System Programming in Rust: Beyond Safety

Abhiram Balasubramanian Marek S. Baranowski Anton Burtsev Aurojit Panda
University of Utah University of Utah UC Irvine UC Berkeley

Zvonimir Rakamarić Leonid Ryzhyk
University of Utah VMware Research

Abstract

Rust is a new system programming language that offers a practical and safe alternative to C. Rust is unique in that it enforces safety without runtime overhead, most importantly, without the overhead of garbage collection. While zero-cost safety is remarkable on its own, we argue that the superpowers of Rust go beyond safety. In particular, Rust’s linear type system enables capabilities that cannot be implemented efficiently in traditional languages, both safe and unsafe, and that dramatically improve security and reliability of system software. We show three examples of such capabilities: zero-copy software fault isolation, efficient static information flow analysis, and automatic checkpoining. While these capabilities have been in the spotlight of systems research for a long time, their practical use is hindered by high cost and complexity. We argue that with the adoption of Rust these mechanisms will become commoditized.

1 Introduction

For several decades system developers choose C as the one and only instrument for programming low-level systems. Despite many advances in programming languages, clean-slate operating systems [3], hypervisors [2], key-value stores [26], web servers [30], network [20] and storage [38] frameworks are still developed in C, a programming language that is in many ways closer to assembly than to a modern high-level language.

Today, the price of running unsafe code is high. For example, in 2017, the Common Vulnerabilities and Exposures database lists 217 vulnerabilities that enable privilege escalation, denial-of-service, and other exploits in the Linux kernel [23], two-thirds of which can be attributed to the use of an unsafe language [5]. These include human mistakes related to low-level reasoning about intricate details of object lifetimes, synchronization, bounds checking, etc., in a complex, concurrent environment of the OS kernel. Even worse, pervasive use of pointer aliasing, pointer arithmetic, and unsafe type casts keeps modern systems beyond the reach of software verification tools.

Why are we still using C? The historical reason is performance. Traditionally, safe languages rely on managed runtime, and specifically garbage collection (GC), to implement safety. Despite many advances in GC, its overhead remains prohibitive for systems that are designed to saturate modern network links and storage devices. For example, to saturate a 10Gbps network link, kernel device drivers and network stack have a budget of 835 ns per 1K packet (or 1670 cycles on a 2GHz machine). With the memory access latency of 96-146 ns [28], the I/O path allows a handful of cache misses in the critical path—the overhead of GC is prohibitive.

Is it reasonable to sacrifice safety for performance, or should we prioritize safety and accept its overhead? Recent developments in programming languages suggest that this might be a false dilemma, as it is possible to achieve both performance and safety without compromising on either. The breakthrough has been achieved through synthesis of an old idea of linear types [41] and pragmatic language design, leading to the development of the Rust language [16]. Rust enforces type and memory safety through a restricted ownership model, where there exists a unique reference to each live object in memory. This allows statically tracking the lifetime of the object and deallocating it without a garbage collector. The runtime overhead of the language is limited to array bounds checking, which is avoided in most cases by using iterators.

In this paper, we strengthen the case for Rust as a systems programming language by demonstrating that its advantages go beyond safety. We argue that Rust’s linear type system enables capabilities missing in traditional programming languages (both safe and unsafe). We identify three categories of such capabilities: isolation, analysis, and automation.

Isolation

Software fault isolation (SFI) enforces process-like boundaries around program modules in software, without relying on hardware protection [42]. While SFI improves the security and reliability of the system, it is hard to implement efficiently. Existing SFI implementations do not support sending data across protection boundaries by reference, as this enables the sender to maintain access to the data. Hence a copy is required to ensure isolation, making such solutions unacceptable in line-rate systems. Rust’s single ownership model allows us to implement zero-copy SFI. The Rust compiler ensures that, once a pointer has been passed across isolation boundaries, it can no longer be accessed by the sender. Our SFI implementation (Section 3) introduces the overhead of 90 cycles per protected method call and has zero runtime overhead during normal execution.
Analysis Programming languages literature describes a number of language extensions and associates static analyses that enforce security and correctness properties beyond traditional type safety [7, 29, 39]. For example, static information flow control (IFC) enforces confidentiality by tracking the propagation of sensitive data through the program [29]. Many of these analyses are complicated by the presence of aliasing, e.g., in the IFC case, writing sensitive data to an object makes this data accessible via all aliases to the object and can therefore change the security state of multiple variables. Modern alias analysis achieves efficiency by sacrificing precision, posing a major barrier to accurate IFC. By restricting aliasing, Rust sidesteps the problem. We illustrate this in Section 4 by prototyping an IFC extension for Rust based on precise, yet scalable program analysis.

Automation Many security and reliability techniques, including transactions, replication, and checkpointing, internally manipulate program state by traversing pointer-linked data structures in memory. Doing so automatically and for arbitrary user-defined data types can be complicated in the presence of aliasing. For example, during checkpointing, the existence of multiple references to an object may lead to the creation of multiple object copies (Figure 3). Existing solutions require for a developer to write checkpointing code manually or modify the application to use special libraries of checkpointable data structures. In Section 5 we propose a Rust library that adds the checkpointing capability to arbitrary data structures in an efficient and thread-safe way.

The features discussed above have been in the spotlight of systems research for decades; however their practical adoption is hindered by their high cost and complexity. We argue that with the adoption of Rust as a systems programming language, these mechanisms will become commoditized. Below we support our thesis by discussing a prototype implementations of SFI, IFC, and checkpointing in Rust.

2 Background
The design of Rust builds on a body of research on linear types [41], affine types, alias types [43], and region-based memory management [40], and is influenced by languages like Sing# [15], Vault [14] and Cyclone [22]. Prior to Rust, the Singularity OS [15] introduced linear types to systems research. Singularity’s Sing# language supports a hybrid type system, where traditional types are used to enforce software fault isolation between processes by allocating each process own garbage-collected heap. Linear types are used exclusively for zero-copy inter-process communication via a shared exchange heap. In Section 3 we present a solution that achieves both isolation and communication using linear types.

Rust supports automatic memory management without a garbage collector through its ownership model. When a variable is bound to an object, it acquires ownership of the object. The object is deallocated when the variable goes out of scope. Alternatively, ownership can be transferred to another variable, destroying the original binding. It is also possible to temporarily borrow the object without breaking the binding. Visibility of the borrow is restricted to the syntactic scope where it is declared and cannot exceed the scope of the primary binding.

Single ownership eliminates pointer aliasing, making it impossible to implement data structures like doubly-linked lists in pure Rust. The language offers two mechanisms to remedy this limitation. First, Rust embeds an unsafe subset that is not subject to the single ownership restriction and is used to, e.g., implement parts of Rust’s standard library, including linked lists. Techniques described in this paper rely on properties of the Rust type system that only hold for the safe subset of the language. In the rest of the paper we assume that unsafe code is confined to trusted libraries. Second, Rust supports safe read-only aliasing by wrapping the object with a reference counted type, & or & Arc. When write aliasing is essential, e.g., to access a shared resource, single ownership can be enforced dynamically by additionally wrapping the object with the Mutex type. In contrast to conventional languages, this form of aliasing is explicit in the object’s type signature, which enables us to handle such objects in a special way as described in Section 5.

With the maturing of Rust, we now can apply linear types to a broad range of systems tasks. Multiple projects have demonstrated that Rust is suitable for building low-level high-performance systems, including an embedded [25] and a conventional OS [8], a network function framework [31], and a browser engine [35]. While these systems primarily take advantage of Rust’s type and memory safety, effectively using it as a safe version of C, we focus on the capabilities of Rust that go beyond type and memory safety.

Similar in spirit to ours is the work by Jespersen et al. [21] on session-typed channels for Rust, which exploits linear types to enable compile-time guarantees of adherence to a specific communication protocol. There is a large body of research on safe system programming languages, including safe dialects of C [7, 22] as well as alternatives such as Go and Swift. While a comparison of Rust against these languages is outside the scope of this paper, we point out that, unlike Rust, all of them rely on runtime support for automatic memory management, either in the form of garbage collection or pervasive reference counting.

3 Isolation
We argue that Rust enables software fault isolation (SFI) with lower overhead than any mainstream language. SFI encapsulates untrusted extensions in software, without relying on hardware address spaces. While modern SFI implementations enable low-cost isolation of, e.g., browser plugins [44] and device drivers [13], their overhead becomes unacceptable in applications that require high-throughput communication across protection boundaries. Consider, for instance, network processing frameworks such as Click [24].
or NetBricks [31], which forward packets through a pipeline of filters. Security and fault tolerance considerations call for isolating each pipeline stage in its own protection domain. The traditional SFI architecture achieves this by confining memory accesses issued by the isolated component to its private heap [13][17][44]. Sending data across protection boundaries requires copying it, which is unacceptable in a line-rate system. An alternative architecture [27] uses a shared heap and tags every object on the heap with the ID of the domain that currently owns the object. This avoids copying, but introduces a runtime overhead of over 100% due to tag validation performed on each pointer dereference.

Rust enables SFI without copying or tagging. Type safety provides a foundation for SFI by ensuring that a software component can only access objects obtained from the memory allocator or explicitly granted to it by other components. In addition, Rust’s single ownership model enforces that, after passing an object reference to a function or channel, the caller loses access to the object and hence can neither observe nor modify data owned by other components (with the exception of safe read-only sharing allowed by Rust).

What is missing for a complete SFI solution is a management plane to control domain lifecycle and communication by cleaning up and recovering failed domains, enforcing access control policies on cross-domain calls, etc. We demonstrate how such mechanisms can be implemented in Rust as a library. Our implementation is straightforward, as it relies on inherent capabilities of Rust. The significance of our result is that it provides a constructive proof that Rust enables fault isolation, including secure communication across isolation boundaries, with negligible overhead. To the best of our knowledge, this is the first SFI implementation in any programming language to demonstrate these properties.

Our SFI library exports two data types: protection domains (PDs) and remote references (rrefs). All PDs use a common heap for memory allocation; however, they do not share any data. PDs interact exclusively via method invocations on rrefs. Arguments and return values of remote invocations follow the usual Rust semantics: borrowed references are accessible to the target PD for the duration of the call; all other arguments change their ownership permanently. The sole exception are remote references: the object pointed to by an rref stays in its original domain and can only be accessed from the domain holding the reference via remote invocation.

Rrefs are implemented as smart pointers [Figure 1]. When an rref is created, the original object reference is stored in the reference table associated with the domain. This reference acts as a proxy for remote invocations. The rref returned to the user contains a weak pointer [10] to the reference table. A weak pointer does not prevent the object it points to from being destroyed and must be upgraded to a strong pointer before use. Proxying remote invocations through the reference table gives the owner of the domain complete control over its interfaces and lifecycle. For example, they can intercept remote invocations for fine-grained access control or revoke a remote reference completely by removing its proxy from the reference table. In the latter case, future attempts to invoke the rref will fail to upgrade the weak pointer and will return an error.

The following listing illustrates the use of domains and rrefs:

```rust
// create a PD
let d = Domain::new();
// create an object inside PD and wrap it in RRef
let rref = Domain::execute(&d,
    |RRef::new(createSomeObj()));

match rref.method1() {
    Ok(ret) => println!("Result: {}", ret),
    Err(_) => println!("method1() failed")
}
```

By clearing the reference table one can automatically deallocate all memory and resources owned by the domain. We use this mechanism to implement fault recovery. When a panic occurs inside the domain (e.g., due to a bounds check or assertion violation), we first unwind the stack of the calling thread to the domain entry point [9] and return an error code to the caller. Next, we clear the domain reference table and finally run the user-provided recovery function to re-initialize the domain from clean state. The recovery process can re-populate the reference table, thus making the failure transparent to clients of the domain.

Our SFI implementation introduces the overhead of indirect invocation via the proxy. In addition we use thread-local store [6] to store ID of the current protection domain. We evaluate this overhead in the context of the NetBricks network function framework [31] running on an 8-core Intel Xeon E5530 2.40GHz server. NetBricks is implemented in Rust and performs on par with optimized C frameworks. It retrieves packets from DPDK [20] in batches of user-defined size and feeds them to the pipeline, which processes the batch to completion before starting the next batch. Batches are passed between pipeline stages via function calls. NetBricks takes advantage of linear types to ensure that only one pipeline stage can access the batch at any time. While Panda et al. [31] refer to this mechanism as fault isolation, NetBricks does not support fault containment or recovery.

We use our SFI library to isolate every pipeline component in a separate protection domain, replacing function calls with remote invocations. We measure the cost of isolation by constructing a pipeline of null-filters, which forward batches of packets without doing any work on them. We vary the length of the pipeline and the number of packets per batch, and measure the average number of cycles to process a batch with and without protection. The difference between the two
divided by the pipeline length gives us the overhead of a remote invocation over regular function call. We found this overhead to be independent of the pipeline length, and hence Figure 2 shows the results for the length of 5. The overhead grows from 90 CPU cycles for 1-packet batches to 122 cycles for 256-packet batches, which is roughly the cost of 2 or 3 L3 cache accesses. We attribute the increase to higher cache pressure due to retrieving more packets from DPDK. To put these numbers in perspective, we compare them against the cost of batch processing in a realistic, but light-weight, network function—the NetBricks implementation of the Maglev load balancer [11], which was shown to perform competitively with an optimized C version [31]. The overhead of isolation is negligible (under 1%) for batches larger than 32 packets (Figure 2). Finally, we measure the cost of recovery by simulating a panic in the null-filter and measuring the time it takes to catch it, clean up the old domain, and create a new one. The recovery took 4389 cycles on average.

4 Analysis

We argue that Rust enables precise and efficient static information flow control (IFC). IFC enables strong security guarantees for untrusted modules by ensuring that they do not leak sensitive data through unauthorized channels [29,45]. To this end, program inputs are assigned security labels. Program output channels are also assigned labels, which bound the confidentiality of data sent through the channel. The compiler or the verifier tracks the flow of sensitive data through the program by tainting the result of each expression with the upper bound of labels of its arguments, ultimately proving that the program respects channel bounds. This check must be performed statically to avoid the overhead of runtime validation and to prevent leaks arising from the program paths not taken at run time.

We illustrate the ideas behind IFC with an example implementation of a buffer that provides methods to append to and print its content:

```rust
struct Buffer { data: Option<Vec<u8>>>
impl Buffer {
    fn append(&mut self, mut v: Vec<u8>) {
        match self.data {
        None => self.data = Some(v),
        Some(ref mut d) => d.append(&mut v)
    }
}
```

The following program creates an empty buffer and appends a secret and non-secret value to it (we introduce a new kind of annotation to Rust to attach security labels to variables). It then attempts to print the content of the buffer:

```rust
let mut buf = Buffer::new();
let sec = vec![4,5,6];
let nonsec = vec![1,2,3];
let mut buf = Buffer::new();
buf.append(sec); // buf now contains secret data
println!("{:?}", buf.data); // ERROR: leaks secret data
println!("{:?}", nonsec);
```

The `println!()` macro outputs data to an untrusted terminal; therefore it only allows non-secret arguments (the corresponding annotation is not shown). The program violates this constraint by writing sensitive data to the store and then attempting to print it out. This violation can be detected via efficient static analysis, which tracks the flow of data to and from the buffer. Specifically, in line 15, the content of the buffer is tainted as secret, which triggers an error in line 16.

In conventional programing languages, information flow analysis is complicated by pointer aliasing. We demonstrate this by attempting to introduce a more subtle vulnerability to the above program in line 17. Note that our buffer implementation uses the first vector of values received from the client to store the data internally (line 6), and later appends new data to it (line 7). We exploit this behavior by writing a non-secret vector to the empty buffer first (line 14), appending secret data to the buffer (line 15), and finally printing out the modified content of the non-secret vector, which now aliases the secret data in the buffer (line 17). Thus, instead of writing sensitive data to an unauthorized output channel directly, the program creates an alias to an object, waits until the object obtains sensitive data through a different alias, and then leaks the data via the original alias.

Rust prevents such exploits by design, as they violate single ownership. In this example, line 17 is rejected by the compiler, as it attempts to access the nonsec variable, whose ownership was transferred to the append method in line 14. In contrast, detecting such leaks in a conventional language requires tracking all pointer aliases and reflecting any change in the security label made via one alias to all others. Alias analysis is undecidable in theory and is hard to perform efficiently in practice without losing precision.

An alternative to alias analysis is a security type system, where an object’s type includes its security label that cannot change, making aliasing safe [29]. In our example, we would assign a low-security type to the non-secret vector, and a high-security type to the buf variable, prompting the compiler to reject an attempt to write to the latter an alias to the former in line 6. Instead, we must allocate a new vector and copy over the content of the v argument. While the type-based approach enables fast compile-time analysis, it introduces the overhead of extra memory allocation and copying, which may not be acceptable in a line-rate system.

By eliminating aliasing, Rust enables efficient static information flow analysis while allowing for security labels to change at runtime. We formulate IFC as the problem of
We represent the value of each variable in the abstract domain with a preliminary support for verification of Rust programs. Verification of an abstract interpretation of the program [34]. We have implemented a minimal proof-of-concept IFC for Rust. Our prototype relies on Rust macros to transform the program into its abstract interpretation. There currently does not exist a dedicated verifier for Rust. Hence, we extended the SMACK verifier [32] with an early version of the Rust frontend. SMACK verification toolchain is built on top of the LLVM compiler infrastructure that is used by Rust as well. Hence, it was relatively straightforward to extend SMACK with a preliminary support for verification of Rust programs.

We implemented and verified a simple secure data store in Rust, which stores data on behalf of multiple clients, while preventing non-privileged clients from reading data belonging to privileged ones. The security-label bounds were specified in the example program through the use of assertions. As a sanity check, we seeded a bug into checking of security access in the implementation. SMACK discovered the injected bug, thereby increasing our confidence in the verification process. Even without alias analysis, verification can be expensive for large programs. Further improvements can be achieved through compositional reasoning: in the absence of aliasing, the effect of every function on security labels is confined to its input arguments and can be summarized by analyzing the code of the function in isolation from the rest of the program.

5 Automation

Many techniques for improving the performance and reliability of systems hinge on the ability to automatically manipulate program state in memory. In particular, checkpointing [12], transactions [18][19][33], replication [36][37], multiversion concurrency [14], etc., involve snapshotting parts of program state. This, in turn, requires traversing pointer-linked data structures in memory. Ideally one would like to generate this functionality automatically and for arbitrary user-defined data types. However, doing so in a robust way can be complicated in the presence of aliasing.

Consider, for instance, the task of checkpointing the state of a network firewall that consists of rules indexed via a trie for fast rule lookup based on packet headers (Figure 3a). Multiple leaves of the trie can point to the same rule, causing this rule to be encountered multiple times during pointer traversal, potentially leading to redundant copies of the rule, as shown in Figure 3b. To avoid this in a conventional language, one must record the address of each object reached during the traversal and check newly encountered objects against the recorded set. This has the obvious downside of increasing the CPU and memory overhead of checkpointing. Another complication is related to external pointers aliasing parts of the object. Such pointers, which do not own the data they point to, must be handled in a special way during pointer traversal, for example, a transaction system may add the target of such a pointer to the transaction set. However, conventional languages do not provide means to identify such pointers.

Rust simplifies the problem dramatically: by default, all references in Rust are unique owners of the object they point to and can be safely traversed without extra checks. Aliasing, when present, is explicit in object’s type signature: only objects wrapped in reference counted types (Rc, Arc) can be aliased. The Rc and Arc wrappers therefore provide a convenient place to deal with aliasing with minimal modifications to user code and without expensive lookups.

To support this observation, we implemented an automatic checkpointing library for Rust. We develop a trait (traits are analogous to Java interfaces), called Checkpointable, with two methods: checkpoint() and restore(). We introduce a compiler plugin that inductively generates an implementation of this trait for types comprised of scalar values and references to other checkpointable types. Next, we provide a custom implementation of Checkpointable for Rc (Arc can be extended similarly), which sets an internal flag the first time checkpoint() is called on the object and checks this flag to avoid creating additional copies when graph traversal hits the object again via a different alias. Our library adds the checkpointing capability to arbitrary user-defined data types; in particular, it checkpoints objects with internal aliases correctly and efficiently.

6 Conclusion

Rust represents a unique point in the language design space, bringing the benefits of type and memory safety to systems that cannot afford the cost of garbage collection. We explore the benefits of Rust that go beyond safety. We show that Rust enables system programmers to implement powerful security and reliability mechanisms like SFI, IFC, and automatic checkpointing more efficiently than any conventional language. This is just the tip of the iceberg: we believe that further exploration of linear types in the context of real systems will yield more game-changing discoveries.

References

[1] Daniel Atkins, Alex Potanin, and Lindsay Groves. The design and implementation of clocked variables in

