Data Acquisition for Embedded Systems

Acknowledgments: Rajesh Gupta, Jane Liu, Ki-Seok Chung University of Illinois

Overview

- Signal Processing Basics
- Sampling
- Analog-to-Digital Conversion
- Digital-to-Analog Conversion

Signals and Systems

- Signal: a set of information and data

 e.g. telephone, television signal, daily stock quote
 Continuous and Discrete-time
 Analog and Digital

 System: an entity that processes a set of signals (inputs) to yield another set of signals (outputs)
 Characteristics: inputs, outputs, rules of operation
 Classification:

 Linear and non-linear
 - Constant parameter and time-varying parameter

(Trigonometric) Fourier Series

For a periodic function, f(t), with period, $T = 1/f_0$, $f(t) = a_0 + \sum_{k=1}^{\infty} a_k \cos(2\mathbf{p} f_0 kt) + \sum_{k=1}^{\infty} b_k \sin(2\mathbf{p} f_0 kt)$ $= C_0 + \sum_{k=1}^{\infty} C_k \cos(2\mathbf{p} f_0 kt + \mathbf{q}_k)$ $f_0 =$ Fundamental frequency , $n \cdot f_0 = n^{th}$ harmonic of f_0 a_k , $b_k =$ Amplitude of various harmonics $a_0 = C_0 = \frac{1}{T} \int_T f(t) dt$ $a_k = \frac{2}{T} \int_T f(t) \cos(2\mathbf{p} f_0 kt) dt$, $b_k = \frac{2}{T} \int_T f(t) \sin(2\mathbf{p} f_0 kt) dt$ $C_n = \sqrt{a_k^2 + b_k^2}$,

ICS180

Prof. Veidenbaum

4

Fourier Transform

Even if a function is not periodic, it can be described as a linear combination of an infinite number of orthogonal functions (In case of Fourier Transform, sinusoids). i.e. spectrum consists of a continuum of frequencies.

 $(T \rightarrow \infty (f_0 \rightarrow 0))$)

This spectrum can be defined by Fourier transform.

• For a signal *x(t)* with a spectrum *X(f)*, the followings hold:

$$X(f) = \int_{-\infty}^{\infty} x(t) e^{-j2Pft} dt \quad \text{(Fourier Transform)}$$

<x(t),X(f)>: Fourier transform pairs

 $x(t) = \frac{1}{2p} \int_{-\infty}^{\infty} X(f) e^{j 2pft} df \quad \text{(Invers e Fourier Transform)}$

ICS180

Time vs. Frequency Domain Representation

Sampling

- Sampling is a method of converting a continuous signal to a discrete set of values (samples)
 should accurately represent the original signal
 reduce the amount of information to be processed
 Major Concern:
 How fast a given continuous signal must be sample to
 - How fast a given continuous signal must be sample to accurately represent the original
 - Aliasing:
 - Frequency ambiguity $[f_0 \text{ vs.} (f_0 + k f_s), k = \text{integer}]$

Sampling

Examples below:

1) samples a slow (1KHz) signal with a 7KHz sine signal
 2) samples a -2KHz signal with a 4KHz sine signal

ICS180

Prof. Veidenbaum

8

Typical Sampling Rate

Sampled Signal & Fourier Spectrum

Nyquist Rate

- A signal which is (spectrum) band-limited to B Hz can be reconstructed exactly from its samples taken uniformly at a rate R>2B samples per second.
 - This is called Nyquist rate for the signal.
- Practical Difficulty
 - Low-pass filter limitation
 - Spectra should consist of repetitions of *F(w)* with a finite gap between successive cycles

ICS180

Prof. Veidenbaum

11

Aliasing Effect

All practical signals are time-limited

(non-band-limited)

The spectrum F

(w) consists of overlapping cycles of F(W) repeating every F_s Hz
No longer complete recovery

Aliasing (Spectral folding)

Folding frequency = 1/2 sampling frequency

Elimination of Aliasing: Anti-Aliasing Filter

- Band-limited signal: No alias if F_s>Nyq.Rate
- Non-band-limited signal:

Alias results regardless of sampling rate

- Aliasing can be eliminated by band-limiting a signal before sampling
- Anti-aliasing filter: low-pass filter of bandwidth B Hz (B: effective bandwidth)

Analog vs. Digital - Pro's

Analog

- High bandwidth
- High resolution
- Specific control functions are available as off-the-shelf ICs
- Analysis and design methods are well-known

Digital

- Programmable solution
- Less sensitive to environment
- Can implement advanced control algorithms
- Capable of self-tuning, adaptive control, and nonlinear control functions
- Communication capability

Analog vs. Digital - Con's

Analog

Temperature drift

Component aging

Sensitive to noise

Hardware design

Can implement simple designs only

No communication capability

Digital

- Data converter is required.
- Analysis and design methods are more complex
- Sampling & quantization error
- Computation delay limits the system bandwidth

General Considerations

- Resolution: the number of bits in the input
- Figures of merit
 - resolution
 - temperature sensitivity
 - linearity
 - absolute accuracy (quantization error)
 - settling time, conversion time
 - price, complexity
- Errors
 - Static errors: Offset errors, Gain errors, Nonlinearity, Nonmonotonicity
 - Dynamic errors: degradation of S/N, glitches

Analog to Digital and Digital to Analog Conversion

- Used in Embedded Systems to interact with physical world
- A-toD is the nexus of data acquisition process
 - ADC has been typically, the slowest, most complex, and/or most expensive single component in the data path
- Primary Concerns
 - Speed of Operation
 - Resolution (# of bits at the output)
 - Linearity, Non-monotonicity
 - Cost, Size, Power requirements, etc.

How fast should ADC be?

Applications	Appro. No of conversions per second	required conversion time
monitor and control	1-1000	15 - 1 ms
telephone voice	8,000	125 MS
cD-quality audio	85, 42.5, 21.3 K	50-12 MS
Video	1-10×106 3×1-10×106	100 ns - 1 Ms
radar	100 - 1,000 × 106	1 - 10 ns

Common DAC Structures

Weighted Resistor DAC
 N resistors and switches (transistors)

R/2R ladder DAC

ICS180

Simple DAC

R/2R Ladder

- A major improvement on the previous design
 - Use only two distinct resistor values
 - Output resistance is constant, independent of stages, n
 - Fully modular stages can be added or deleted w/o compromising the design
- Each digit / adds ~V// volts to the output sum
- Rather slow

R/2R Ladder DAC

ICS180

Prof. Veidenbaum

23

Digital to Analog Conversion

- Convert each bit (digit) to a weighted voltage level, sum them
- Can use A-to-D to perform D-to-A.

Common ADC Structures

- Successive-Approximation (serial) ADC medium
 - **12-16 bits**
 - 1-10 micro seconds slow
 - Various forms of approximation:
 - simple counter
 - initial guess and up/down count
 - digit by digit, starting at msb
- Parallel ("Flash") ADC fast, but very expensive
 - uses a resistive "divider" to generate reference voltage for each bit
 - = 8 bits
 - fast

Successive Approximation

Prof. Veidenbaum

A-to-D via Counting or Successive Approximation

ICS180

Flash(Parallel) ADC- fastest

Summary

- Sampling of analog signals and digital conversion
- Sampling Theorem
 - Nyquist rate
 - Aliasing
- Digital to Analog Conversion
 - **R/2R**
- Analog to Digital Conversion
 - Flash
 - Successive Approximation