits

Page translation in 64bit modePage translation in 64bit mode

Questions?

What pages are used for

● Protect parts of the program
● E.g., map code as read-only

– Disable code modification attacks
– Remember R/W bit in PTD/PTE entries!

● E.g., map stack as non-executable
– Protects from stack smashing attacks
– Non-executable bit

More paging tricks

● Determine a working set of a program?

More paging tricks

● Determine a working set of a program?
● Use “accessed” bit

More paging tricks

● Determine a working set of a program?
● Use “accessed” bit

● Iterative copy of a working set?
● Used for virtual machine migration

More paging tricks

● Determine a working set of a program?
● Use “accessed” bit

● Iterative copy of a working set?
● Used for virtual machine migration
● Use “dirty” bit

More paging tricks

● Determine a working set of a program?
● Use “accessed” bit

● Iterative copy of a working set?
● Used for virtual machine migration
● Use “dirty” bit

● Copy-on-write memory, e.g. lightweigh fork()?

More paging tricks

● Determine a working set of a program?
● Use “accessed” bit

● Iterative copy of a working set?
● Used for virtual machine migration
● Use “dirty” bit

TLB

● Walking page table is slow
● Each memory access is 240 (local) - 360 (one QPI

hop away) cycles on modern hardware
● L3 cache access is 50 cycles

cr3

TLB

● CPU caches results of page table walks
● In translation lookaside buffer (TLB)

Virt Phys

0xf0231000 0x1000

0x00b31000 0x1f000

0xb0002000 0xc1000

- -

TLB invalidation

● TLB is a cache (in CPU)
● It is not coherent with memory
● If page table entry is changes, TLB remains the

same and is out of sync

cr3 Virt Phys

0xf0231000 0x1000

0x00b31000 0x1f000

0xb0002000 0xc1000

- -

Same
Virt Addr.

No
Change!!!

TLB invalidation

● After every page table update, OS needs to
manually invalidate cached values
● Flush TLB

– Either one specific entry
– Or entire TLB, e.g., when CR3 register is loaded
– This happens when OS switches from one process to

another
● This is expensive

– Refilling the TLB with new values takes time

Tagged TLBs

● Modern CPUs have “tagged TLBs”,
● Each TLB entry has a “tag” – identifier of a process
● No need to flush TLBs on context switch

● On Intel this mechanism is called
● Process-Context Identifiers (PCIDs)

Virt Phys Tag

0xf0231000 0x1000 P1

0x00b31000 0x1f000 P2

0xb0002000 0xc1000 P1

When would you disable paging?

When would you disable paging?

● Imagine you're running a memcached
● Key/value cache

● You serve 1024 byte values (typical) on 10Gbps
connection
● 1024 byte packets can leave every 835ns, or 1670

cycles (2GHz machine)
● This is your target budget per packet

When would you disable paging?

● Now, to cover 32GB RAM with 4K pages
● You need 64MB space
● 64bit architecture, 4-level page tables (or 5-levels now)

● Page tables do not fit in L3 cache
● Modern servers come with 32MB cache

● Every cache miss results in up to 4 cache misses
due to page walk (remember 4-level page tables)
● Each cache miss is 250 cycles

● Solution: 1GB pages

Back of the envelope
● If a page is 4K and an entry is 4 bytes, how many

entries per page?

Back of the envelope
● If a page is 4K and an entry is 4 bytes, how many

entries per page?
● 1k

Back of the envelope
● If a page is 4K and an entry is 4 bytes, how many

entries per page?
● 1k

● How large of an address space can 1 page represent?

Back of the envelope
● If a page is 4K and an entry is 4 bytes, how many

entries per page?
● 1k

● How large of an address space can 1 page represent?
● 1k entries * 1page/entry * 4K/page = 4MB

Back of the envelope
● If a page is 4K and an entry is 4 bytes, how many

entries per page?
● 1k

● How large of an address space can 1 page represent?
● 1k entries * 1page/entry * 4K/page = 4MB

● How large can we get with a second level of
translation?

Back of the envelope
● If a page is 4K and an entry is 4 bytes, how many

entries per page?
● 1k

● How large of an address space can 1 page represent?
● 1k entries * 1page/entry * 4K/page = 4MB

● How large can we get with a second level of translation?
● 1k tables/dir * 1k entries/table * 4k/page = 4 GB
● Nice that it works out that way!

Segment descriptors

Page translation

Page translation

Page directory entry (PDE)

● 20 bit address of the page table

Page directory entry (PDE)

● 20 bit address of the page table
● Wait... 20 bit address, but we need 32 bits

Page directory entry (PDE)

● 20 bit address of the page table
● Wait... 20 bit address, but we need 32 bits

● Pages 4KB each, we need 1M to cover 4GB
● Pages start at 4KB (page aligned boundary)

Page directory entry (PDE)

● Bit #1: R/W – writes allowed?
● But allowed where?

Page directory entry (PDE)

● Bit #1: R/W – writes allowed?
● But allowed where?
● One page directory entry controls 1024 Level 2

page tables
– Each Level 2 maps 4KB page

● So it's a region of 4KB x 1024 = 4MB

Page directory entry (PDE)

● Bit #2: U/S – user/supervisor
● If 0 – user-mode access is not allowed
● Allows protecting kernel memory from user-level

applications

Page translation

Page table entry (PTE)

● 20 bit address of the 4KB page
● Pages 4KB each, we need 1M to cover 4GB

● Bit #1: R/W – writes allowed?
● To a 4KB page

● Bit #2: U/S – user/supervisor
● If 0 user-mode access is not allowed

● Bit #5: A – accessed
● Bit #6: D – dirty – software has written to this page

Page translation

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131

