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ABSTRACT 
This paper proposes a new organization for clustered processors. 
Such processors have many advantages, including improved 
implementability and scalability, reduced power, and, potentially, 
faster clock speed.  Difficulties lie in assigning instructions to 
clusters (steering) so as to minimize the effect of inter-cluster 
communication latency. The asymmetric clustered architecture 
proposed in this paper aims to increase the IPC and reduce power 
consumption by using two different types of integer clusters and a 
new steering algorithm. One type is a standard, 64b integer 
cluster, while the other is a very narrow, 20b cluster. The narrow 
cluster runs at twice the clock rate of the standard cluster. 

A new instruction steering mechanism is proposed to increase the 
use of the fast, narrow cluster as well as to minimize inter-cluster 
communication. Steering is performed by a history-based 
predictor, which is shown to be 98% accurate. 

The proposed architecture is shown to have a higher average IPC 
than its un-clustered equivalent for a four-wide issue processor, 
something that has never been achieved by previously proposed 
clustered organizations. Overall, a 3% increase in average IPC 
over an un-clustered design and a 8% over a symmetric cluster 
with dependence based steering are achieved for a 2-cycle inter-
cluster communication latency. 

Part of the reason for higher IPC is the ability of the new 
architecture to execute most of the address computations as 
narrow, fast operations. The new architecture exploits its early 
knowledge of partial address values to achieve a 0-cycle address 
translation for 90% of all address computations, further improving 
performance. 

Categories and Subject Descriptors 
C.1.1 [Single Data Stream Architecture]: RISC/CISC, VLIW 
architectures 

General Terms 
Performance, Design. 

Keywords 
Cluster Architectures. Content aware architectures. 

1. INTRODUCTION 
The scalability of high-performance, out-of-order processor 
design is made very difficult by the increasing clock frequencies 
and issue width.  It has been shown in [24], [6] that the 
wakeup/select and the ALU bypass loops as well as the register 
file are some of the main sources of difficulties in such designs. 
The issue width of four or more instructions requires a large 
number of ports on instruction queues and register file as well as 
bypassing to all the execution units present.  This slows down the 
operation and/or requires multiple pipeline stages to accomplish. 

Clustering has been proposed as a solution to these problems. It 
has been successfully implemented in several processors, such as 
Digital’s Alpha 21264 [19]. In a cluster, the instruction queue 
access, wakeup/select, register file access (except for inter-cluster 
update), and ALU bypass are limited to just the units in the 
cluster.  Instructions are typically assigned to clusters after 
decoding and are placed into per-cluster instruction queues. A 
data communication path has to be provided between clusters, 
either via the register file or the bypass network. Arrival of 
operands from another cluster(s) activates the wakeup logic. The 
communication between clusters takes one or more clock cycles.  

One of the key problems in clustered architectures is the dynamic 
assignment of instructions to clusters (steering) to minimize inter-
cluster communication. At the same time, the steering mechanism 
has to achieve a balanced cluster utilization so as not to waste 
resources and lose IPC. A clustered organization has lower IPC 
than the same organization but implemented without clustering, if 
it were feasible. The work presented here proposes a way to speed 
up execution by using a fast cluster and to minimize the effect of 
inter-cluster communication latency by a different approach to 
steering. 

A number of research groups has recently shown that many 
integer operand values are either “small” or contain many all-0 or 
all-1 bytes [5][37][2][8]. This is particularly true for 64-bit 
architectures, in which approximately 50% of all integer 
instruction can be executed in a 16b ALU [5]. It has also been 
shown that, in addition, a large number of 64b address values 
have a common, invariant high-order part [14]. The processor in 
[14] had the register file and the data path optimized to take 
advantage of this value “content” locality. This increased the 
number of instructions using the narrow ALU to significantly 
above 50% of all integer instructions that was achieved in [5]. It 
was shown that 75% or more of all instructions could be executed 
using the narrow registers and data path.   

It was also pointed out in [14] that operand types used by an 
instruction were “clustered” so that 75% of all instructions only 
needed narrow values, while 17% needed only wide, 64b values. 
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This, it was suggested, can be used to build a clustered processor 
with narrow and wide clusters. 

This paper presents such a clustered processor organization to 
take full advantage of a very high probability that an instruction 
needs only a narrow data path. The goal of this design is to 
increase performance of a clustered architecture. It uses a fast, 
narrow cluster and a slower standard, 64b-wide cluster. There 
several ways one could design and optimize the narrow cluster. 
This paper proposes a 20b narrow cluster running at twice the 
clock rate of the rest of the processor. It therefore needs only half 
of the ALUs needed in the standard cluster. The 20b data path is 
chosen to increase the number of instructions using the narrow 
cluster. It can be changed to affect the instruction distribution. 

Consider a 4-wide issue baseline processor with two integer 
clusters. Each cluster contains two 64b ALUs, a separate register 
file, and is dual issue.  The clusters share the front end and the 
data cache. Now imagine that one of the clusters is implemented 
using a 20b data path. This cluster will only execute instructions 
with 20b inputs and produce a 20b result. There are several 
reasons it is argued below, why such a narrow cluster can be twice 
as fast as the 64b cluster in wakeup/select, register file access, 
execution, and write-back stages: 

1. The narrow cluster will need only one ALU to achieve the 
same performance, and thus will need half the ports on the 
instruction queue, register file, and bypass network 

2. Its register file is narrow, speeding up its access and making it 
physically smaller. 

3. Its ALU is 1/3 or less of the size of the 64b ALU and does not 
have to perform long, slow operations such as multiply. The 
addition is the slowest remaining operation and can be 
performed in 1/2 the time of a 64b add if one assumes a 
staggered 64b adder, as in Pentium 4 [15]. 

4. The bypass path is 1/3rd as narrow and six times shorter than 
in the 64b cluster with 2 ALUs. 

5. The wakeup/select logic is faster because it is single-issue and 
uses a single-ported instruction queue. 

Let us assume that such an implementation is indeed feasible and 
consider the asymmetric organization. The asymmetric cluster 
organization requires a new steering mechanism to take full 
advantage of the fast cluster. Such a mechanism using past 
execution history is proposed and shown to be very effective and 
fast. The history-based cluster predictor is PC indexed and records 
the most recent cluster assignment for a given instruction. 
Furthermore, it can start the prediction as early as fetch stage and 
thus has several cycles to complete. The “best” steering algorithm 
in literature, dependence-based steering [9], is more complex and 
is performed after renaming where it has to complete in one cycle.  

 Instructions using the narrow cluster for the most part use results 
produced in the narrow cluster. Thus steering based on this 
information is a simplified form of dependence-driven steering 
and minimizes inter-cluster communication. The new steering 
mechanism does not aim to achieve balanced instruction 
distribution, instead it maximizes the use of the fast cluster. The 
steering mechanism is shown to be competitive even for 
symmetric clustered organization. 

 The history-based prediction can be “corrected” after renaming 
for ready operands whose value type (size) is known at that time. 

A value type descriptor is associated with every register. Steering 
stage (performed after renaming) can check available source 
operand value type information to see if the prediction was 
correct. For instance, a narrow cluster prediction is wrong if a 
source operand is wide.  

 The asymmetric cluster organization with prediction-based 
steering will have “mis-predictions”. This happens when an 
instruction assigned to the narrow cluster uses a 64b source 
operand or produces a 64b result. The register descriptor is then 
set to reflect the latter. The narrow cluster assignment is the only 
type of mis-prediction possible in this asymmetric organization, a 
wide cluster assignment cannot be wrong since any instruction 
can execute in the wide cluster.  

A mis-predicted instruction is sent to the wide cluster for replay, 
but first it wakes up its dependents in the narrow cluster. They 
will issue and detect their own source operand problems, if any, 
and replay. Wakeup of dependent instructions in the other cluster 
occurs when a tag sent with the data to be written in the replicated 
register file arrives. This guarantees data is available locally when 
instruction issues. There is no need for instruction window 
cleanup and re-execution from mis-predicted instruction as on 
branch mis-prediction. There is a mis-prediction time penalty, 
however, in the narrow cluster. 

 A mis-predicted instruction replays from the scheduling step, as it 
has already (correctly) gone through the wake-up. A separate 
scheduler port is used for this and replay has highest priority. The 
instruction is not inserted in the instruction queue of the wide 
cluster, rather payload RAM information read in the narrow 
cluster is sent to the wide cluster. The replay proceeds to read 
operands in the wide cluster and execute, thus incurring further 
latency in addition to the inter-cluster communication latency. 

It is possible that an instruction assigned to the wide cluster 
produces a narrow result. It is in our best interest to detect this 
and update the predictor or inform the steering mechanism so it 
can assign successor instructions to the fast cluster.  

Both the narrow and wide clusters may need operands from the 
other cluster. A replicated register file is used for the sake of 
control simplicity which incurs a communication penalty on 
write-back. As explained below, only the narrow part of the 
register file is replicated in the narrow cluster (plus a small 
additional register file). 

The asymmetric architecture proposed in this paper treats address 
calculations in load/store instructions in a special way that allows 
most of them to be performed in the narrow cluster. This is 
possible because the high-order part of an address is often 
unmodified by the addition of a 16b offset in address 
computation. A special, small register file is used to store the 
high-order address bits. These registers are called address 
registers (Addr), each holding the invariant, frequently used upper 
address bits.  

The use of invariant Addr registers opens the possibility of using 
them for address translation. A direct-mapped TLB using Addr 
registers is proposed as a level-0 TLB, followed by a “normal” 
(level-1) TLB. The level-1 TLB is accessed when a Ld/St 
instruction is not using one of the Addr registers. The level-0 TLB 
is indexed by an Addr register number and stores a page (or a 
super-page) translation corresponding to the Addr register. The 
translation is performed assuming that the upper part of an 



address stored in the Addr register remains unchanged after (base 
register + offset) computation. Translation time is thus shorter and 
is performed in parallel with address computation.  

This paper makes several important contributions. First, it 
proposes an asymmetric clustered organization using a fast, 
narrow datapath cluster. Second, it introduces a fast and very 
accurate prediction-based steering algorithm. It also uses an 
asymmetric register file design, which enables a 0-latency address 
translation for a very high percentage of memory accesses. 
Overall, the proposed asymmetric architecture increases the 
utilization of the fast cluster. This significantly improves 
performance, which exceeds that of an un-clustered architecture, 
even with two (or even more) cycles of inter-cluster 
communication latency as well as two (or more) cycles of steering 
mis-prediction penalty.   

The rest of this paper is organized as follows. Section II defines a 
standard, symmetric clustered architecture used as a baseline for 
performance comparison. Section III defines value content-based 
asymmetric clustering and its implementation used to evaluate 
performance, and discusses potential benefits of a shorter access 
time and area savings of narrow clusters. Sections IV presents a 
new steering mechanism and compares it with several existing 
algorithms on symmetric clustered architectures. Section IV also 
describes and analyzes the impact of fast narrow cluster design on 
performance. Related work is discussed in Section V. Finally, 
future work and conclusions are discussed in Section VI. 

2. BASELINE ORGANIZATION 
The symmetric 64b clustered processor organization used as the 
baseline is shown in Figure 1. It has two symmetric integer 
clusters with replicated 64b register files. Each write is sent to 
both register files and is posted to the remote register file one or 
more clock cycles later than to the local file. A write from the 
other cluster activates the local wakeup logic. Each cluster has a 
separate instruction queue and two ALUs for a combined issue 
width of four integer instructions. 

The baseline pipeline is also shown in Figure 1. It has 13 stages to 
allow a fast clock. The front-end, e.g. stages up to and including 
QUEUE II, are shared by both clusters. Other parameters of the 
baseline processor organization are described in Table 1 and 
remain unchanged throughout the paper unless otherwise 
specified.  

The baseline architecture requires a register file with 4 read and 2 
write ports in each cluster with 2 ALUs. Two additional write 
ports are used for writes from the other cluster, plus 2 more write 
ports for memory access, for total of 4 read and 6 write ports. 

Several different steering algorithms have been proposed for 
symmetric clustered architectures. They vary in the amount of 
inter-cluster communication and how “balanced” across clusters is 
the resulting execution. For example, the First-Fit algorithm [4] 
assigns consecutive instructions to the same cluster until its 
instruction queue (IQ) is full. It reduces the inter-cluster 
communication at the expense of balanced execution and good 
resource utilization. The MODn algorithm [4] assigns n 
consecutive instructions to the same cluster and then switches to 
the other cluster. Alpha 21264 used the MOD1 algorithm, while 
MOD3 has been shown to be one of the better algorithms in 
[4][3]. Instruction dependence based steering, DEPGRAPH, 
attempts to use data dependence knowledge in the assignment 
process to reduce communication [9]. It is a complex mechanism, 
so a modified version to reduce the hardware complexity is used 
in this paper. It is assumed in the rest of this paper that cluster 
assignment and instruction steering take only one cycle, a 
generous assumption for the DEPGRAPH algorithm. 

The various algorithms differ in their complexity and the resulting 
IPC. The dependence based steering is the most complex to 
implement but results in the highest IPC among the proposed 
algorithms. Several steering algorithms will be evaluated on the 
baseline architecture assuming varying communication delay and 
compared to the new algorithm proposed in this paper. 

3. ASYMMETRIC CLUSTERED 
PROCESSOR ORGANIZATION 
The asymmetric clustered processor with two integer clusters, 
slow and fast, is shown in Figure 2. It has two ALUs in the 64b, 
slow cluster and one ALU with a 20b wide data path in the fast 
cluster. The floating-point cluster is not shown, as it is not 
changed in this architecture and is the same as in the baseline. 
Only Issue, RF READ, EXE, and WB stages run at the faster 
clock rate. 

The key to understanding the asymmetric organization is the 
register file and the prediction-based steering mechanism, which 
are described next. 

3.1 A Replicated Asymmetric Register File 
with a Content-aware Component 
Figure 2 shows the details of each cluster’s datapath and 
connections between them. Each cluster has a full-size (128 entry) 
physical register file, which is 20b wide in the narrow cluster. In 
addition, each cluster has an Addr register file (Short in the 
figure), which is not part of the ISA. It stores an upper part of a 
full memory address, with the low part stored in a narrow register. 
The Addr file can be as small as 8 entries. 

 
Figure 1. Symmetric Cluster Organization and Pipeline Figure 2. Asymmetric Cluster Organization and Pipeline  



The (replicated) physical register file in the narrow cluster is 
referred to as the Simple register file, while the register file in the 
wide cluster is called the Long register file. Each replicated 
physical register (Long or Simple) has a (replicated) 2-bit register 
descriptor, RD, associated with it. Possible value types recorded 
in RD are Simple, Long, or Addr. The replicated RD descriptor 
may need to be updated in both clusters on a write. 

The use of RD allows us to determine what type of value is stored 
in a register (in each cluster). A physical register with RD type of 
Addr has an Addr register associated with it. n bits of a value (19 
down to 19-n+1, where n is the size of Addr register), in a (Long 
or Simple) register entry are used as a pointer (PTR) to the 
corresponding Addr register. 

The Long register file has four special features.  

1. A write from the narrow cluster to this register file is 
performed with sign extension.  

2. A 64b result in the wide cluster is checked to see if it is a 20b 
Simple value, i.e. if it has 20 or fewer significant bits. Only in 
this case is the result also written to the Simple register file in 
the narrow cluster.  

3. Each result is checked to see if its value can use one of the 
valid Addr registers. In this case it is written to the Simple and 
the Addr register files in the narrow cluster and its type 
marked as Addr. 

4. A Ld/St base address register value is checked to see if its 
high-order bits should be written to the replicated Addr file. 
This write is performed only from the wide cluster. Note that 
the base register is not updated in Ld/St operations. 

The narrow cluster writes do not require any special treatment. 

3.2 Addr value type and the Addr registers 
Load/stores are very frequent and their treatment by this 
asymmetric architecture is one of its key features. The goal is to 
perform most Ld/St address computations in the fast cluster. This 
is accomplished by finding frequently used, invariant, 44b  high-
order bits in Ld/St base registers. These are stored in Addr 
registers while the low-order 20 bits go into a Simple register. The 
address is also still stored as a 64b value in the Long register (all 
registers are replicated in both clusters), but the register descriptor 
is changed to Addr type in this case. 

An address computation adds a 16b immediate offset to the 
Simple part, which in the vast majority of cases does not result in 
a carry out. This means that the Addr part remains invariant. Also, 
an Addr part is very often the same for addresses produced by the 
same or by different Ld/St instructions. This allows the Addr 
register file to be as small as 8 entries and still achieve near-
optimal performance. One can thus think of Addr registers as a 
cache for invariant partial addresses. In fact, each Addr (file) entry 
has a valid bit and a value. 

Determining whether to save the 44b from the Ld/St base register 
in an Addr register is performed as following. First, a 64b base 
register in a Ld/St instruction is checked. If the upper part of this 
Long register matches a value in a corresponding valid Addr 
register (as determined by using the PTR bits), then the Long 
register descriptor RD is changed to Addr. A copy of the low-
order part is also written to the Simple file so that it can be used in 
the fast cluster for future instances of this Ld/St or this memory 

“page”. The steering predictor is updated to send this Ld/St to the 
fast cluster in the future.  

However, if the corresponding Addr register was not valid (with 
one exception, see below) then it is written with the upper part of 
the Long register and marked valid. This is how Addr registers 
become valid and the only way they are written. The Long register 
descriptor is also marked Addr in this case, the update is 
propagated to the Simple file and the predictor is updated. 

A replacement policy for a valid Addr entry is needed to make 
sure that only frequently used addresses are kept. The replacement 
can occur in two ways. A use bit keeps track of whether the entry 
has been used since it was written. A valid entry that has not been 
used is replaced by a write. In addition, a “background” algorithm 
frees entries that have not been used for a while. An entry that is 
marked used but which has not been accessed for a period 
proportional to 2 times the number of entries in the ROB is freed 
(see [14] for details).  

Note that the 20b address arithmetic in the fast cluster can result 
in an overflow. The overflow, if detected, indicates that the Addr 
register can no longer be used for this Simple register and is a 
case of a mis-predicted cluster assignment. The RD descriptor and 
the predictor are updated to reflect this.  

Based on the above discussion, the replicated Addr register file 
has 2 read and 2 write ports in the wide cluster and 1 read and 1 
write port in the fast cluster. 

Finally, when a register of type Addr is used by a Ld/St in the fast 
cluster, the corresponding Addr register is read in the Execute 
stage, after the PTR bits to index it become available. The good 
news is that the (invariant) Addr register value is not used in 
address computation. The low-order 20b of the address are 
computed using only the Simple register. By the end of the 
execute stage the narrow ALU produces a result and the Addr 
register value is read out. They are concatenated and the complete, 
64b address is sent to memory (except when the 20b ALU 
overflow is detected).  

3.3 Cluster Predictor and Instruction Steering 
There are several possible predictor design choices, which affect 
prediction accuracy. A PC-indexed, history-based predictor was 
chosen after an extensive study (the details of which are not 
presented here due to lack of space). For each decoded instruction 
a cluster prediction is made based on previous execution of the 
same instruction. The predictor is an array of 1b cells indexed by 
the instruction PC and thus can be accessed very early in the 
pipeline. This history based cluster predictor was found more 
accurate than using individual predictors for each instruction 
operand’s value type.  

Other predictor parameters were chosen as following: 

1. A tag-less design is used, as it gave more accuracy 

2. The initial value points to the wide cluster to avoid mis-
prediction 

3. The predictor is updated in write-back 

The effect of predictor size on prediction accuracy is discussed 
below. 



One thing to keep in mind is that steering to the wide cluster has 
the lowest cost in terms of mis-prediction penalty but carries a 
performance penalty since clusters have different speed. 

The register descriptor (RD) information is available in the 
rename stage for source registers that have their value and which 
have not been remapped. The steering prediction has already been 
made by this time, but is re-checked using a source operand RD 
value, if the source operand is ready. The prediction-based 
steering decision is “corrected” as following: the assignment is 
changed to the wide cluster if any source operand is long.  

3.4 Instruction Pipeline 
This sub-section describes new actions in the instruction pipeline 
necessary to implement asymmetric clustering. Figure 1 showed 
the 13-stage baseline instruction pipeline, this section describes 
what needs to be done in each stage for asymmetric clustering.  

INSTRUCTION FETCH: The cluster predictor is accessed in 
this stage to hide its access latency. 

DECODE/RENAME: assigns a Simple / Long register entry to 
every logical register. Re-checks steering prediction. 

STEERING: the steering decision has been made by this time, so 
only the actual steering is performed 

ISSUE: a register written from another cluster may cause wakeup. 
An instruction in the narrow cluster may be awaken by a write to a 
Long register. In this case the register tag and descriptor RD are 
sent from the wide to the narrow cluster, but not the value. This 
instruction will be replayed. 

Re-play may be initiated in the wide cluster if a mis-predicted 
instruction arrives from the fast cluster. It has highest priority in 
the scheduler and issues as soon as possible. 

RF READ: Type descriptor RD and the Addr register pointer 
PTR are read. A Long type read in the narrow cluster sets a mis-
prediction flag and marks the instruction. 

EXECUTE: The Addr register is read in this stage in parallel 
with ALU operation. 20b overflow in the narrow cluster sets a 
mis-prediction flag. 

WRITE-BACK: writes are posted to the replicated register files, 
but write-back is different in narrow and wide clusters. Steering 
predictor update is performed. 

1. NARROW CLUSTER: write if a mis-prediction flag was not 
set, otherwise prevent write-back and initiate a replay. 

2. WIDE CLUSTER: write the Long destination register and 
send to the fast cluster for wakeup. Perform the following 
checks and initiate register descriptor update and fast cluster 
write, if needed 

a) Check if the result is a Simple value, i.e. the upper (64-
20) bits are all 0 or all 1. The value is written to the narrow 
cluster if Simple.  The time to do this is accounted for in the 
inter-cluster communication latency.  

b) A check for Addr type result is performed in parallel 
with Simple determination. The n-bit PTR field of the result 
(bits 19 downto 19-n+1) is used to read the Addr register file 
(this is fast since the Addr file is small). The result’s upper 44 
bits are compared to the (valid) value in Addr register. The 
result RD descriptor is set to type Addr if equal, or if the Addr 

register was not valid. The value is written to the narrow 
cluster if Addr. 

c) Memory load values are similarly checked prior to 
writing a register.  

The additional delay to detect Simple or Addr values can 
potentially be hidden in the pipeline. For instance, cache data is 
typically available early (by 1 cycle in Alpha 21264) and can be 
checked. Only a comparator delay needs to be hidden for Simple 
value determination. The Addr register file access starts only in 
write-back before comparison can be performed. If this delay is a 
problem, value type can potentially be stored with the data in the 
L1 cache. 

3.5 Steering Mis-prediction Recovery 
Mis-prediction recovery in the narrow cluster is performed as 
follows. First, the instruction is replayed by sending it to the slow 
cluster. And second, steering predictor and the destination register 
are updated. 

The replay is accomplished by sending the instruction’s payload 
RAM content to the wide cluster. There a separate Ready port to 
the scheduler is used when the mis-predicted instruction arrives 
after inter-cluster communication latency. It has the highest 
priority. By this time any operands it may need have been 
replicated in the Long cluster (e.g. a narrow value written by a 
previous instruction) and they are read from the Long register file. 
The Execute and Write-back stages follow.  

4. PERFORMANCE EVALUATION 
This section presents performance evaluation of asymmetric 

Table 1.  Baseline clustered processor organization 

Issue/Fetch/Commit width 4 instructions/cycle 

Branch predictor Combining ,16K entries  

I-L1 size 32 KB, 4-way, 1 cycle 

D-L1 size 32 KB, 4-way, 2 Rd/Wr ports, 
3 cycle  

L2 size 1MB,   4-way 10 cycle latency      

Memory latency 100 cycles 

Memory bus width 32 bytes 

Clusters 2 Integer, 1 floating point 

Integer Functional Units (lat.) 2 per cluster (latency 1) 

FP Functional Units (lat.) 4 (latency 2) 

Physical registers 128 Int. per cluster (4 Rd/6 Wr 
ports),  

128 Floating Point 

Reorder Buffer 128 

Load/Store Queue 64 

Integer Queues 20 in each cluster 

FP Queue 64 

 



clusters and the impact of changes in the cluster organization with 
respect to a baseline architecture. The configuration of the 
baseline processor is shown in Table 1.  

SPEC2000 benchmark suite was used to evaluate the performance 
of this approach. They were compiled for the Alpha ISA. The 
results presented are averages over both integer and floating point 
applications. All benchmarks have been simulated for 300 million 
representative instructions, where representative is defined 
following [31]. 

4.1 Steering 
The IPC achieved with the new steering mechanism is first 
evaluated and compared to IPC for several existing steering 
algorithms. This is done using a symmetric clustered architecture 
for fair comparison. The goal is to show that the new algorithm 

can achieve good instruction distribution balance and reduce 
inter-cluster communication. The inter-cluster communication 
latency is varied from 0 to 2 cycles.  

The algorithms used for comparison are MOD1, MOD3, FirstFit, 
and (simplified) Dependence Graph. All IPC results are 
normalized to those achieved by the un-clustered architecture and 
are shown in Figure 3 (averaged over all SPEC2000 benchmarks). 
The MOD1, MOD3 algorithms degrade rapidly after the 
communication latency increases beyond 1 cycle. The dependence 
graph and first fit algorithms perform better at higher latencies, 
with a maximum IPC loss of 4 to 5% compared to un-clustered 
results. 

The new steering algorithm has an extra parameter that can be 
used to affect steering: the data path width W in the narrow 
cluster. If W were increased, more instructions would be steered 
to the narrow cluster. This changes the balance, but still keeps 
successors in the same (narrow) cluster. Results for three different 
values of W are shown in the figure: 8b, 12, and 16b. The 8 and 
12b steering algorithms are 1 to 2% below the top competitors.  

Data in Figure 3 is for symmetric clusters. The steering algorithm 
proposed in this paper is intended to improve performance of an 
asymmetric architecture. The goal there is different: steer as many 
as possible to execute in the fast cluster without increased 
communication and creating imbalance. In that setting, the effect 
of W is going to be different. A less competitive version in the 
symmetric cluster case, such as the 16b wide mechanism, will 
perform better than a well-balanced, 8b steering mechanism.  

Figure 4 shows the instruction distribution balance actually 
achieved by the asymmetric clustered organization with a 20b 
datapath width. The results demonstrate that the new algorithm 
can steer most of the instructions to the fast cluster for improved 
performance, which is our goal. 
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Figure 4. Instruction Distribution with a 20b asymmetric cluster ( Narrow / (Narrow + Wide) ) 



4.2 Cluster Prediction 
This section presents the steering predictor evaluation. The 
steering prediction accuracy is shown in Figure 5. The results are 
presented averaged over the entire SPEC2000 suite. They are 
shown for different size predictors, from 1K to 16K entries. A 
prediction accuracy of 96% is achieved for a 1K-entry predictor. 
It increases to 98.5% for 16K entries. The difference between a 
4K and 16K predictor accuracy is 0.5%, making a 4K predictor a 
good practical alternative. In all cases predictor output was 
“corrected” using source operand value types if they are available. 

Two things should be noted about the predictor. First, the use of a 
large predictor is feasible in spite of additional delay because 
predictor access can be initiated early in the pipeline, as soon as 
the PC value is known. Second, not all mis-predictions have the 
same performance penalty. For instance, assigning a narrow ALU 
instruction to the wide cluster does not require re-execution in 

another cluster and thus does not incur a significant loss. 
Incorrectly assigning an instruction to the narrow cluster and then 
re-executing it in the wide cluster is costly.  

The loss of accuracy with size decrease is due to two main 
reasons. First, aliasing increase in the tag-less predictor with size 
decrease, in particular on I-cache misses. And second, the 
predictor is updated after the write-back stage and thus during 
several cycles it may not be accurate. 

4.3 Asymmetric Cluster Performance 
Let us now examine asymmetric cluster performance focusing on 
IPC. In this section the steering mis-prediction penalty is set to 0 
or 2 cycles, but the communication latency is always two (slow) 
cycles. The narrow cluster runs at 2x the clock speed of a wide 
cluster. Recall that instruction processing prior to the Issue stage 
is common to all instructions.  

Fig. 6 presents the asymmetric cluster IPC results relative to the 
un-clustered architecture for prediction-based and dependence-
graph based steering. Symmetric clustering with dependence 
based steering is shown for comparison. The 100% level 
corresponds to the un-clustered architecture. Cluster mis-
prediction penalty is 0 cycles for both steering algorithms. 

The results demonstrate that asymmetric clustering with a fast, 
20b cluster (left bars) achieves a 3% IPC increase over un-
clustered organization and an 8% increase over the best symmetric 
clustering (right bars) for integer programs. The increase is 
slightly smaller for f.p. codes. The increase over the un-realizable 
un-clustered architecture is quite remarkable and is due to the 
steering algorithm and the use of the fast narrow cluster. 

Results for individual benchmark vary, with the majority 
demonstrating that asymmetric clustering performs better than the 
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Figure 5.  Steering Predictor Accuracy vs Predictor size 
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Figure 6. Relative IPC for asymmetric and symmetric clustered organizations  

(0-cycle mis-prediction and 2-cycle communication latencies) 



symmetric clustering. Many exceed the un-clustered architecture 
performance  (the 100%). 

Figure 7 shows the IPC results for the mis-prediction penalty of 2 
cycles. On average, the results are only slightly lower. As can be 
seen, many benchmarks still exceed the performance of un-
clustered architecture because they execute most of the 
instructions in the double-speed fast cluster, including the 
majority of dependent instructions. This is something that does 
not happen on any symmetric clustered architecture,  

One can possibly further improve asymmetric cluster performance 
by using criticality information. Fields et al [12] proposed 
criticality-based scheduling and steering, The former was applied 
to an un-clustered architecture and shown to improve its 
performance. Both were applied to clustered architectures and 
shown to exceed the performance of the un-clustered architecture, 
which used “normal” scheduling. Note that when both 
architectures used criticality-based scheduling the un-clustered 
architecture still performed better in [12].  

4.4 0-delay TLB 
This section examines the effect of using the Addr register file as 
a level-0 TLB.  As each entry is added to this file, a copy of the 
page attributes and the physical address translation is stored in a 
parallel “TLB” structure. Let us assume here that the page size is 
chosen to be 32KB. 

The new TLB is indexed by the Addr register “pointer” and is 
thus direct-mapped. As described above, the Addr register is 
accessed in the Execute stage, thus the same is true for the new 
TLB. As a result, the translation is available at the end of the 
Execute stage making it a 0-delay TLB.  

In case of a miss in the level-0 TLB, a standard level-1 TLB is 
accessed. It can be larger than in the traditional architecture, if 
level-0 TLB can translate the majority of accesses. 

The effect of this level-0 TLB can be seen in Fig. 8 . It presents 
results for 8-, 16- and 32-entry level-0 TLBs, showing the 
percentage of Ld/St instructions translated by this TLB. The 
results are presented for mis-prediction and communication 
latencies of 2 cycles. They demonstrate that approximately 90% of 
all translations are taken care by this new TLB.  

5. RELATED WORK 
Related work can be divided into several major groups: data-
based optimization, critical structures, clustered architectures, and 
register file design and instruction scheduling. 

Data based optimization. Brooks et al. [5] studied the data width 
of operands in a 64-bit architecture. They found that over 50% of 
operands could be executed with only 16 bits. As a result, it was 
shown that a 45% to 60% reduction in functional unit power 
consumption can be achieved. The power reduction estimate was 
based on a study by Nagendra et al [23], which explained in detail 
the impact of narrow width on power, area and timing. 
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Figure 7. Relative  IPC with mis-prediction and communication latency of 2 cycles. 



Loh [21] proposed a Multi-Bit-Width micro-architecture, which 
attempts to accurately predict instruction data-width. It uses the 
width information to simultaneously execute multiple narrow-
width instructions on a 64b datapath, increasing the effective issue 
width. 

A more recent study by Gupta et al [39] showed that a small 
group of frequent values is used repeatedly in programs. (It was 
based on this idea that we originally developed a mechanism to 
get "proximate" frequent values in addresses which lead to the 
approach in [14])  

The idea of fast and slow ALUs and schedulers was used in 
Pentium 4 [15], but without clustering. ALU selection was based 
on instruction type and only a very limited subset of instruction 
types was allowed to use the fast ALU. The fast ALU performed a 
32b add in a pipelined (staggered) fashion allowing a successor 
instruction to be started as soon as the end of the first 16b 
operation. The operation of the fast cluster described in this paper 
is somewhat similar to the P4, except that it uses a 20b narrow 
and a 64b wide ALU. 

Critical structures. Palacharla [24] identified critical structures 
present in processors and their effect on performance. Structures 
such as the register file, bypasses, and instructions queues are 
shown to be the main performance bottlenecks in processor 
architecture. A number of more recent studies have examined each 
of these in more detail.  For instance, Sassone et al [28] studied 
the impact of multi-cycle bypass networks. [25][17][7][13][33] 
proposed ways to speedup instruction wakeup and scheduling or 
reduce its energy consumption. 

Register file design. There are a number of interesting studies of 
register file design ([20][30][36][40][26][18][2][3][34][22] 
[10][35]) aiming to reduce power or improve performance. The 
main difference of the approach in [14] and, in part of the work 
presented here, is the use of partial value locality, which allowed 
the register file to be partitioned into three separate structures. 
One of these structures only needed 8 registers and one was only 
20b wide. This allowed a faster access and an energy reduction. 

Clustered architectures. Palacharla et al [24] study the complexity 
and delay on structures for processors based on future 
technologies. They identify the main parts of processors that will 
have problems and more impact over throughput. Horowitz et al. 
[16] showed that design of present/future processors will have to 
adapt to higher communication costs by further partitioning some 

of the critical structures. And Aggarwal et al [1] studied the 
effects of high clock rates on IPC. 

Farkas et al proposed as a clustered architecture [11], which 
divides functional units, registers and instruction windows 
between two clusters. They used a static instruction scheduling to 
handle dependencies. Rotenberg et al. proposed Trace processors 
[27] which dynamically divide program instructions among 
multiple processing elements, each with private functional units. 
Sohi et al. proposed Multiscalar Processors [32] that divides a 
program into tasks guided by software, with each task executed on 
a small cluster (processing unit). 

Baniasadi et al evaluated various queue clustering schemes for a 
single threaded processor [4]. Their work focused on queue 
assignment for “split” instruction queue. Balasubramonian et al 
investigated the impact of clustering a single-threaded processor 
into up to 16 clusters [3], and proposed a dynamic scheme for 
selectively disabling clusters in order to reduce communication 
costs. Aggarwal et al explored the use of different algorithms for 
assigning instructions to clusters [1]. They investigated structures 
most likely to affect critical timing path for wide issue processors. 
The impact of dividing the traditional out-of-order queue into a 
series of instruction FIFOs was presented. 

Canal et al proposed several instruction queue clustering schemes 
[9]. The Alpha 21264 [19] had two clusters of functional units 
with replicated register files that were kept consistent by 
hardware. 

Wakeup/Scheduling Weiss and Smith [38] and Sato [29] 
proposed a pointer-based instruction wakeup mechanism using a 
pointer to successor instructions. The pointer-based mechanism 
can be used for wakeup of dependent instructions in the fast 
cluster. Fields et al [12] proposed criticality-based scheduling, 
which they applied to clustered architectures to show that it can 
mitigate the effect of inter-cluster communication. 

6. CONCLUSIONS 
This paper introduced the idea of asymmetric clustering and 
presented an asymmetric clustered processor organization based 
on operation and operand value type. A 20b narrow cluster 
operating at twice the speed of a standard, 64b cluster was 
presented and shown to execute, on average, over 80% of all 
integer instructions. The result was a higher average performance 
than that of an un-clustered organization as well as that of 
previously proposed symmetric clusters using the best steering 
algorithms. 

Prediction-based steering was introduced and shown to achieve 
up to 98% accuracy, depending on its size. The accuracy is not 
equal to performance loss, however, as mis-prediction may simply 
not produce a performance gain when an instruction is mistakenly 
sent to the slow cluster. 

Fast cluster organization with a single, double-speed ALU allows 
the Instruction Queue and register file to have fewer ports and the 
bypass network to be very short justifying a speed increase, 
simplifying the hardware, and saving power.  But other ways of 
organizing asymmetric clusters are also possible and may be 
advantageous under different conditions. 

The last contribution of the paper is a 0-delay TLB implemented 
via the Addr register file. 90% of all memory access instructions 
are translated this way resulting in 1 to 2% additional average IPC 
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increase. This approach also saves power by bypassing a large 
TLB. Last but not least, this allows a physically addressed cache 
to be used given a 0-delay translation. Further research will 
investigate ways to improve the coverage of the 0-delay TLB. 
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