
Endeavors: A Process System Infrastructure

Arthur S. Hitomi Gregory Alan Bolcer Richard N. Taylor

Department of Information and Computer Science
University of California, Irvine

Irvine, CA 92697 USA
+1 714 824 2704

{ahitomi, gbolcer, taylor}@ics.uci.edu

ABSTRACT
As software projects evolve, possibly differing in size,
complexity, scope, and purpose, the development processes
that support the project must evolve to reflect these
changes. The Endeavors system is an open, distributed
process modeling and execution infrastructure that
addresses communication, coordination, and control issues.
Endeavors’ solution architecture applies five key design
strategies: (1) maintaining multiple object model layers, (2)
implementing the architecture as a set of highly
componentized, lightweight, transportable, concurrent
elements, (3) providing customization capabilities for each
layer of the object model, (4) using a reflexive object model
to support dynamic change, and (5) allowing dynamic
loading and changing of objects.

Keywords
open, distributed process technology, architecture

INTRODUCTION
Effective software evolution demands that all stakeholders
are able to participate in a system’s evolution. This requires
involvement in evolutionary processes, visibility into
product and process state, use of tools and interfaces that
are effective for both technical and non-technical users, and
mechanisms for facilitating customization and dynamic
change. Endeavors is an open, distributed, extendible
process system which has arisen from experience with the
Teamware process modeling language [4] and lessons from
a variety of other process technologies[2], software
architecture and systems integration research. The design
of the Endeavors system provides key mechanisms for
support of distribution of processes and users, integration of
third party tools, incremental adoption of the technology
(leading to a low cost-of-usage entry barrier), customization
and reuse of the process system components and process
objects, and support for dynamic change of types and
behaviors.

PROCESS ARCHITECTURE
Endeavors allows the object-oriented definition and
specialization of the activities, artifacts, and resources
associated with a software development process. The
specification of processes and objects can be defined
hierarchically; an activity can be further sub-divided into
sub-activities, or a software development team resource can
be further defined to include team member or sub-team
resources. Endeavors’ activity networks define the inter-
relationships between activities, artifacts, and resources as
well as sub-networks. Networks include the definition of
control flow, data flow, and resource assignments, and can
be easily defined using the graphical network editor.
Activity networks can be executed by an interpreter which
sends events to particular objects, triggering handlers which
define the object’s behavior.

Distribution
Endeavors has customizable distribution and
decentralization policies which provide support for
transparently distributed people, artifacts, process objects,
and execution behavior (handlers). In addition, Endeavors
processes, as well as the means to visualize, edit, and
execute them, are easily downloaded using current and
evolving world wide web (WWW) protocols [1].

Integration
Endeavors allows bi-directional communication between its
internal objects and external tools, objects, and services
through its open interfaces across all levels of the
architecture. Implementation of object behaviors in multiple
languages is supported, allowing them to be described in
whatever programming language is most suitable for
integration.

Incremental Adoption
Endeavors requires low cost and effort to install across all
software platforms. All process objects are file (ASCII)
based allowing greater portability across different machine
architectures. Components of the system, including user
interfaces, interpreter, and editing tools, may be
downloaded as needed, and no explicit system installation
is required to view and execute a workflow-style process.

Customization and Reuse
Endeavors is implemented as a layered virtual machines
architecture, and allows object-oriented extension of the
architecture, interfaces, and data formats at each layer.
Because processes, objects, tool integrations, and policies

LEAVE BLANK THE LAST 2.5 cm (1”)
OF THE LEFT COLUMN ON THE FIRST PAGE

FOR THE COPYRIGHT NOTICE.
(preserve these six lines in some
 cases, but make their contents

 blank in your text)

can be used across platforms, processes may be adapted or
evolved through embedding and composition of process
fragments using cutting, copying, and pasting of activity
representations.

Dynamic Change
Endeavors allows dynamic changing of object fields and
methods, the ability to dynamically change the object
behaviors at runtime, and late-binding of resources needed
to execute a workflow process. Process interpreters are
dynamically created as needed.

In order to achieve these goals, Endeavors employs the key
design strategies of (1) maintaining several layered object
models, (2) implementing the architecture as a set of highly
componentized, lightweight, concurrent elements, (3)
providing customization tools for each conceptual layer of
the system, (4) supporting event-based communication
between layers and components including user interface
components, (5) reflexively modeling these components in
order to keep a dynamically, distributable, customizable
internal model of itself, and (6) allowing dynamic loading
of objects, behaviors, and user interfaces across the
Internet.

CURRENT STATUS
Endeavors is freely distributable software written
completely in Java. Initial tests show the Endeavors system,
interfaces, objects, and handlers interoperate and are
portable across SPARC/Solaris 2.3, 2.4, or 2.5 and
Windows NT/95. Eventually, Endeavors will be available
for a variety of other operating systems. Endeavors may be
executed locally as a standalone application or across the
WWW. The current released version also includes:

• Installation and customization activities for populating
the system with artifact and resources, based on users
and installed software.

• Potential for automatic generation of WWW guidance
page and support for third party project management
tool (such as MS. Project 4.0).

• Support for object handlers written in Java and Python,
with planned support for Ada95, JavaScript, and TCL
scripts.

As the system allows incremental adoption, we have made
various interfaces available for execution from the WWW
and will continue to do so as they become available. Users
can download and execute a demonstration process and the
various system user interfaces using a Java-enable web
browser from our WWW page [6]. For the final release, the
Endeavors installation, bug reporting, and customization
processes will be able to be executed from this page as well
as support for exchanging processes in a marketplace
setting [3].

FUTURE
Future process work at U.C. Irvine will focus on extending
the Endeavors system to better support distributed and post-
deployment evolution of software by leveraging the
contributions of our UCI partners in the Hyperware and
Architecture research groups, as well as process researchers

elsewhere in the community.

Endeavors will support 1) hypermedia links between
activities, artifacts, and resources, 2) innovative and domain
specific interfaces including, for example, VRML worlds,
3) evolving WWW, http, and hyperweb protocols, and 4)
software agent mechanisms based on a process
representation. Endeavors will integrate and provide tools
for rapid prototyping of WWW based process and guidance
frameworks that are easily reconfigurable to support various
work contexts and cultures. Endeavors will provide an
infrastructure to encourage reusability of process fragments
leading to a process marketplace by increasing
customization capabilities to allow applying processes to
new projects. This includes customization and
experimentation with different interpretation, control, and
transaction mechanisms.

ACKNOWLEDGMENTS
The authors would like to recognize the hard work and
effort of the design and implementation of this system by
Patrick Young, Peyman Oreizy, Peter Kammer, and Clay
Cover. In addition we would like to acknowledge the
members of the Chiron-2, Chimera, and WebSoft projects
at UCI for their exchange of ideas during the development
of this system. Finally we would like thank Nenad
Medvidovic and Kari Nies for their technical support and
reviewing this paper

REFERENCES
1. Fielding, Roy and et al., “Hypertext Transfer Protocol -

- http/1.1”, Internet Engineering Task Force (IETF),
draft document, April 23, 1996.

2. Kaiser, Gail, Popovich, Steven, and Dossick, Stephen,
“An extensible process server component and its
integration into heterogeneous process-centered
environments”, SP96 at Brighton, England, Dec. 1996

3. Whitehead, E. James and et al., “Software
Architecture: Foundation of a Software Component
MarketPlace”, Proceedings of the First International
Workshop on Architectures for Software Systems in
cooperation with ICSE-17, Seattle, Washington, April
24-25, 1995.

4. Young, Patrick S, and Richard N. Taylor, “Process
Programming Languages: Issues and Approaches”,
17th International Conference on Software
Engineering, Workshop on Software Engineering and
Programming Languages, Seattle, Washington, April
23-30, 1995.

5. Endeavors, <http://www.ics.uci.edu/pub/endeavors/>

6. Endeavors demo,
<http://www.ics.uci.edu/pub/endeavors/demo/>.

7. EDCS, <http://www.ics.uci.edu/pub/edcs/>

Figure 1. Screen shot of Endeavors Networks, Message,
and Control Panel Artists.

