
Low Energy, Highly–Associative Cache Design for Embedded Processors

Alex Veidenbaum Dan Nicolaescu
Computer Science Department
University of California, Irvine
{alexv,dann}@ics.uci.edu

Abstract

Many embedded processors use highly associative data
caches implemented using a CAM-based tag search. When
high-associativity is desirable, CAM designs can offer per-
formance advantages due to fast associative search. How-
ever, CAMs are not energy efficient. This paper describes a
CAM-based cache design which uses prediction to reduce
energy consumption. A last used prediction is shown to
achieve an 86% prediction accuracy, on average. A new
design integrating such predictor in the CAM tag store is
described. A 30% average D-cache energy reduction is
demonstrated for the MiBench programs with little addi-
tional hardware or impact on processor performance. Even
better results can be achieved with another predictor design
which increases prediction accuracy. Significant static en-
ergy reduction is also possible using this approach for the
RAM data store.

1. Introduction

Embedded Processor performance is highly dependent
on cache performance, which in turn depends on a num-
ber of cache parameters. Associativity is one such parame-
ter, with higher associativity leading to higher performance,
even though higher associativity increases the cache ac-
cess latency. Not surprisingly, several embedded processors
have implemented highly associative caches [5],[10],[8].

Cache energy consumption is another major problem in
embedded processors [3] and needs to be further reduced.
As performance requirements continue to grow, more en-
ergy efficient direct mapped or low-associativity designs
are less desirable. 32–way set associative caches have al-
ready been implemented. Such highly associative caches
used CAM-based tag storage for fast search. While fast,
CAMs are not energy efficient.

The energy consumption of such highly associative,
CAM–based caches is significantly smaller than that of
RAM-based designs of the same associativity and speed [3].
The energy consumption difference between the two types

of tag store designs increases with the increased associativ-
ity [14]. However, further energy savings are still desirable.
This paper proposes an approach that can achieve this by
reducing both static and dynamic energy requirements of
CAM–based designs with minimal impact on performance.
This is achieved by predicting which cache lines are likely
to be accessed and applying energy reduction techniques to
the other lines in the cache.

This work makes the following contributions. A new
CAM-based cache design integrating a predictor is pro-
posed, which significantly reduces the energy dissipated by
match lines. An even higher accuracy can be achieved with
an advanced version of the last-use predictor. Improving ac-
curacy is important since misprediction is costly in terms of
both latency and energy. It is also shown that it is possible
in some cases to improve cache latency when prediction is
correct.

Finally, the prediction mechanism can also be used to
reduce static energy consumption. It can utilize existing
hardware techniques, such as drowsy cache [4], to put cache
lines in a reduced-energy state based on predicted use.

2. Operation of CAM-based caches

The cache operation of a CAM-based set-associative de-
sign differs from that of a RAM-based design. First, the
cache is partitioned in such a way that a set is mapped to a
single CAM/RAM block. There are M such blocks in the
cache, as shown in Fig. 1, where
M = Cache size/(Associativity ∗ Line size).
Log(M) bits of a CPU address are used to select one
CAM/RAM block, which uses the CAM as a tag store and
the RAM as a data store. Each such block is basically a
small, fully associative sub-cache.

Once the sub-cache has been selected by the correspond-
ing part of the address, the CAM tag store and the data RAM
store operate sequentially. First, a CAM tag lookup checks
if a line is present in the sub–cache, generating a Match i

signal for each tag (see Fig. 2). This is done in parallel for
each tag in the CAM. Only a single Matchi signal can be-
come a ”1” on a hit.

Proceedings of the IEEE International Conference on Computer Design (ICCD’04) 
1063-6404/04 $ 20.00 IEEE 



The match lines serve as inputs to wordline drivers for
each cache line in the RAM part, eliminating the need for
address decoding. Once a wordline is activated, the desired
number of columns is selected, and written or latched for
output.

The CAM lookup is very energy-intensive as each
Matchi line is first precharged and then discharged for ev-
ery tag that did not match a search address. This is esti-
mated to dissipate approximately one half of all the CAM
lookup energy. The other half is dissipated driving the
search address to all comparators. The two components are
approximately equal for small CAM blocks of 32 to 64 en-
tries. The subsequent RAM access is also energy intensive
and requires approximately the same amount of energy as
the CAM lookup.

3. Which lines are likely to be accessed?

Many techniques have been proposed to predict future
line usage in I- and D-caches. They can be based on past
usage or on future address prediction. Past usage is a more
desirable approach in the context of energy management.
Due to locality, a cache line is likely to be accessed multiple
times. Therefore, once a line has been accessed it is likely
to be accessed again. Lines that have not been accessed
recently, on the other hand, are less likely to be accessed.
Keeping track of this information can help manage the ac-
cess energy. As far as this work is concerned, the goal is to
identify a small number of such lines and spend the energy
on accessing these lines while saving energy on other lines.

Identifying recently accessed lines requires hardware
resources, such as a cache of recently used line num-
bers [11; 13] or RAM space [2; 9]. These hardware struc-
tures introduce a delay for accessing the line information.
This additional delay may not acceptable in an embedded
processor. It is also desirable to further limit the number of
lines tracked.

A last use predictor has been shown to be successful
in number areas: line/set prediction[9], way prediction [7],
branch prediction, etc. In the set-associative cache organi-
zation considered in this paper, the last line used in a set is
likely to also be the next one to be used. Therefore, last use
prediction is chosen for this work. A new design, proposed
here, integrates such “last use” predictor into a CAM–based
tag store.

Fig.4 shows the accuracy of the last use predictor. It
demonstrates a very high degree of prediction accuracy,
even though several programs have a significantly lower ac-
curacy. Still, on average the accuracy is sufficient for this
use, as will be shown in Sec. 5.2. It is possible to further
improve the accuracy improved using a multiple last use
prediction scheme.

The next section presents the cache design using the last
use information to reduce dynamic energy consumption.

Sub-

cache 28

D
E

C
O

D
E

R

Address

Sub-

cache 31

Sub-

cache 30

Sub-

cache 29

Sub-

cache 0

Sub-

cache 3

Sub-

cache 2

Sub-

cache 1

Figure 1: Address decoder and fully associative sub–cache blocks

4. The proposed cache design

The last use (LU) mechanism mentioned above is de-
ployed to predict which line in the fully associative sub-
cache is most likely to be accessed next, for each sub-cache.
The new design shown in Fig.3 adds a latch, LU i, which
maintains the last use information between accesses to the
sub-cache. This information is used to disable precharge for
line(s) that have not been recently accessed. Thus tag com-
pare is only performed on the last tag used. Energy is saved
if the prediction is correct and the access is a hit. On a ”last
use” miss, a full precharge cycle is run, followed by a full
CAM tag search.

It is assumed that the RAM access waits for the CAM
to complete the tag compare and to verify the prediction.
Since there is only one possible ”last use” line, the Miss in
this case implies an LU miss. The Miss information (32-
input OR) is first used to initiate a full CAM precharge and
CAM access. It is also used as a stall signal to the (in-order)
processor pipeline. Finally, a true Miss is generated if the
full CAM access also indicates a miss.

What are the dynamic energy savings possible from the
proposed design? The upper bound is 31/32nd of the com-
parison energy for a 32-entry CAM with no misprediction.
Recall that the comparison accounts for approximately one
half of the total CAM energy consumption. Thus the max-
imum savings are 48%. Mispredictions will lead to lower
savings.

In the design shown, the RAM is only accessed after the
last use prediction is verified. This is conservative and can
be avoided if latency were very important. In this case the
RAM access will be started at the same time as the tag ac-
cess and before the verifying the last use prediction. In case
of misprediciton the RAM access will be incorrect and will
have to be repeated.

The new design can also be modified to include static
(leakage) energy management. The LU information can be
utilized to keep lines in a low-leakage mode. For instance,
assume that the drowsy cache cell design [4] is used, which
can put an entire cache line in a ”drowsy”, low-leakage
mode. In this case each LU line can be kept in the normal
mode while all lines with LU=0 can be put in the drowsy
mode. Transition from drowsy to normal state will require
an extra clock cycle and has an energy cost. However, it al-
lows 31/32 of all the lines in the cache (including their tags)
to be in a low-leakage state.

The cache design described in this section (without spec-
ulative RAM access) is experimentally evaluated next.

2

Proceedings of the IEEE International Conference on Computer Design (ICCD’04) 
1063-6404/04 $ 20.00 IEEE 



32-entry

CAM
RAM array

22 bits
256 bits 3

2
li

n
e

s

WL 31ML 31

WL
0

WL 1

ML
0

ML
1

D
in

D
out

MLi WLi
Match

i

Figure 2: A fully associative sub–cache

RAM array
WL

i

D
in

D
o
u

t

CLK

Miss
Missl

LU i

Match
i

Stall1

L
a

tc
h

CAM Cell i

CLKCLK

Miss 0

Figure 3: New sub–cache design

5. Experimental evaluation

The proposed cache design was evaluated using an
Xscale-like processor model. It is a single issue, in-order
CPU, with a bimodal branch predictor. The predictor and
the branch target buffer has 128 entries. The processor has
one complex arithmetic unit for integer multiplication and
division. The pipeline length is 7 cycles.

The simulated processor uses 32KB, 32–way set asso-
ciative data and instruction L1 caches, both with 32 byte
lines. The L1 cache access latency is 2 cycles, one cycle for
CAM tag lookup and RAM access, and one cycle for data
transfer to the CPU core. An LU misprediction is detected
at the end of the first cycle and a 2 cycle access is repeated,
resulting in a 3 cycle mispredicted access latency.

The fully associative instruction and data TLBs have 32
entries. The system does not contain an L2 cache. Main
memory access latency used was 80 cycles.

The proposed design was simulated using SimpleScalar-
3.0d [1] simulator which was augmented with a cache
model using an LU1 predictor.

A 0.09 micron implementation technology is assumed
resulting in a clock frequency of 1GHz. The dynamic en-
ergy consumption model for the new cache was obtained
using a modified CACTI 3.2 [12] model. The main changes
were to the sense amplifier energy for RAM access (over-
estimated by CACTI) and to the CAM address drivers (un-
derestimated by CACTI). The CAM compare energy was
assumed to be 1/32nd of the baseline when the LU1 predic-
tor was used. The RAM model assumed a wide line with
column multiplexing resulting in a single 32b word access.
The additional logic of the proposed cache is minimal and
is assumed to consume no energy.

Evaluating static energy impact is more difficult since it
requires an accurate model for leakage current. Leakage
energy and transition energy per bit from [4] were scaled to
90nm and used in our evaluation. The average static energy
consumption is approximately 30% of the dynamic cache
energy consumption to the base case.

5.1. Benchmarks

MiBench[6] is a publicly available benchmark suite de-
signed to be representative for several embedded system
domains. The benchmarks are divided in six categories
targeting different parts of the embedded systems market.
The suites are: Automotive and Industrial Control (ba-
sicmath, bitcount, susan (edges, corners and smoothing)),
Consumer Devices (jpeg encode and decode, lame, tiff2bw,
tiff2rgba, tiffdither, tiffmedian, typeset), Office Automation
(ghostscript, ispell, stringsearch), Networking (dijkstra, pa-
tricia), Security (blowfish encode and decode, pgp sign and
verify, rijndael encode and decode, sha) and Telecommuni-
cations (CRC32, FFT direct and inverse, adpcm encode and
decode, gsm encode and decode). All the benchmarks were
compiled with the -O3 compiler flag and were simulated to
completion using the “large” input set.

5.2. Results

Results in Fig. 4 show that using the LU predictor
achieves an average 30% reduction in the data cache dy-
namic energy consumption. This is below the optimal 48%
savings possible and is explained by an average 15% LU
misprediction rate. Individual benchmarks have mispredic-
tion rates as low as 0.01% and as high as 38%, as shown
in Fig.4. However, even the worst misprediction rate still
leads to 20% cache energy reduction.

The high misprediction rate of some benchmarks is a
problem because it affects the execution time as well as re-
ducing the energy savings in the cache. Recall that the cache
access is two cycles, with misprediction detected in the first
cycle. Thus the effective cache access latency in case of
misprediction is 3 cycles. The additional delay results in a
CPI increase of up to 3% (worst case). This is an acceptable
trade-off between energy reduction and small performance
loss, since the energy-delay product is improved, on aver-
age, by 30%.

The high misprediction rate observed in several bench-
marks can be overcome with a generalized LU predictor
called n–th order LU predictor. The n–th order LU pre-
dictor, LUn, keeps track of the last n lines accessed. The
cache design proposed here can be easily extended to use
the LUn predictor for n > 1. This will increase the CAM
energy consumption but will decrease the misprediction rate
and the associated energy loss and delay. The detailed eval-
uation of the LUn predictors and their impact on energy
consumption is beyond the scope of this paper. The highest
impact is on benchmarks that had the worst misprediction
rate with the LU1 predictor. For instance, a 20% prediction
accuracy improvement can be achieved for the ”rijndael”
benchmarks using an LU4 predictor. The average predic-
tion accuracy for LU4 is 97%, a 10% improvement over the
LU1 predictor.

The proposed design is also effective for reducing the

3

Proceedings of the IEEE International Conference on Computer Design (ICCD’04) 
1063-6404/04 $ 20.00 IEEE 



10
30
50
70
90 prediction rate energy savings

Figure 4: Prediction accuracy of the LU predictor and the corresponding dynamic energy savinngs

10

25

40

55

b
a
s
ic

m
a
th

b
itc

o
u
n
t

q
s
o
rt

s
u
s
a
n
_
c

s
u
s
a
n
_
e

s
u
s
a
n
_
s

jp
e
g
_
c

jp
e
g
_
d

la
m

e

tif
f2

b
w

tif
f2

rg
b
a

tif
fd

ith
e
r

tif
fm

e
d
ia

n

d
ijk

s
tr

a

p
a
tr

ic
ia

g
h
o
s
ts

c
ri
p
t

is
p
e
ll

s
tr

in
g
s
e
a
rc

b
lo

w
fis

h
_
d

b
lo

w
fis

h
_
e

p
g
p
_
s
a
z

p
g
p
_
z

ri
jn

d
a
e
l_

d

ri
jn

d
a
e
l_

e

s
h
a

C
R

C
3
2

a
d
p
c
m

_
c

a
d
p
c
m

_
d

ff
t_

d

ff
t_

i

g
s
m

_
t

g
s
m

_
u

A
V

G

dynamic leakage

Figure 5: Static and dynamic energy savings, including drowsy–normal transition energy

leakage current and energy. The high LU prediction ac-
curacy implies that most of the time the majority of lines
in the RAM array will be in the low-energy state. Fig. 5
shows combined dynamic and leakage energy savings for
the proposed design. The average savings for the entire
benchmark suite are 44%., with approximately half of the
reduction from the static energy. The figure includes contri-
butions from transition energy (to activate the drowsy lines)
and delay (recall that the misprediction latency in this case
is 4 cycles).

6. Conclusions

The design of an energy efficient highly associative
cache has been presented. It integrates a last-use predic-
tor with a CAM-based tag store to significantly reduce the
dynamic energy consumption of the cache. Experimental
evaluation of a 32-way set-associative data cache of an em-
bedded processor demonstrated an average 30% dynamic
energy reduction for MiBench codes. The new cache de-
sign relies on prediction and thus can incur a loss of per-
formance due to increased cache access latency in the case
of misprediction. It is shown that the maximum CPI loss is
only 3% and the average energy-delay product reduction is
nearly 30%.

The proposed design can be applied to the instruction
cache with no change. The I-cache LU prediction rate is
even higher due to locality of instruction accesses and will
lead to even higher savings.

Generalized LU predictors were also briefly described.
Keeping track of two to four most recently used lines in-
stead of just the last use significantly increase prediction ac-
curacy. For benchmarks with the worst misprediction rate,
rijndael’s, a 10 to 20% improvement is possible.

Finally, the proposed design can also be used to reduce
the static (leakage) energy consumption. The LU informa-
tion can be used in conjunction with a number of reduced
leakage RAM cell designs, such as the drowsy cache cell,
to keep the lines not likely to be used in a reduced energy

state. This leads to an additional 20% average total cache
energy savings from reduced leakage current using drowsy
RAM cells in the 90nm technology used in this paper.

References
[1] D. Burger and T. M. Austin. The SimpleScalar tool set. Tech-

nical Report TR-97-1342, University of Wisconsin, 1997.
[2] B. Calder and D. Grunwald. Next cache line and set predic-

tion. In Proceedings ISCA, pages 287–296, 1995.
[3] L. T. Clark and et al. An embedded 32b microprocessor core

for low-power and high-performance applications. IEEE
JSSC, 36(11):1599–1608, Nov. 2001.

[4] K. Flautner and et all. Drowsy caches: simple techniques for
reducing leakage power. In ISCA, pages 148–157, 2002.

[5] S. Furber and et al. ARM3 - 32b RISC processor with 4kbyte
on-chip cache. In Proceedings VLSI, pages 35–44, 1989.

[6] M. R. Guthaus and et all. Mibench: A free, commercially
representative embedded benchmark suite. In IEEE WWC,
pages 83–94, 2001.

[7] K. Inoue, T. Ishihara, and K. Murakami. Way-predicting set-
associative cache for high performance and low energy con-
sumption. In ISLPED, pages 273–275, 1999.

[8] Intel. Intel XScale Microarchitecture, 2001.
[9] R. E. Kessler. The Alpha 21264 microprocessor. IEEE Mi-

cro, 19(2):24–36, Mar./Apr. 1999.
[10] J. Montagnaro and et al. A 160–mhz, 32–b, 0.5–w cmos risc

microprocessor. IEEE JSSC, 31(11):1703–1714, Nov. 1996.
[11] D. Nicolaescu, A. Veidenbaum, and A. Nicolau. Reducing

power consumption for high-associativity data caches in em-
bedded processors. In DATE2003 Proceedings, 2003.

[12] P. Shivakumar and N. P. Jouppi. Cacti 3.0: An integrated
cache timing and power model. Technical report, DEC,
2001.

[13] E. Witchel and et all. Direct addressed caches for reduced
power consumption. In MICRO-34, 2001.

[14] M. Zhang and K. Asanovic. Highly-associative caches for
low-power processors. In Kool Chips Workshop, 2000.

4

Proceedings of the IEEE International Conference on Computer Design (ICCD’04) 
1063-6404/04 $ 20.00 IEEE 


	footer1: 


