CS238P: Operating Systems

Lecture 14: Memory management

Anton Burtsev
March, 2018
Xv6 Book, Chapter 1. KERNBASE limits the amount of memory a single process can use, which might be irritating on a machine with a full 4 GB of RAM. Would raising KERNBASE allow a process to use more memory?
Xv6: physical page allocator
Physical memory
We need a smaller array to describe physical pages, e.g., mem_map[] in Linux

```
struct page {
  ...
}
```

```
struct page mem_map[]
```

Physical memory
Memory allocation
Simplest memory allocator

- Bitmap of all pages
 - Bootmem allocator in Linux
- Allocation searches for an unused page
 - Multiple sub-page allocations can be served from the same page by advancing a pointer
- Works ok, but what is the problem?
Boot memory allocator

- Bitmap of all pages
 - Bootmem allocator in Linux

- Allocation searches for an unused page
 - Multiple sub-page allocations can be served from the same page by advancing a pointer

- Works ok, but what is the problem?
 - Linear scan of the bitmap
 - Too long
Buddy:
Physical Memory Allocator
Buddy memory allocator
Buddy allocator

\[2^n \text{ pages} \]

- 3 pages
- 4 pages
- 2 pages
- 2 pages
- 1 page
- 1 page
- 1 page
What's wrong with buddy?
What's wrong with buddy?

- Buddy allocator is ok for large allocations
 - E.g. 1 page or more
- But what about small allocations?
 - Buddy uses the whole page for a 4 bytes allocation
 - Wasteful
 - Buddy is still slow for short-lived objects
Slab:
Allocator for object of a fixed size
Slab

• A 2 page slab with 6 objects
Keeping track of free objects

- `kmem_bufctl` array is effectively a linked list

- First free object: 3
- Next free object: 1
A cache is formed out of slabs
Slab is fine, but what's wrong?
Slab is fine, but what's wrong?

• We can only allocate objects of one size
Kmalloc(): variable size objects

- A table of caches
 - Size: 32, 64, 128, etc.
NUMA
Non-uniform memory access
Uniform and non-uniform memory access

- Parts of memory can be faster than others
Uniform memory access (UMA)
Nonuniform memory access (NUMA)
Nodes

- Attempt to allocate memory from the current node
- Fall back to the next node in list
 - If ran out of local memory
Nodes

Node1

struct pglist_data

Node2

Node3

node_next

node_start_pfn

node_next

node_start_pfn

node_next

node_start_pfn

Physical memory
Linux memory management
Linux memory management
Thank you!
Zones

32bit

<table>
<thead>
<tr>
<th>16MB</th>
<th>896MB</th>
<th>6GB</th>
</tr>
</thead>
</table>

- ISA devices can DMA only in 0 - 16MB
- Normal zone
- High memory (above 896MB on 32 bit machines)

64bit

<table>
<thead>
<tr>
<th>16MB</th>
<th>4GB</th>
<th>6GB</th>
</tr>
</thead>
</table>

- ISA devices can DMA only in 0 - 16MB
- Normal zone
Zones

struct pglist_data

ZONE_DMA
ZONE_NORMAL
ZONE_HIGMEM
ZONE_HIGMEM
ZONE_HIGMEM