Motivation

Emulab is a widely-used network testbed
- Experiment = network of physical and virtual nodes
- Primitive FCFS scheduling

Demand for nodes far exceeds capacity

Inactive experiments are destructively "swapped-out"
- Accumulated experiment state lost

Goal

Time-sharing in Emulab through preemptive scheduling

Key enabler: Stateful swapout of experiments

Key Techniques

VM encapsulation (Xen VMM)
- Suspend/resume node execution
- Snapshot node-local state

Consistent group checkpoint
- Snapshot global (experiment-wide) state

Time virtualization
- Inactivity between swapout and swapin transparent to experiment

Major Challenge

Make experiment context switch fast enough to be practical
- Per-node memory and disk state
- 100s of nodes

Addressing the Challenge

Reducing the context switch time

Pipelining
- Proactive swapin of incoming experiment
- Lazy swapout of outgoing experiment

Scalable storage server

Separate metadata and data paths
- Metadata server stores content hashes
- Eliminates intra- and inter-experiment redundancy
- CAS bricks store the data blocks
- Enables parallel data transfer

Minimizing swapped-out state

Exploit data redundancy
- Copy-on-write branching storage system for node-local redundancy
- Store only changes since swapin
- Content addressing for intra- and inter-experiment redundancy
- Redundant data never sent on the wire or stored

Local redundancy elimination

VM disks are CoW branches of the base image. During a swapout, the content hashes of the branches are sent to the metadata server.

The Vision

Emulab as an OS-like entity that takes scheduling decisions, "pages out" idle nodes and manages physical resource utilization through VM migration and ballooning.

Status

We have implemented the key techniques for stateful swapout and CoW branching storage. The scalable storage server is currently a work-in-progress.