Xv6 Book, Chapter 1. KERNBASE limits the amount of memory a single process can use, which might be irritating on a machine with a full 4 GB of RAM. Would raising KERNBASE allow a process to use more memory?
Xv6: physical page allocator

Protected Mode

CS : 0x8 EIP: main
SS : 0x10 ESP: stack
GDT: 0x7c78 TSS: 0x0
IDT: 0x0 CR3: entrypgdir
Physical memory
We need a smaller array to describe physical pages, e.g., `mem_map[]` in Linux.
Memory allocation
Simplest memory allocator

- Bitmap of all pages
 - Bootmem allocator in Linux
- Allocation searches for an unused page
 - Multiple sub-page allocations can be served from the same page by advancing a pointer
- Works ok, but what is the problem?
Boot memory allocator

- Bitmap of all pages
- Allocation searches for an unused page
 - Multiple sub-page allocations can be served from the same page by advancing a pointer

- Works ok, but what is the problem?
 - Linear scan of the bitmap
 - Too long
Buddy:
Physical Memory Allocator
Buddy memory allocator
Buddy allocator

- \(2^n\) pages
- 8 pages
- 4 pages
- 2 pages
- 1 page
- 1 page
- 1 page
What's wrong with buddy?
What's wrong with buddy?

- Buddy allocator is ok for large allocations
 - E.g. 1 page or more
- But what about small allocations?
 - Buddy uses the whole page for a 4 bytes allocation
 - Wasteful
 - Buddy is still slow for short-lived objects
Slab:
Allocator for object of a fixed size
Slab

- A 2 page slab with 6 objects
Keeping track of free objects

- kmem_bufctl array is effectively a linked list

- First free object: 3
- Next free object: 1
A cache is formed out of slabs
Slab is fine, but what's wrong?
Slab is fine, but what's wrong?

- We can only allocate objects of one size
Kmalloc(): variable size objects

- A table of caches
 - Size: 32, 64, 128, etc.
NUMA
Non-uniform memory access
Uniform and non-uniform memory access

- Parts of memory can be faster than others
Uniform memory access (UMA)
Nonuniform memory access (NUMA)
Nodes

- Attempt to allocate memory from the current node
 - Fall back to the next node in list
 - If ran out of local memory
Nodes

```c
struct pglist_data
{
    node_next
    node_start_pfn
};
```

Physical memory
Zones

32bit

16MB

ISA devices can DMA only in 0 - 16MB

Normal zone

896MB

High memory (above 896MB on 32 bit machines)

6GB

64bit

16MB

ISA devices can DMA only in 0 - 16MB

32bit devices can DMA into 0 - 4GB

Normal zone

4GB

6GB
struct pglist_data

node_next

zones

node_next

zones

node_next

zones

zones

ZONE_DMA

ZONE_NORMAL

ZONE_HIGMEM

ZONE_HIGMEM

ZONE_HIGMEM
Linux memory management
Linux memory management
Thank you!