
An Asymmetric Clustered Processor
based on Value Content

R. González, A. Cristal, M. Pericas and M. Valero
 Universitat Politècnica de Catalunya

{gonzalez,adrian,mpericas,mateo}@ac.upc.edu

 A. Veidenbaum
University of California, Irvine

alexv@ics.uci.edu

ABSTRACT
This paper proposes a new organization for clustered processors.
Such processors have many advantages, including improved
implementability and scalability, reduced power, and, potentially,
faster clock speed. Difficulties lie in assigning instructions to
clusters (steering) so as to minimize the effect of inter-cluster
communication latency. The asymmetric clustered architecture
proposed in this paper aims to increase the IPC and reduce power
consumption by using two different types of integer clusters and a
new steering algorithm. One type is a standard, 64b integer
cluster, while the other is a very narrow, 20b cluster. The narrow
cluster runs at twice the clock rate of the standard cluster.

A new instruction steering mechanism is proposed to increase the
use of the fast, narrow cluster as well as to minimize inter-cluster
communication. Steering is performed by a history-based
predictor, which is shown to be 98% accurate.

The proposed architecture is shown to have a higher average IPC
than its un-clustered equivalent for a four-wide issue processor,
something that has never been achieved by previously proposed
clustered organizations. Overall, a 3% increase in average IPC
over an un-clustered design and a 8% over a symmetric cluster
with dependence based steering are achieved for a 2-cycle inter-
cluster communication latency.

Part of the reason for higher IPC is the ability of the new
architecture to execute most of the address computations as
narrow, fast operations. The new architecture exploits its early
knowledge of partial address values to achieve a 0-cycle address
translation for 90% of all address computations, further improving
performance.

Categories and Subject Descriptors
C.1.1 [Single Data Stream Architecture]: RISC/CISC, VLIW
architectures

General Terms
Performance, Design.

Keywords
Cluster Architectures. Content aware architectures.

1. INTRODUCTION
The scalability of high-performance, out-of-order processor
design is made very difficult by the increasing clock frequencies
and issue width. It has been shown in [24], [6] that the
wakeup/select and the ALU bypass loops as well as the register
file are some of the main sources of difficulties in such designs.
The issue width of four or more instructions requires a large
number of ports on instruction queues and register file as well as
bypassing to all the execution units present. This slows down the
operation and/or requires multiple pipeline stages to accomplish.

Clustering has been proposed as a solution to these problems. It
has been successfully implemented in several processors, such as
Digital’s Alpha 21264 [19]. In a cluster, the instruction queue
access, wakeup/select, register file access (except for inter-cluster
update), and ALU bypass are limited to just the units in the
cluster. Instructions are typically assigned to clusters after
decoding and are placed into per-cluster instruction queues. A
data communication path has to be provided between clusters,
either via the register file or the bypass network. Arrival of
operands from another cluster(s) activates the wakeup logic. The
communication between clusters takes one or more clock cycles.

One of the key problems in clustered architectures is the dynamic
assignment of instructions to clusters (steering) to minimize inter-
cluster communication. At the same time, the steering mechanism
has to achieve a balanced cluster utilization so as not to waste
resources and lose IPC. A clustered organization has lower IPC
than the same organization but implemented without clustering, if
it were feasible. The work presented here proposes a way to speed
up execution by using a fast cluster and to minimize the effect of
inter-cluster communication latency by a different approach to
steering.

A number of research groups has recently shown that many
integer operand values are either “small” or contain many all-0 or
all-1 bytes [5][37][2][8]. This is particularly true for 64-bit
architectures, in which approximately 50% of all integer
instruction can be executed in a 16b ALU [5]. It has also been
shown that, in addition, a large number of 64b address values
have a common, invariant high-order part [14]. The processor in
[14] had the register file and the data path optimized to take
advantage of this value “content” locality. This increased the
number of instructions using the narrow ALU to significantly
above 50% of all integer instructions that was achieved in [5]. It
was shown that 75% or more of all instructions could be executed
using the narrow registers and data path.

It was also pointed out in [14] that operand types used by an
instruction were “clustered” so that 75% of all instructions only
needed narrow values, while 17% needed only wide, 64b values.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICS\'05, June 20-22, Boston, MA, USA.
Copyright © 2005, ACM 1-59593-167-8/06/2005...$5.00

This, it was suggested, can be used to build a clustered processor
with narrow and wide clusters.

This paper presents such a clustered processor organization to
take full advantage of a very high probability that an instruction
needs only a narrow data path. The goal of this design is to
increase performance of a clustered architecture. It uses a fast,
narrow cluster and a slower standard, 64b-wide cluster. There
several ways one could design and optimize the narrow cluster.
This paper proposes a 20b narrow cluster running at twice the
clock rate of the rest of the processor. It therefore needs only half
of the ALUs needed in the standard cluster. The 20b data path is
chosen to increase the number of instructions using the narrow
cluster. It can be changed to affect the instruction distribution.

Consider a 4-wide issue baseline processor with two integer
clusters. Each cluster contains two 64b ALUs, a separate register
file, and is dual issue. The clusters share the front end and the
data cache. Now imagine that one of the clusters is implemented
using a 20b data path. This cluster will only execute instructions
with 20b inputs and produce a 20b result. There are several
reasons it is argued below, why such a narrow cluster can be twice
as fast as the 64b cluster in wakeup/select, register file access,
execution, and write-back stages:

1. The narrow cluster will need only one ALU to achieve the
same performance, and thus will need half the ports on the
instruction queue, register file, and bypass network

2. Its register file is narrow, speeding up its access and making it
physically smaller.

3. Its ALU is 1/3 or less of the size of the 64b ALU and does not
have to perform long, slow operations such as multiply. The
addition is the slowest remaining operation and can be
performed in 1/2 the time of a 64b add if one assumes a
staggered 64b adder, as in Pentium 4 [15].

4. The bypass path is 1/3rd as narrow and six times shorter than
in the 64b cluster with 2 ALUs.

5. The wakeup/select logic is faster because it is single-issue and
uses a single-ported instruction queue.

Let us assume that such an implementation is indeed feasible and
consider the asymmetric organization. The asymmetric cluster
organization requires a new steering mechanism to take full
advantage of the fast cluster. Such a mechanism using past
execution history is proposed and shown to be very effective and
fast. The history-based cluster predictor is PC indexed and records
the most recent cluster assignment for a given instruction.
Furthermore, it can start the prediction as early as fetch stage and
thus has several cycles to complete. The “best” steering algorithm
in literature, dependence-based steering [9], is more complex and
is performed after renaming where it has to complete in one cycle.

 Instructions using the narrow cluster for the most part use results
produced in the narrow cluster. Thus steering based on this
information is a simplified form of dependence-driven steering
and minimizes inter-cluster communication. The new steering
mechanism does not aim to achieve balanced instruction
distribution, instead it maximizes the use of the fast cluster. The
steering mechanism is shown to be competitive even for
symmetric clustered organization.

 The history-based prediction can be “corrected” after renaming
for ready operands whose value type (size) is known at that time.

A value type descriptor is associated with every register. Steering
stage (performed after renaming) can check available source
operand value type information to see if the prediction was
correct. For instance, a narrow cluster prediction is wrong if a
source operand is wide.

 The asymmetric cluster organization with prediction-based
steering will have “mis-predictions”. This happens when an
instruction assigned to the narrow cluster uses a 64b source
operand or produces a 64b result. The register descriptor is then
set to reflect the latter. The narrow cluster assignment is the only
type of mis-prediction possible in this asymmetric organization, a
wide cluster assignment cannot be wrong since any instruction
can execute in the wide cluster.

A mis-predicted instruction is sent to the wide cluster for replay,
but first it wakes up its dependents in the narrow cluster. They
will issue and detect their own source operand problems, if any,
and replay. Wakeup of dependent instructions in the other cluster
occurs when a tag sent with the data to be written in the replicated
register file arrives. This guarantees data is available locally when
instruction issues. There is no need for instruction window
cleanup and re-execution from mis-predicted instruction as on
branch mis-prediction. There is a mis-prediction time penalty,
however, in the narrow cluster.

 A mis-predicted instruction replays from the scheduling step, as it
has already (correctly) gone through the wake-up. A separate
scheduler port is used for this and replay has highest priority. The
instruction is not inserted in the instruction queue of the wide
cluster, rather payload RAM information read in the narrow
cluster is sent to the wide cluster. The replay proceeds to read
operands in the wide cluster and execute, thus incurring further
latency in addition to the inter-cluster communication latency.

It is possible that an instruction assigned to the wide cluster
produces a narrow result. It is in our best interest to detect this
and update the predictor or inform the steering mechanism so it
can assign successor instructions to the fast cluster.

Both the narrow and wide clusters may need operands from the
other cluster. A replicated register file is used for the sake of
control simplicity which incurs a communication penalty on
write-back. As explained below, only the narrow part of the
register file is replicated in the narrow cluster (plus a small
additional register file).

The asymmetric architecture proposed in this paper treats address
calculations in load/store instructions in a special way that allows
most of them to be performed in the narrow cluster. This is
possible because the high-order part of an address is often
unmodified by the addition of a 16b offset in address
computation. A special, small register file is used to store the
high-order address bits. These registers are called address
registers (Addr), each holding the invariant, frequently used upper
address bits.

The use of invariant Addr registers opens the possibility of using
them for address translation. A direct-mapped TLB using Addr
registers is proposed as a level-0 TLB, followed by a “normal”
(level-1) TLB. The level-1 TLB is accessed when a Ld/St
instruction is not using one of the Addr registers. The level-0 TLB
is indexed by an Addr register number and stores a page (or a
super-page) translation corresponding to the Addr register. The
translation is performed assuming that the upper part of an

address stored in the Addr register remains unchanged after (base
register + offset) computation. Translation time is thus shorter and
is performed in parallel with address computation.

This paper makes several important contributions. First, it
proposes an asymmetric clustered organization using a fast,
narrow datapath cluster. Second, it introduces a fast and very
accurate prediction-based steering algorithm. It also uses an
asymmetric register file design, which enables a 0-latency address
translation for a very high percentage of memory accesses.
Overall, the proposed asymmetric architecture increases the
utilization of the fast cluster. This significantly improves
performance, which exceeds that of an un-clustered architecture,
even with two (or even more) cycles of inter-cluster
communication latency as well as two (or more) cycles of steering
mis-prediction penalty.

The rest of this paper is organized as follows. Section II defines a
standard, symmetric clustered architecture used as a baseline for
performance comparison. Section III defines value content-based
asymmetric clustering and its implementation used to evaluate
performance, and discusses potential benefits of a shorter access
time and area savings of narrow clusters. Sections IV presents a
new steering mechanism and compares it with several existing
algorithms on symmetric clustered architectures. Section IV also
describes and analyzes the impact of fast narrow cluster design on
performance. Related work is discussed in Section V. Finally,
future work and conclusions are discussed in Section VI.

2. BASELINE ORGANIZATION
The symmetric 64b clustered processor organization used as the
baseline is shown in Figure 1. It has two symmetric integer
clusters with replicated 64b register files. Each write is sent to
both register files and is posted to the remote register file one or
more clock cycles later than to the local file. A write from the
other cluster activates the local wakeup logic. Each cluster has a
separate instruction queue and two ALUs for a combined issue
width of four integer instructions.

The baseline pipeline is also shown in Figure 1. It has 13 stages to
allow a fast clock. The front-end, e.g. stages up to and including
QUEUE II, are shared by both clusters. Other parameters of the
baseline processor organization are described in Table 1 and
remain unchanged throughout the paper unless otherwise
specified.

The baseline architecture requires a register file with 4 read and 2
write ports in each cluster with 2 ALUs. Two additional write
ports are used for writes from the other cluster, plus 2 more write
ports for memory access, for total of 4 read and 6 write ports.

Several different steering algorithms have been proposed for
symmetric clustered architectures. They vary in the amount of
inter-cluster communication and how “balanced” across clusters is
the resulting execution. For example, the First-Fit algorithm [4]
assigns consecutive instructions to the same cluster until its
instruction queue (IQ) is full. It reduces the inter-cluster
communication at the expense of balanced execution and good
resource utilization. The MODn algorithm [4] assigns n
consecutive instructions to the same cluster and then switches to
the other cluster. Alpha 21264 used the MOD1 algorithm, while
MOD3 has been shown to be one of the better algorithms in
[4][3]. Instruction dependence based steering, DEPGRAPH,
attempts to use data dependence knowledge in the assignment
process to reduce communication [9]. It is a complex mechanism,
so a modified version to reduce the hardware complexity is used
in this paper. It is assumed in the rest of this paper that cluster
assignment and instruction steering take only one cycle, a
generous assumption for the DEPGRAPH algorithm.

The various algorithms differ in their complexity and the resulting
IPC. The dependence based steering is the most complex to
implement but results in the highest IPC among the proposed
algorithms. Several steering algorithms will be evaluated on the
baseline architecture assuming varying communication delay and
compared to the new algorithm proposed in this paper.

3. ASYMMETRIC CLUSTERED
PROCESSOR ORGANIZATION
The asymmetric clustered processor with two integer clusters,
slow and fast, is shown in Figure 2. It has two ALUs in the 64b,
slow cluster and one ALU with a 20b wide data path in the fast
cluster. The floating-point cluster is not shown, as it is not
changed in this architecture and is the same as in the baseline.
Only Issue, RF READ, EXE, and WB stages run at the faster
clock rate.

The key to understanding the asymmetric organization is the
register file and the prediction-based steering mechanism, which
are described next.

3.1 A Replicated Asymmetric Register File
with a Content-aware Component
Figure 2 shows the details of each cluster’s datapath and
connections between them. Each cluster has a full-size (128 entry)
physical register file, which is 20b wide in the narrow cluster. In
addition, each cluster has an Addr register file (Short in the
figure), which is not part of the ISA. It stores an upper part of a
full memory address, with the low part stored in a narrow register.
The Addr file can be as small as 8 entries.

Figure 1. Symmetric Cluster Organization and Pipeline Figure 2. Asymmetric Cluster Organization and Pipeline

The (replicated) physical register file in the narrow cluster is
referred to as the Simple register file, while the register file in the
wide cluster is called the Long register file. Each replicated
physical register (Long or Simple) has a (replicated) 2-bit register
descriptor, RD, associated with it. Possible value types recorded
in RD are Simple, Long, or Addr. The replicated RD descriptor
may need to be updated in both clusters on a write.

The use of RD allows us to determine what type of value is stored
in a register (in each cluster). A physical register with RD type of
Addr has an Addr register associated with it. n bits of a value (19
down to 19-n+1, where n is the size of Addr register), in a (Long
or Simple) register entry are used as a pointer (PTR) to the
corresponding Addr register.

The Long register file has four special features.

1. A write from the narrow cluster to this register file is
performed with sign extension.

2. A 64b result in the wide cluster is checked to see if it is a 20b
Simple value, i.e. if it has 20 or fewer significant bits. Only in
this case is the result also written to the Simple register file in
the narrow cluster.

3. Each result is checked to see if its value can use one of the
valid Addr registers. In this case it is written to the Simple and
the Addr register files in the narrow cluster and its type
marked as Addr.

4. A Ld/St base address register value is checked to see if its
high-order bits should be written to the replicated Addr file.
This write is performed only from the wide cluster. Note that
the base register is not updated in Ld/St operations.

The narrow cluster writes do not require any special treatment.

3.2 Addr value type and the Addr registers
Load/stores are very frequent and their treatment by this
asymmetric architecture is one of its key features. The goal is to
perform most Ld/St address computations in the fast cluster. This
is accomplished by finding frequently used, invariant, 44b high-
order bits in Ld/St base registers. These are stored in Addr
registers while the low-order 20 bits go into a Simple register. The
address is also still stored as a 64b value in the Long register (all
registers are replicated in both clusters), but the register descriptor
is changed to Addr type in this case.

An address computation adds a 16b immediate offset to the
Simple part, which in the vast majority of cases does not result in
a carry out. This means that the Addr part remains invariant. Also,
an Addr part is very often the same for addresses produced by the
same or by different Ld/St instructions. This allows the Addr
register file to be as small as 8 entries and still achieve near-
optimal performance. One can thus think of Addr registers as a
cache for invariant partial addresses. In fact, each Addr (file) entry
has a valid bit and a value.

Determining whether to save the 44b from the Ld/St base register
in an Addr register is performed as following. First, a 64b base
register in a Ld/St instruction is checked. If the upper part of this
Long register matches a value in a corresponding valid Addr
register (as determined by using the PTR bits), then the Long
register descriptor RD is changed to Addr. A copy of the low-
order part is also written to the Simple file so that it can be used in
the fast cluster for future instances of this Ld/St or this memory

“page”. The steering predictor is updated to send this Ld/St to the
fast cluster in the future.

However, if the corresponding Addr register was not valid (with
one exception, see below) then it is written with the upper part of
the Long register and marked valid. This is how Addr registers
become valid and the only way they are written. The Long register
descriptor is also marked Addr in this case, the update is
propagated to the Simple file and the predictor is updated.

A replacement policy for a valid Addr entry is needed to make
sure that only frequently used addresses are kept. The replacement
can occur in two ways. A use bit keeps track of whether the entry
has been used since it was written. A valid entry that has not been
used is replaced by a write. In addition, a “background” algorithm
frees entries that have not been used for a while. An entry that is
marked used but which has not been accessed for a period
proportional to 2 times the number of entries in the ROB is freed
(see [14] for details).

Note that the 20b address arithmetic in the fast cluster can result
in an overflow. The overflow, if detected, indicates that the Addr
register can no longer be used for this Simple register and is a
case of a mis-predicted cluster assignment. The RD descriptor and
the predictor are updated to reflect this.

Based on the above discussion, the replicated Addr register file
has 2 read and 2 write ports in the wide cluster and 1 read and 1
write port in the fast cluster.

Finally, when a register of type Addr is used by a Ld/St in the fast
cluster, the corresponding Addr register is read in the Execute
stage, after the PTR bits to index it become available. The good
news is that the (invariant) Addr register value is not used in
address computation. The low-order 20b of the address are
computed using only the Simple register. By the end of the
execute stage the narrow ALU produces a result and the Addr
register value is read out. They are concatenated and the complete,
64b address is sent to memory (except when the 20b ALU
overflow is detected).

3.3 Cluster Predictor and Instruction Steering
There are several possible predictor design choices, which affect
prediction accuracy. A PC-indexed, history-based predictor was
chosen after an extensive study (the details of which are not
presented here due to lack of space). For each decoded instruction
a cluster prediction is made based on previous execution of the
same instruction. The predictor is an array of 1b cells indexed by
the instruction PC and thus can be accessed very early in the
pipeline. This history based cluster predictor was found more
accurate than using individual predictors for each instruction
operand’s value type.

Other predictor parameters were chosen as following:

1. A tag-less design is used, as it gave more accuracy

2. The initial value points to the wide cluster to avoid mis-
prediction

3. The predictor is updated in write-back

The effect of predictor size on prediction accuracy is discussed
below.

One thing to keep in mind is that steering to the wide cluster has
the lowest cost in terms of mis-prediction penalty but carries a
performance penalty since clusters have different speed.

The register descriptor (RD) information is available in the
rename stage for source registers that have their value and which
have not been remapped. The steering prediction has already been
made by this time, but is re-checked using a source operand RD
value, if the source operand is ready. The prediction-based
steering decision is “corrected” as following: the assignment is
changed to the wide cluster if any source operand is long.

3.4 Instruction Pipeline
This sub-section describes new actions in the instruction pipeline
necessary to implement asymmetric clustering. Figure 1 showed
the 13-stage baseline instruction pipeline, this section describes
what needs to be done in each stage for asymmetric clustering.

INSTRUCTION FETCH: The cluster predictor is accessed in
this stage to hide its access latency.

DECODE/RENAME: assigns a Simple / Long register entry to
every logical register. Re-checks steering prediction.

STEERING: the steering decision has been made by this time, so
only the actual steering is performed

ISSUE: a register written from another cluster may cause wakeup.
An instruction in the narrow cluster may be awaken by a write to a
Long register. In this case the register tag and descriptor RD are
sent from the wide to the narrow cluster, but not the value. This
instruction will be replayed.

Re-play may be initiated in the wide cluster if a mis-predicted
instruction arrives from the fast cluster. It has highest priority in
the scheduler and issues as soon as possible.

RF READ: Type descriptor RD and the Addr register pointer
PTR are read. A Long type read in the narrow cluster sets a mis-
prediction flag and marks the instruction.

EXECUTE: The Addr register is read in this stage in parallel
with ALU operation. 20b overflow in the narrow cluster sets a
mis-prediction flag.

WRITE-BACK: writes are posted to the replicated register files,
but write-back is different in narrow and wide clusters. Steering
predictor update is performed.

1. NARROW CLUSTER: write if a mis-prediction flag was not
set, otherwise prevent write-back and initiate a replay.

2. WIDE CLUSTER: write the Long destination register and
send to the fast cluster for wakeup. Perform the following
checks and initiate register descriptor update and fast cluster
write, if needed

a) Check if the result is a Simple value, i.e. the upper (64-
20) bits are all 0 or all 1. The value is written to the narrow
cluster if Simple. The time to do this is accounted for in the
inter-cluster communication latency.

b) A check for Addr type result is performed in parallel
with Simple determination. The n-bit PTR field of the result
(bits 19 downto 19-n+1) is used to read the Addr register file
(this is fast since the Addr file is small). The result’s upper 44
bits are compared to the (valid) value in Addr register. The
result RD descriptor is set to type Addr if equal, or if the Addr

register was not valid. The value is written to the narrow
cluster if Addr.

c) Memory load values are similarly checked prior to
writing a register.

The additional delay to detect Simple or Addr values can
potentially be hidden in the pipeline. For instance, cache data is
typically available early (by 1 cycle in Alpha 21264) and can be
checked. Only a comparator delay needs to be hidden for Simple
value determination. The Addr register file access starts only in
write-back before comparison can be performed. If this delay is a
problem, value type can potentially be stored with the data in the
L1 cache.

3.5 Steering Mis-prediction Recovery
Mis-prediction recovery in the narrow cluster is performed as
follows. First, the instruction is replayed by sending it to the slow
cluster. And second, steering predictor and the destination register
are updated.

The replay is accomplished by sending the instruction’s payload
RAM content to the wide cluster. There a separate Ready port to
the scheduler is used when the mis-predicted instruction arrives
after inter-cluster communication latency. It has the highest
priority. By this time any operands it may need have been
replicated in the Long cluster (e.g. a narrow value written by a
previous instruction) and they are read from the Long register file.
The Execute and Write-back stages follow.

4. PERFORMANCE EVALUATION
This section presents performance evaluation of asymmetric

Table 1. Baseline clustered processor organization

Issue/Fetch/Commit width 4 instructions/cycle

Branch predictor Combining ,16K entries

I-L1 size 32 KB, 4-way, 1 cycle

D-L1 size 32 KB, 4-way, 2 Rd/Wr ports,
3 cycle

L2 size 1MB, 4-way 10 cycle latency

Memory latency 100 cycles

Memory bus width 32 bytes

Clusters 2 Integer, 1 floating point

Integer Functional Units (lat.) 2 per cluster (latency 1)

FP Functional Units (lat.) 4 (latency 2)

Physical registers 128 Int. per cluster (4 Rd/6 Wr
ports),

128 Floating Point

Reorder Buffer 128

Load/Store Queue 64

Integer Queues 20 in each cluster

FP Queue 64

clusters and the impact of changes in the cluster organization with
respect to a baseline architecture. The configuration of the
baseline processor is shown in Table 1.

SPEC2000 benchmark suite was used to evaluate the performance
of this approach. They were compiled for the Alpha ISA. The
results presented are averages over both integer and floating point
applications. All benchmarks have been simulated for 300 million
representative instructions, where representative is defined
following [31].

4.1 Steering
The IPC achieved with the new steering mechanism is first
evaluated and compared to IPC for several existing steering
algorithms. This is done using a symmetric clustered architecture
for fair comparison. The goal is to show that the new algorithm

can achieve good instruction distribution balance and reduce
inter-cluster communication. The inter-cluster communication
latency is varied from 0 to 2 cycles.

The algorithms used for comparison are MOD1, MOD3, FirstFit,
and (simplified) Dependence Graph. All IPC results are
normalized to those achieved by the un-clustered architecture and
are shown in Figure 3 (averaged over all SPEC2000 benchmarks).
The MOD1, MOD3 algorithms degrade rapidly after the
communication latency increases beyond 1 cycle. The dependence
graph and first fit algorithms perform better at higher latencies,
with a maximum IPC loss of 4 to 5% compared to un-clustered
results.

The new steering algorithm has an extra parameter that can be
used to affect steering: the data path width W in the narrow
cluster. If W were increased, more instructions would be steered
to the narrow cluster. This changes the balance, but still keeps
successors in the same (narrow) cluster. Results for three different
values of W are shown in the figure: 8b, 12, and 16b. The 8 and
12b steering algorithms are 1 to 2% below the top competitors.

Data in Figure 3 is for symmetric clusters. The steering algorithm
proposed in this paper is intended to improve performance of an
asymmetric architecture. The goal there is different: steer as many
as possible to execute in the fast cluster without increased
communication and creating imbalance. In that setting, the effect
of W is going to be different. A less competitive version in the
symmetric cluster case, such as the 16b wide mechanism, will
perform better than a well-balanced, 8b steering mechanism.

Figure 4 shows the instruction distribution balance actually
achieved by the asymmetric clustered organization with a 20b
datapath width. The results demonstrate that the new algorithm
can steer most of the instructions to the fast cluster for improved
performance, which is our goal.

94,0%

95,0%

96,0%

97,0%

98,0%

99,0%

100,0%

0 1 2
Communication latency

IP
C

MOD 1 MOD 3 FIRSTFIT DEPGRAPH
CARF DN 8 CARF DN 12 CARF DN 16

Figure3. Average IPC for SPEC2000 benchmarks relative to
un-clustered organization

0,0%

20,0%

40,0%

60,0%

80,0%

100,0%

120,0%

am
mp

ap
plu ap

si art
cra

fty

eq
ua

ke

fac
ere

c
fm

a3
d

ga
lge

l
luc

as
mes

a
mgri

d

six
tra

ck
sw

im

wup
wise

bz
ip2 eo

n
ga

p gc
c

gz
ip mcf

pa
rse

r

pe
rlb

mk
tw

olf

vo
rte

x vp
r

AV
ER

AV
ER

 FP

AV
ER

 IN
T

Figure 4. Instruction Distribution with a 20b asymmetric cluster (Narrow / (Narrow + Wide))

4.2 Cluster Prediction
This section presents the steering predictor evaluation. The
steering prediction accuracy is shown in Figure 5. The results are
presented averaged over the entire SPEC2000 suite. They are
shown for different size predictors, from 1K to 16K entries. A
prediction accuracy of 96% is achieved for a 1K-entry predictor.
It increases to 98.5% for 16K entries. The difference between a
4K and 16K predictor accuracy is 0.5%, making a 4K predictor a
good practical alternative. In all cases predictor output was
“corrected” using source operand value types if they are available.

Two things should be noted about the predictor. First, the use of a
large predictor is feasible in spite of additional delay because
predictor access can be initiated early in the pipeline, as soon as
the PC value is known. Second, not all mis-predictions have the
same performance penalty. For instance, assigning a narrow ALU
instruction to the wide cluster does not require re-execution in

another cluster and thus does not incur a significant loss.
Incorrectly assigning an instruction to the narrow cluster and then
re-executing it in the wide cluster is costly.

The loss of accuracy with size decrease is due to two main
reasons. First, aliasing increase in the tag-less predictor with size
decrease, in particular on I-cache misses. And second, the
predictor is updated after the write-back stage and thus during
several cycles it may not be accurate.

4.3 Asymmetric Cluster Performance
Let us now examine asymmetric cluster performance focusing on
IPC. In this section the steering mis-prediction penalty is set to 0
or 2 cycles, but the communication latency is always two (slow)
cycles. The narrow cluster runs at 2x the clock speed of a wide
cluster. Recall that instruction processing prior to the Issue stage
is common to all instructions.

Fig. 6 presents the asymmetric cluster IPC results relative to the
un-clustered architecture for prediction-based and dependence-
graph based steering. Symmetric clustering with dependence
based steering is shown for comparison. The 100% level
corresponds to the un-clustered architecture. Cluster mis-
prediction penalty is 0 cycles for both steering algorithms.

The results demonstrate that asymmetric clustering with a fast,
20b cluster (left bars) achieves a 3% IPC increase over un-
clustered organization and an 8% increase over the best symmetric
clustering (right bars) for integer programs. The increase is
slightly smaller for f.p. codes. The increase over the un-realizable
un-clustered architecture is quite remarkable and is due to the
steering algorithm and the use of the fast narrow cluster.

Results for individual benchmark vary, with the majority
demonstrating that asymmetric clustering performs better than the

95,5%

96,0%

96,5%

97,0%

97,5%

98,0%

98,5%

1k 2k 4k 8k 16k

Figure 5. Steering Predictor Accuracy vs Predictor size

80,0%

85,0%

90,0%

95,0%

100,0%

105,0%

110,0%

115,0%

am
mp

ap
plu ap

si art
cra

fty

eq
ua

ke

fac
ere

c
fm

a3
d

ga
lge

l
luc

as
mes

a
mgri

d

six
tra

ck
sw

im

wup
wise bz

ip2 eo
n

ga
p gc

c
gz

ip mcf

pa
rse

r

pe
rlb

mk
tw

olf

vo
rte

x vp
r

AV
ER

 2K

AV
ER

 FP

AV
ER

 IN
T

ASYMMETRIC CLUSTER DEPGRAPH

Figure 6. Relative IPC for asymmetric and symmetric clustered organizations

(0-cycle mis-prediction and 2-cycle communication latencies)

symmetric clustering. Many exceed the un-clustered architecture
performance (the 100%).

Figure 7 shows the IPC results for the mis-prediction penalty of 2
cycles. On average, the results are only slightly lower. As can be
seen, many benchmarks still exceed the performance of un-
clustered architecture because they execute most of the
instructions in the double-speed fast cluster, including the
majority of dependent instructions. This is something that does
not happen on any symmetric clustered architecture,

One can possibly further improve asymmetric cluster performance
by using criticality information. Fields et al [12] proposed
criticality-based scheduling and steering, The former was applied
to an un-clustered architecture and shown to improve its
performance. Both were applied to clustered architectures and
shown to exceed the performance of the un-clustered architecture,
which used “normal” scheduling. Note that when both
architectures used criticality-based scheduling the un-clustered
architecture still performed better in [12].

4.4 0-delay TLB
This section examines the effect of using the Addr register file as
a level-0 TLB. As each entry is added to this file, a copy of the
page attributes and the physical address translation is stored in a
parallel “TLB” structure. Let us assume here that the page size is
chosen to be 32KB.

The new TLB is indexed by the Addr register “pointer” and is
thus direct-mapped. As described above, the Addr register is
accessed in the Execute stage, thus the same is true for the new
TLB. As a result, the translation is available at the end of the
Execute stage making it a 0-delay TLB.

In case of a miss in the level-0 TLB, a standard level-1 TLB is
accessed. It can be larger than in the traditional architecture, if
level-0 TLB can translate the majority of accesses.

The effect of this level-0 TLB can be seen in Fig. 8 . It presents
results for 8-, 16- and 32-entry level-0 TLBs, showing the
percentage of Ld/St instructions translated by this TLB. The
results are presented for mis-prediction and communication
latencies of 2 cycles. They demonstrate that approximately 90% of
all translations are taken care by this new TLB.

5. RELATED WORK
Related work can be divided into several major groups: data-
based optimization, critical structures, clustered architectures, and
register file design and instruction scheduling.

Data based optimization. Brooks et al. [5] studied the data width
of operands in a 64-bit architecture. They found that over 50% of
operands could be executed with only 16 bits. As a result, it was
shown that a 45% to 60% reduction in functional unit power
consumption can be achieved. The power reduction estimate was
based on a study by Nagendra et al [23], which explained in detail
the impact of narrow width on power, area and timing.

80,0%

85,0%

90,0%

95,0%

100,0%

105,0%

110,0%

115,0%

am
mp

ap
plu ap

si art
cra

fty

eq
ua

ke

fac
ere

c
fm

a3
d

ga
lge

l
luc

as
mes

a
mgri

d

six
tra

ck
sw

im

wup
wise bz

ip2 eo
n

ga
p gc

c
gz

ip mcf

pa
rse

r

pe
rlb

mk
tw

olf

vo
rte

x vp
r

AV
ER

 2K

AV
ER

 FP

AV
ER

 IN
T

ASYMMETRIC CLUSTER DEPGRAPH

Figure 7. Relative IPC with mis-prediction and communication latency of 2 cycles.

Loh [21] proposed a Multi-Bit-Width micro-architecture, which
attempts to accurately predict instruction data-width. It uses the
width information to simultaneously execute multiple narrow-
width instructions on a 64b datapath, increasing the effective issue
width.

A more recent study by Gupta et al [39] showed that a small
group of frequent values is used repeatedly in programs. (It was
based on this idea that we originally developed a mechanism to
get "proximate" frequent values in addresses which lead to the
approach in [14])

The idea of fast and slow ALUs and schedulers was used in
Pentium 4 [15], but without clustering. ALU selection was based
on instruction type and only a very limited subset of instruction
types was allowed to use the fast ALU. The fast ALU performed a
32b add in a pipelined (staggered) fashion allowing a successor
instruction to be started as soon as the end of the first 16b
operation. The operation of the fast cluster described in this paper
is somewhat similar to the P4, except that it uses a 20b narrow
and a 64b wide ALU.

Critical structures. Palacharla [24] identified critical structures
present in processors and their effect on performance. Structures
such as the register file, bypasses, and instructions queues are
shown to be the main performance bottlenecks in processor
architecture. A number of more recent studies have examined each
of these in more detail. For instance, Sassone et al [28] studied
the impact of multi-cycle bypass networks. [25][17][7][13][33]
proposed ways to speedup instruction wakeup and scheduling or
reduce its energy consumption.

Register file design. There are a number of interesting studies of
register file design ([20][30][36][40][26][18][2][3][34][22]
[10][35]) aiming to reduce power or improve performance. The
main difference of the approach in [14] and, in part of the work
presented here, is the use of partial value locality, which allowed
the register file to be partitioned into three separate structures.
One of these structures only needed 8 registers and one was only
20b wide. This allowed a faster access and an energy reduction.

Clustered architectures. Palacharla et al [24] study the complexity
and delay on structures for processors based on future
technologies. They identify the main parts of processors that will
have problems and more impact over throughput. Horowitz et al.
[16] showed that design of present/future processors will have to
adapt to higher communication costs by further partitioning some

of the critical structures. And Aggarwal et al [1] studied the
effects of high clock rates on IPC.

Farkas et al proposed as a clustered architecture [11], which
divides functional units, registers and instruction windows
between two clusters. They used a static instruction scheduling to
handle dependencies. Rotenberg et al. proposed Trace processors
[27] which dynamically divide program instructions among
multiple processing elements, each with private functional units.
Sohi et al. proposed Multiscalar Processors [32] that divides a
program into tasks guided by software, with each task executed on
a small cluster (processing unit).

Baniasadi et al evaluated various queue clustering schemes for a
single threaded processor [4]. Their work focused on queue
assignment for “split” instruction queue. Balasubramonian et al
investigated the impact of clustering a single-threaded processor
into up to 16 clusters [3], and proposed a dynamic scheme for
selectively disabling clusters in order to reduce communication
costs. Aggarwal et al explored the use of different algorithms for
assigning instructions to clusters [1]. They investigated structures
most likely to affect critical timing path for wide issue processors.
The impact of dividing the traditional out-of-order queue into a
series of instruction FIFOs was presented.

Canal et al proposed several instruction queue clustering schemes
[9]. The Alpha 21264 [19] had two clusters of functional units
with replicated register files that were kept consistent by
hardware.

Wakeup/Scheduling Weiss and Smith [38] and Sato [29]
proposed a pointer-based instruction wakeup mechanism using a
pointer to successor instructions. The pointer-based mechanism
can be used for wakeup of dependent instructions in the fast
cluster. Fields et al [12] proposed criticality-based scheduling,
which they applied to clustered architectures to show that it can
mitigate the effect of inter-cluster communication.

6. CONCLUSIONS
This paper introduced the idea of asymmetric clustering and
presented an asymmetric clustered processor organization based
on operation and operand value type. A 20b narrow cluster
operating at twice the speed of a standard, 64b cluster was
presented and shown to execute, on average, over 80% of all
integer instructions. The result was a higher average performance
than that of an un-clustered organization as well as that of
previously proposed symmetric clusters using the best steering
algorithms.

Prediction-based steering was introduced and shown to achieve
up to 98% accuracy, depending on its size. The accuracy is not
equal to performance loss, however, as mis-prediction may simply
not produce a performance gain when an instruction is mistakenly
sent to the slow cluster.

Fast cluster organization with a single, double-speed ALU allows
the Instruction Queue and register file to have fewer ports and the
bypass network to be very short justifying a speed increase,
simplifying the hardware, and saving power. But other ways of
organizing asymmetric clusters are also possible and may be
advantageous under different conditions.

The last contribution of the paper is a 0-delay TLB implemented
via the Addr register file. 90% of all memory access instructions
are translated this way resulting in 1 to 2% additional average IPC

82,0%

84,0%

86,0%

88,0%

90,0%

92,0%

94,0%

96,0%

98,0%

100,0%

FP INT Spec 2K

Figure 8. % Load/Stores Translated by the Level-0 TLB

increase. This approach also saves power by bypassing a large
TLB. Last but not least, this allows a physically addressed cache
to be used given a 0-delay translation. Further research will
investigate ways to improve the coverage of the 0-delay TLB.

7. ACKNOWLEDGMENTS
This work has been supported by the Ministry of Education of
Spain under contract TIN-2004-07739-C02-01, the HiPEAC
European Network of Excellence, and the Barcelona
Supercomputing Center and in part by the National Science
Foundation under Grant No. NSF CCR-0311738.

8. REFERENCES
[1] A. Aggarwal and M. Franklin. “An empirical study of the scalability

aspects of instruction distribution algorithms for clustered
processors”. In ISPASS, Nov. 2001.

[2] S. Balakrishnan and G. Sohi. “Exploiting value locality in physical
register files”. Research report, University of Wisconsin, 2002

[3] R. Balasubramonian, S. Dwarkadas, and D. Albonesi. “Dynamically
managing the communication-parallelism trade-off in future
clustered processors”. In 30th ISCA, June 2003.

[4] A. Baniasadi and A. Moshovos. “Instruction distribution heuristics
for quad-cluster, dynamically-scheduled, superscalar processors”.
In 33rd International Symposium on Microarchitecture, Dec. 2000.

[5] D. Brooks and M. Martonosi. “Dynamically exploiting narrow
width operands to improve processor power and performance”. In
HPCA, pages 13–22, 1999.

[6] E. Borch, E. Tune, S. Manne and J. Emer . “Loose Loops Sink
Chips” .Proceedings of the Eighth HPCA 2002

[7] A. Buyoktusunoglu, S. E. Shuster. D. Brooks, P. Bose, P. W. Cook,
and D. H. Albonesi, “An Adaptive Issue Queue for Reduced Power
at High Performance”, Workshop on Power Aware Computer
Systems, in conjunction with ASPLOS-IX, November 2000.

[8] R. Canal, A. González, and J.E. Smith. “Very low energy pipelines
using significance compression”. In 33rd MICRO, 2000.

[9] R. Canal, J.-M. Parcerisa, and A. Gonzalez. “Dynamic cluster
assignment mechanisms”. In Proceedings of the 6 HPCA, Jan. 2000.

[10] J. L. Cruz, A. González, M. Valero, and N. P. Topham. “Multiple-
banked register file architectures”. In 27th ISCA, 2000.

[11] K. Farkas, P. Chow, N. Jouppi, and Z. Vranesic. “The multicluster
architecture: Reducing cycle time through partitioning”. In 30th
International Symposium on Microarchitecture,Dec. 1997.

[12] B. Fields and S. Rubin and Rastislav. “Focusing processor policies
via critical-path prediction”, Proceedings of the 28th annual
international symposium on Computer architecture, 2001

[13] D. Folegnani and A. González, “Energy Effective Issue Logic”,
Proceedings of 28th ISCA, 2001. Göteborg Sweden.

[14] R. González, A. Cristal, D. Ortega, A. Veidenbaum and M. Valero.
“A Content Aware Integer Register File Organisation”. In 31th
ISCA, June 2004

[15] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A. Kyker,
and P. Roussel, P., “The Microarchitecture of the Pentium 4
Processor” Intel Technology Journal Q1, 2001.

[16] M. Horowitz, R. Ho, and K. Mai. “The future of wires”. In
Seminconductor Research Corporation Workshop on Interconnects
for Systems on a Chip, May 1999.

[17] M. Huang, J. Renau and J. Torrellas, “Energy-Efficient Hybrid
Wakeup Logic”, Proceedings of ISLPED August 2002 Page(s): 196-
201, Monterrey California, USA.

[18] S. Jourdan, R. Ronen, M. Bekerman, B. Shomar, and A. Yoaz. “A
novel renaming scheme to exploit value temporal locality through
physical register reuse and unification”. In 31 MICRO, 1998

[19] R. Kessler. “The alpha 21264 microprocessor”. In IEEE
Micro,March/April 1999.

[20] M. H. Lipasti, B. R. Mestan2, and E. Gunadi1. “Physical Register
Inlining”. In 31th ISCA, June 2004.

[21] G. H. Loh. “Exploiting Data-Width Locality to Increase
Superscalar Execution Bandwidth”. In Proceedings 35th Intl.
Symposium on Microarchitecture, Pages: 395 – 405, 2002

[22] M. Moudgill, K. Pingali, and S. Vassiliadis. “Register renaming and
dynamic speculation: an alternative approach”. In 26th MICRO.

[23] Nagendra, M. Irwin., and R. Owens, “Area-time-power tradeoffs in
parallel adders”. IEEE Trans. Circ. Syst. 43, 10, 689-702. 1996

[24] S. Palacharla, N. P. Jouppi, and J. E. Smith. “Complexity effective
superscalar processors”. In 24th ISCA, June 1997.

[25] M. A. Ramírez, A. Cristal, A. V. Veidenbaum ,L. Villa, M. Valero.
“A Simple Low-Energy Instruction Wakeup Mechanism”, (ISHPC-
IV), Oct. 2003

[26] S. Rixner, W. Dally, B. Khailany, P. Mattson, U. Kapasi, and J.
Owens. “Register organization for media processing”. In 6th
HPCA, , Washington - Brussels - Tokyo, January 1999. IEEE.

[27] E. Rotenberg, Q. Jacobson, Y. Sazeides, and J. Smith. “Trace
processors”. In 30th MICRO, Dec. 1997.

[28] P. G. Sassone D. Scott Wills. “Multicycle Broadcast Bypass: Too
Readily Overlooked”. WCED ISCA 2004

[29] T. Sato et al, “Revisiting Direct Tag Search Algorithm on
Superscalar Processors”, Workshop on Complexity-Effective
Design (in conj. with ISCA), 2001.

[30] A. Seznec, E. Toullec, and O. Rochecouste. “Register write
specialization register read specialization: a path to complexity-
effective wide-issue superscalar processors”. In MICRO 2002.

[31] T. Sherwood, E. Perelman, and B. Calder. “Basic block distribution
analysis to find periodic behavior and simulation points in
applications”. In Proceedings of the Intl. Conference on Parallel
Architectures and Compilation Techniques pages 3–14, Sept. 2001

[32] G. Sohi, S. Breach, and T. Vijaykumar. “Multiscalar processors”.In
22nd Annual International Symposium on Computer Architecture,
June 1995.

[33] J. Stark and M. D. Brown and Y. N. Patt, “On pipelining dynamic
instruction scheduling logic”, International Symposium on
Microarchitecture, pp. 57-66, Dec. 2000.

[34] N. Sung Kim, T. Mudge. “Reducing Register Ports Using Delayed
Write-Back Queues And Operand Pre-Fetch”. In of 17th
Conference on Supercomputing. June 2003.

[35] J. H. Tseng, K. Asanovic. “Banked multiported register files for
high-frequency superscalar microprocessors”. In 30th intl.
symposium on Computer architecture, June 2003.

[36] J. Tseng and K. Asanovic. “Energy-efficient register access”. In
13th (SBCCI'00), September 2000.

[37] L. Villa, M. Zhang, and K. Asanovic. “Dynamic zero compression
for cache energy reduction”. In 33rd MICRO, 2000.

[38] S. Weiss, J. E. Smith, “Instruction Issue Logic for Pipelined
Supercomputers”, Proc.11th ISCA, pp.110-118, 1984.

[39] Y. Zhang, J. Yang, and R. Gupta. “Frequent value locality and
value centric data cache design”. In Proceedings of the 9th
ASPLOS, pages 150-159. ACM Press, 2000.

[40] V. Zyuban and P. Kogge. “The energy complexity of register files”.
In Intl. Symposium On Low Power Electronics And Design, 1998.

