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Abstract
Embedded platforms are resource-constrained systems in which
performance and memory requirements of executed code are of
critical importance. However, standard techniques such as full
just-in-time(JIT) compilation and/or adaptive optimization (AO)
may not be appropriate for this type of systems due to memory
and compilation overheads.

The research presented in this paper proposes a technique that
combines some of the main benefits of JIT compilation, super-
operators(SOs) and profile-guided optimization, in order to de-
liver a lightweight Java bytecode compilation system, targeted for
resource-constrained environments, that achieves runtime per-
formance similar to that of state-of-the-art JIT/AO systems,
while having a minimal impact on runtime memory consump-
tion. The key ideas are to use profiler-selected, extended bytecode
basic blocks as superoperators (new bytecode instructions) and
to perform few, but very targeted, JIT/AO-like optimizations at
compile time only on the superoperators’ bytecode, as directed by
compilation “hints” encoded as annotations. As such, our system
achieves competitive performance to a JIT/AO system, but with
a much lower impact on runtime memory consumption. More-
over, it is shown that our proposed system can further improve
program performance by selectively inlining method calls embed-
ded in the chosen superoperators, as directed by runtime profiling
data and with minimal impact on classfile size.

For experimental evaluation, we developed three Virtual Ma-

chines(VMs) that employ the ideas presented above. The cus-

tomized VMs are first compared (w.r.t. runtime performance) to

a simple, fast-to-develop VM (baseline) and then to a VM that

employs JIT/AO. Our best-performing system attains speedups

ranging from a factor of 1.52 to a factor of 3.07, w.r.t. to the

baseline VM. When compared to a state-of-the-art JIT/AO VM,

our proposed system performs better for three of the benchmarks

and worse by less than a factor of 2 for three others. But our

SO-extended VM outperforms the JIT/AO system by a factor of

16, on average, w.r.t. runtime memory consumption.
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1. INTRODUCTION
Embedded systems and related devices have become

ubiquitous in today’s world and most of them run Java-
based applications. Java Virtual Machines (JVMs) provide
an easy way to distribute applications in an architecture in-
dependent format: the bytecode format ([1]). However, this
comes at the price of accepting the underlying virtual stack-
based architecture of the JVM which, as opposed to register-
based architectures commonly found in real processors, adds
inherent overhead during the execution of applications ([2]).
At the same time, the performance of the executed code is
of critical importance and is often the limiting factor in both
the capabilities of the system and user perception.

In order to alleviate the inefficiencies of the stack-based
architecture, many research projects have focused on de-
veloping high-end optimizations, such as advanced garbage
collection schemes or adaptive optimizations that require
constant monitoring. However, this type of optimizations
may not be suitable for interpreters or compilers running
on embedded platforms since these are resource-constrained
environments and the use of high-end optimizations would
considerably increase resource requirements.

An alternative solution to these optimizations is the use of
interpreters with superoperators ([3], [4], [5]), where a com-
monly executed sequence of bytecode instructions is con-
verted into a new bytecode instruction called superopera-
tor. One benefit of this technique is the reduction in the
number of bytecode fetches and decodes. Another advan-
tage is that by considering a group of bytecode instructions
as a new single bytecode instruction, more optimization pos-
sibilities arise during the assembly code generation for the
new bytecode instruction.

However, in order for the superoperators to improve the
execution of an application, they have to be frequently ex-
ecuted pieces of code. Also, a balance between the genera-
tion and use of superoperators against possible space, time
or power constraints needs to be achieved. For instance, too
many superoperators could increase the size of the JVM be-
yond the current memory constraints. Superoperators that
are not carefully chosen (w.r.t. execution frequency) may in



turn have no effect or even decrease the performance of an
application.

This paper proposes a lightweight, profile-guided bytecode
compilation system that employs superoperators and targets
resource-constrained environments. In order to make our
system a viable alternative to JIT compilers and adaptive
optimization systems for resource-constrained environments,
w.r.t. runtime performance and memory consumption, we
use profile-selected, extended basic blocks (see section 3.1) as
superoperators that are optimized by applying basic block-
level optimizations similar to standard JIT optimizations
(register allocation, common subexpression elimination and
copy propagation).

In order to select a most profitable set of superoperators,
we developed a fast profiling method based on edge counter
information that indicates which extended basic blocks are
important in each application (see section 3.3). The infor-
mation necessary to apply the profile-guided optimizations
described above would be stored as annotations and pro-
cessed by our system at compile time. These compilation
“hints”would enable the lightweight, JIT-like, runtime com-
piler in our system to use a most profitable set of superopera-
tors as new bytecode instructions and to generate optimized
assembly code corresponding to these superoperators.

We want our SO-extended compilation system to deliver
competitive performance w.r.t. state-of-the-art VMs. As
such, we decided to perform selective, profile-guided inlining
of method calls in order to further improve the speedups
achieved by the SO-extended compilation system, while hav-
ing a minimal impact on memory consumption.

In order to evaluate the benefits of superoperators, we
have developed three customized VMs that incrementally
employ optimized superoperators:

■ PJ-extended VM, which dynamically detects (in soft-
ware) and optimally executes all PicoJava folding pat-
terns present in a Java application. (see section 4.2 for
more details).

■ SO-extended VM, which employs optimized, profile-
selected, extended basic blocks as superoperators.

■ SOPJ-extended VM, which combines the benefits of
employing optimized, application-customized supero-
perators and executing all “general-purpose” PicoJava
folding patterns.

First, we evaluated the speedups attained by our three
customized VMs w.r.t. an interpreter-like, fast-to-develop
VM configuration (denoted as baseline VM), on a set of
six “embedded-type” Java applications. However, we want
our SO-extended compilation system to deliver competitive
performance w.r.t. state-of-the-art VMs. As such, we then
compared the performance yielded by our best performing
compilation system (the SOPJ-extended VM) to that of a
VM that employs an optimizing compiler, paired with an
adaptive optimization system (denoted as AOS VM in the
rest of the paper).

Among the optimizations performed in the AOS configu-
ration is adaptive inlining, which we believe to contribute
considerably to the speedups achieved by the AOS VM.
Thus, in order to improve the selected SOs and consequently
boost the performance attained by our SOPJ-extended VM,
we applied selective, profile-guided inlining of method calls
embedded in the chosen superoperators for each application

in the benchmark suite and evaluated the performance re-
sults (section 5.3).

Since the target platforms of our proposed compilation
system are resource-constrained environments, we also eval-
uated the runtime memory consumption of our SO-extended
compilation system vs. the amount of runtime memory
needed by the AOS VM.

The rest of the paper is organized as follows: in Section
2 we discuss related work on superoperators and improv-
ing execution performance of Java applications. Section 3
presents our profile-guided, SO-extended approach and de-
scribes the matters involved in choosing a most profitable
set of superoperators for an application. Section 4 presents
in more detail the different VM configurations that we have
developed (listed above). In Section 5 we discuss the exper-
imental setup for our tests and the performance results we
have obtained. Section 6 concludes and presents directions
for future work.

2. RELATED WORK
The Java language implements the write-once-run-anywhere

methodology. Once an application is developed, it can be
distributed to remote sites where a special runtime environ-
ment takes care of tasks like code translation or optimization
that are necessary for the proper execution of the applica-
tion on the target platform. Under these circumstances code
translation is performed either by an interpreter or by a JIT
compiler.

Both approaches have advantages and shortcomings: an
interpreter does a simple instruction-by-instruction program
translation, it is relatively easy to implement and it does
not require a lot of memory, while a JIT compiler is a much
more complex translator that compiles a whole method on
its first encounter prior to execution. Consequently inter-
preters have low execution performance when compared to
JIT compilers and can run a Java program 10 to 20 times
slower. Still, interpreters have a few considerable advan-
tages over JIT compilers in the context of embedded sys-
tems. First, they require less memory space when compared
to a JIT compiler, which makes them an attractive choice
due to present memory constraints. Second, they are easier
to port to new architectures as opposed to JIT compilers,
feature that contributes positively to the reduction of the
time-to-market metric that is so important in the develop-
ment of embedded devices.
Still, interpreters run code much slower than JIT compilers,
giving rise to the need of adding optimizations to Java in-
terpreters. One possibility is to use superoperators to speed
up the execution of applications.

This paper presents a profile-guided, SO-based, simpli-
fied bytecode compilation system. It is built upon an un-
optimized VM with a fast-to-develop compiler that simply
generates unoptimized native code, thus resembling an in-
terpreter.

Superoperators (SOs) were first introduced by Proebsting
in [3] as an optimization strategy for a C interpreter. These
specialized instructions were chosen from commonly occur-
ring patterns in the tree-like intermediate representation
generated by the lcc compiler. In our work, the superopera-
tors are optimized bytecode basic blocks, prioritized based
on execution frequency. His C interpreter, customized with
SOs, performed 2 to 3 times faster than the initial switch-
based interpreter on his benchmarks. He also conjectured



that up to 20 SOs should be enough to ensure the maximum
performance improvement from this technique, which has
also been experimentally supported in [4]. We tried to keep
the number of the superoperators implemented low (ranging
between 1 and 12 for different benchmarks) to preserve the
simplicity and ease of maintainability while maximizing the
executed code coverage.

Stephenson & Holst in [6], [7] selected and implemented
multicodes based on execution traces collected during exe-
cution of programs. The patterns to be implemented are
chosen based on a similar criterion to ours (frequency of oc-
currence multiplied by pattern length). A maximum of 48
multicodes are implemented for the Java Kaffe Interpreter
with multicodes of length up to 20 tailored for each appli-
cation, resulting in an execution time improvement of up to
24%. The maximum length for our superoperators is 550
(Blowfish benchmark), thus allowing considerable opportu-
nities for optimizations.

In [8] Power & O’Donoghue evaluate the benefits of select-
ing and implementing a generic set of superinstructions on
the CaffeineMark benchmark. They search for valuable pat-
terns contained in basic blocks across all the applications in
the benchmark as opposed to our superoperators (that are
basic blocks) specific to each application. Also the code gen-
erated for each selected pattern is an unoptimized concate-
nation of the code generated separately for each instruction
in the superinstruction. The implementation scheme of the
superinstructions is similar to ours.

In [9] the authors present the design and implementation
of a system of superinstructions for the Java interpreter in
Sun’s CVM. In selecting the valuable patterns, they compare
both static and dynamic profiling approaches. They also
optimize the stack code and the stack pointer updates as we
do with our superoperators. They do not prioritize patterns
and add up to 1024 superinstructions to the interpreter.

In [4] the author investigates different approaches to dy-
namically compiling or interpreting Java bytecode. The
commonalities between [4] and our approach are: the use
of superoperators; we generate similar optimizing informa-
tion (register allocation and superoperators’ boundaries); we
also investigate the benefits of have the VM execute Pico-
Java patterns as superoperators. The differences are: we use
extended bytecode basic blocks for superoperators instead of
classic bytecode basic blocks; we execute all PicoJava fold-
ing patterns present in an application instead of selecting a
few valuable ones as superoperators; we use an edge counter-
based profiling method to select the most profitable set of
superoperators ; we want our superoperator-based compila-
tion system to be developed only on one VM infrastructure,
unlike in [4] where a Java-to-bytecode compiler is used to
generate optimization information and a different bytecode-
to-native code interpreter is used to take advantage of the
superoperators.

One issue that is discussed in [10] and [11] is the quicken-
ing optimization in the context of superinstructions, which
refers to the process of rewriting slow instructions (i.e. that
refer to the constant pool) into equivalent quick instructions
upon their first execution. In our proposed compilation sys-
tem, since the profiler we used provides information ahead
of time about the slow instructions that are included in the
selected superoperators, we are able to use the equivalent
quick instructions when generating the (optimized) assem-
bly code corresponding to the superoperators.

In [12] the authors present a continuous path and edge
profiling scheme, which is considerably more complex than
our profiling method since it uses hybrid instrumentation
and sampling approach. Moreover, it is implemented in the
optimizing compiler of the VM we used, while our profiling
method is integrated in VM’s baseline compiler that our
system is built upon.

The compilation system proposed in this paper employs
classfile annotations to encode the necessary superoperator
information. Annotations have been previously used to con-
vey optimization information such as null pointer check elim-
ination ([13]) or superoperator boundaries ([4]).

An alternative to virtual execution of Java applications
performed by interpreters or JIT compilers is a Java proces-
sor that implements the JVM in silicon and performs direct
execution of Java bytecode, thus delivering better perfor-
mance of up to 20 times faster than a general-purpose pro-
cessor employing a JIT compiler or an interpreter. Exam-
ples of such processors are the PicoJava I and II processors
developed by Sun ([14], [15]).

3. PROFILE-GUIDED COMPILATION
The compilation system presented in this paper proposes

the following approach:

■ To employ superoperators as new bytecode instruc-
tions, as well as selective, profile-guided method in-
lining, in order to achieve competitive level of perfor-
mance w.r.t. a full JIT/AO compilation system.

■ To select superoperators, based on runtime profiling
information, from extended bytecode basic blocks (see
sec. 3.1) of the current application.

■ To apply few, but very targeted, superoperator-level
optimizations in the process of generating assembly
code corresponding to the selected superoperators only.

We believe that the profile-guided, SO-extended com-
pilation system described in this paper is a better alterna-
tive to a full JIT compilation and/or adaptive optimization
approach for a resource-constrained system. This claim is
supported by the results obtained, with and without profile-
guided optimization(PGO), posted on the SPEC website
([16])1.

In our approach, the following components are needed:

■ profiling method to detect a most profitable set of su-
peroperators. We developed a new profiling method,
based on dynamic edge-counter information. It is sim-
pler and has lower overhead that other existing profil-
ing methods ([12]).

■ annotating module to process the profiling information
obtained from the previous step and to add compila-
tion “hints” (in the form of superoperator boundaries
annotations and register allocation annotations) to the
application’s classfile.

■ modifications to the VM to enable it to detect the an-
notations accompanying the bytecode of the applica-
tion at classfile loading time, process them and gen-
erate optimized assembly code for the superoperators
accordingly.

1
e.g. for the Sun Fire X4200 system and for the SPEC CPU2006

benchmarks, the speedup ratio without PGO is 12.2, compared to a
speedup ratio of 14.7 with PGO (the ratios are computed as a geo-
metric mean across the CPU2006 suite)



Thus, our approach works as follows: first, the application
is run to have the edge-counter profiler generate the profil-
ing information. Next, the annotating module processes the
profiling information and adds compilation “hints” to the
classfile. On the next run (on the resource-constrained tar-
get platform), the annotations added to the classfile in the
previous step are read and processed and the application
runs with its specific superoperators enabled.

The advantages of our scheme are: reusability of profil-
ing information, since it is stored in the form of annotations
in the classfile, and improved runtime performance, with
minimal impact on runtime memory consumption. The dis-
advantage is that, at least one time, the application needs
to be run twice, in order to generate the profile information
annotations. We believe that this approach is well suited for
embedded systems, due to their resource-constrained char-
acteristics.

3.1 Selecting superoperators
Our approach proposes to choose the superoperators from

(what we called)extended bytecode basic blocks of the appli-
cation to be executed, as directed by the profiling method
described in section 3.3. A standard bytecode basic block
is defined as a sequence of consecutive bytecode instructions
that is terminated by a conditional branch, unconditional
branch, method call or a branch target. For extended byte-
code basic blocks, method calls do not represent a basic
block boundary. The reasons why we decided to use ex-
tended bytecode basic blocks instead of classic basic blocks
are:

[1] Basic blocks in classical form have proven to be promis-
ing as superoperators ([4], [5]); however, the sizes of
classic basic blocks are quite small for most embedded
applications. By using extended basic blocks as super-
operators, the number of bytecode fetches and decodes
decreases much more than for classic basic blocks, as
does the dispatch overhead.

[2] Since extended basic blocks are considerably larger
than classic basic blocks, code optimization opportu-
nities increase considerably during the generation of
assembly code corresponding to the new bytecode in-
struction (e.g., values that were kept in certain regis-
ters before a method call in an extended basic block
can be reused after the call without having to load
them again).

[3] Extended bytecode basic blocks are amenable to in-
lining method calls located within superoperators de-
noted as very profitable by our edge counter-based
profiling method. In section 5.3 we discuss method
inlining in more detail and show the improvements
in execution performance due to inlining method calls
present in the selected superoperators.

In the rest of the paper we will refer to extended bytecode
basic blocks simply as basic blocks.

3.2 Annotations’ processing
One of the components needed by our system is the anno-

tating module that processes profiling information provided
by the edge-counter profiler and adds compilation“hints” (in
the form of superoperator boundaries annotations and reg-
ister allocation annotations) to the application’s classfile.

This module can be incorporated in our JIT-like compiler
or placed in the VM. The annotations generated by it and
added to the application’s classfile (see example in Fig. 1)
will direct the performing of the optimizations presented in
sections 3.2.1 and 3.2.2, as well as indicate the boundaries of
superoperators. The impact of annotations on application’s
size is minimal: for the benchmark suite presented in section
5.2, we determined an upper bound on application’s size in-
crease of 2%. Note that the aforementioned annotations will
be ignored by any annotation-unaware JVM.

In order to implement the superoperators selected for a
particular application, we need new routines that gener-
ate optimized assembly code (that is more register-oriented
rather than stack-oriented) for each superoperator. The
assembly code-emitting methods (that we have developed)
have been added to the platform-dependent compiler of the
VM. When generating the corresponding assembly code,
the following optimizations are applied at the superoperator
level (as directed by annotations):

■ register allocation (applied only to superoperators’ byte-
code).

■ removal of instructions rendered unnecessary by SO-
level register allocation and of stack pointer updates.

3.2.1 Register allocation at superoperator level

This optimization (similar to the approach in [4]) is per-
formed at the superoperator level (i.e. only on the supero-
perators’ bytecode), in order to generate optimized assembly
code corresponding to the chosen set of SOs for an applica-
tion. The key idea behind this optimization is: instead of
using the same temporary register(s) to load values into (as
in the original scheme of VM compiler), we are using a few
general-purpose registers (denoted in what follows as R1,
R2, ...) to hold values loaded from local variables or re-
sults of bytecode operations, thus being able to reuse them
in subsequent operations (similar to copy propagation and
common subexpression elimination). To illustrate the reg-
ister allocation discussed above, consider the bytecode frag-
ment in Figure 1.

39 iload 1 . . .−→ R1
40 iload 6 . . .−→ R6
42 iadd R1, R6 −→ R8
43 istore 8 R8 −→ . . .
45 aload 0 . . .−→ R0
46 getfield #6 R0 −→ R2
49 iload 6 //reuse R6
51 iaload R2, R6 −→ R9
52 istore 9 R9 −→ . . .
54 iload 8 //reuse R8
56 sipush 32768 . . .−→ R1
59 if icmpne 76 (+17) R8, R1 −→ . . .

Figure 1: Annotations example

The annotations on the right guide the register allocation
process. The registers on the left-hand side of an annotation
represent the ”sources” of the respective instruction, while
the register on the right-hand side of the annotation rep-
resents the register that will hold the result, if any. “ . . . ”
means that there is no “source” or “target”, respectively.



3.2.2 Optimizations following register allocation at
superoperator level

As a result of the register allocation discussed in section
3.2.1, we are able to perform the following optimizations at
superoperator level:

■ Removal of most stack access operations and of stack
pointer updates.

■ Removal of other instructions that have become un-
necessary (similar to copy propagation and common
subexpression elimination).

Opcode Assembly code - normal Assembly code - SO

iload 1 loadIntLocal(T0, 1) loadIntLocal(R1, 1)

pushInt(T0) pushInt(R1)←−
iload 6 loadIntLocal(T0, 6) loadIntLocal(R6, 6)

pushInt(T0) pushInt(R6)←−
iadd popInt(T0) popInt(R6)←−

popInt(T1) popInt(R1)←−
asm.ADD(T2, T1, T0) asm.ADD(R8, R1, R6)

pushInt(T2) pushInt(R8)←−
istore 8 popInt(T0) popInt(R8)←−

storeIntLocal(T0, 8) storeIntLocal(R8, 8)

Table 1: Comparison of assembly code generated in normal

mode and in superoperator mode; removed instructions are

marked with ”←−“.

Let us show an example for 1). In Fig. 1 consider in-
structions from 39 to 43. Because we are using different
registers to hold values loaded from local variables by in-
structions 39 and 40, we do not need to ”push” the values
on the virtual stack anymore (as it was done initially , when
the same temporary register T0 was used to load all local
variables or constants). Those values will be present in R1
and R6 respectively. Since instruction 42 will use R1 and
R6 to compute the sum of the values kept in them, there
is no need for the initial ”popping” from the virtual stack
anymore. The result of instruction 42 will be present in R8
after execution, rendering the initial ”popping” from the vir-
tual stack of instruction 43 unnecessary. Table 1 illustrates
the example.

As can be seen from Table 1, all the pushes and pops have
been eliminated due to our register allocation at the SO level
(deleted instructions are marked with ”←−“).
However, sometimes even though we can eliminate a virtual
stack push or pop (e.g. a load from a local variable that has
been performed before and whose value has not changed
since), the stack pointer still needs to be adjusted in order
to keep the state of the virtual stack correct.

Another situation is when we cannot eliminate all virtual
stack pushes and pops. If for example in the bytecode block
analyzed before (see Table 1), the bytecode fragment would
start with instruction 40 instead of 39, then in the assembly
routines generated for instruction 42 we could not remove
the second pop since we need to retrieve the second operand
from the virtual stack.

So far we have seen that the register allocation at the
superoperator level can eliminate virtual stack pushes and
pops that previously were necessary in generating assembly
code for bytecode instructions. Now we will see that it can

also eliminate entire bytecode instructions. Take for exam-
ple the bytecode fragment in Fig. 1. The value present in
local variable 6 is loaded 2 times throughout the fragment
by instructions 40 and 49. Between these instructions the
value of local variable 6 does not change, so instead of per-
forming a second unnecessary load we can instead just reuse
the value present in R6 in instruction 51, thus eliminating
instruction 49 completely. The same idea is applied in elim-
inating instruction 54 since the value of local variable 8 in
still in register R8 as the result of instruction 42.

To summarize, by using register allocation at the super-
operator level, we have generated optimized assembly code
corresponding to the set of superoperators selected for each
application.

3.3 Profiling method
In order to find out which basic blocks would be most prof-

itable as superoperators, we have developed an edge counter-
based profiling method that tells us which basic blocks are
the most important in an application. The measure that we
have used in determining importance is the code coverage of
a basic block, expressed as the ratio of the product between
the execution frequency of a basic block and the length of
that basic block (i.e the number of bytecodes contained in
the basic block), to the total executed code.

The profiling method is based on edge counter informa-
tion. For each conditional branch, the number of times a
conditional branch has been taken (denoted as t) and the
number of times it has not been taken (denoted as t’) are
recorded. Based on these numbers available for each con-
ditional branch, our profiling algorithm that computes the
local execution frequency of each basic block (w.r.t. the
method it belongs to) is shown below.

1 Algorithm 1

- initialize frequency of all basic blocks to 0

- for the current method being examined

- for each branch in the method

- update frequency of block that ends in current branch by
adding t + t’

- if target block does not end in conditional branch, then
update frequency of target block by adding t

- if fall-through block does not end in conditional branch,
then update frequency of fall-through block by adding t’

- endfor

- for each basic block in the method

- if current block does not end in a conditional branch and
this block’s closest predecessor does not end in a conditional
branch either, then update the frequency of the current
block by adding the frequency of that predecessor

- endfor

- endfor

After the local execution frequencies of the basic blocks
have been computed, we determine the global execution fre-
quency of each unique basic block (w.r.t. the entire applica-
tion). This is done by keeping a list of all the unique basic
blocks in the application and their corresponding frequen-
cies. At first, the list is empty. We process each method
that was executed: if a basic block was executed and is not
in the list, then we add it and its corresponding frequency
to the list. Otherwise, if the basic block was executed and



is already in the list (meaning that it was also executed in
another method), then only add the frequency of the basic
block that is being examined to the frequency of the copy
block already present in the list.

Based on the global execution frequencies of the basic
blocks, we compute the code coverage of each basic block
(as defined above). Next, we choose the superoperators from
the top 20 basic blocks, sorted in descending order by code
coverage. In the selection process we take into account, for
each basic block, its potential for performance improvement,
as well as the amount of VM modifications necessary to im-
plement it as a superoperator. The selected superoperators
are different for each application in the benchmark suite.

Also, to make sure that the information obtained using our
profiling method is correct, we have profiled all the applica-
tions in our benchmark suite using the JProfiler tool ([17])
and found that the results obtained using JProfiler concur
with the information we have obtained using our profiling
method.

4. DIFFERENT APPROACHES TO
SUPEROPERATOR SELECTION

In order to test and evaluate the performance impact that
our superoperators have on the benchmark suite, we have in-
vestigated three different approaches by modifying the base-
line VM accordingly:

■ SO-extended configuration, in which we have added
profile-selected, extended bytecode basic blocks as su-
peroperators (new bytecode instructions).

■ PJ-extended configuration, in which we have en-
abled the optimal execution of all PicoJava folding pat-
terns detected in each benchmark (for more details see
section 4.2).

■ SOPJ-extended configuration, in which we have
combined the benefits of having profile-selected, opti-
mized superoperators with that of optimally executing
all PicoJava folding patterns present outside these su-
peroperators in the application.

The rest of this section describes the details for each ap-
proach.

4.1 SO-extended VM configuration
In this configuration we have modified the initial (unopti-

mized) VM baseline configuration by adding extended byte-
code basic blocks as superoperators. Given that our im-
plementation of superoperators is based on the JikesRVM
infrastructure, some of the following descriptions may show
some dependence on the underlying VM platform. However,
we believe that the approach described is general and can be
applied to any JVM. The following modifications have been
made:

■ We have added new bytecode instructions corre-
sponding to the superoperators chosen for an applica-
tion.

■ Based on the current method being examined by the
compiler, we insert the new bytecode instruction cor-
responding to the superoperator present in the current
method (if any) in the structure that contains a copy
of the bytecode stream.

■ In the fetch-decode switch statement present in the
compiler we have added <case> branches for each su-
peroperator. These new branches control the opti-
mized assembly code generation for each superopera-
tor. Fig. 2(a) shows an excerpt from the switch state-
ment.

■ Each new case branch calls the emit_<application_

name>_<SO_id>(. . .) method corresponding to super-
operator <id> of the application currently being ex-
ecuted. This method will generate the optimized as-
sembly code (as described in section 3.2) corresponding
to the bytecode instructions comprised in superopera-
tor <id>. Upon returning from the “emit”method, the
bytecode stream“cursor”is set to point to the bytecode
instruction following the end of the superoperator.

■ We have placed the emit_<application_name>_

<SO_id>(. . .) assembly code-generating methods in the
platform-dependent (in our case PowerPC) compiler.
An example of such a method is shown in Fig. 2(b).

while (bcodes.hasMoreBytecodes()) {
. . .

int code = bcodes.nextInstruction();

switch (code) {
. . .

case JBC iload: {
int index = bcodes.getLocalNumber();

if (shouldPrint) asm.noteBytecode(biStart, “iload”,

index);

emit iload(index);

break;

}
. . .

case JBC so1 :{
if (shouldPrint) asm.noteBytecode(biStart, “so1”);

emit compress so1 (field16, field38, field22, field213);

bcodes.reset (178);

break;

}
. . .

}
}

(a) Switch statement excerpt

protected void emit compress so3() {
//iload 2 . . .−→ R2

loadIntLocal(R2, 2);

//iload 5 . . .−→ R5

loadIntLocal(R5, 5);

//isub R2, R5 −→ R1

asm.emitSUBFC (R1, R5, R2);

//dup −→ use R1−→ remove instruction

//istore 2

storeIntLocal (R1, 2);

//ifge 153 R1 −→ . . .

asm.emitADDICr (R1, R1, 0);

genCondBranch (GE, 153);

}
(b) emit <application name> <SO id>(. . . )

routine example

Figure 2: Superoperator code examples.



With the modifications described above, the compiler is able
to recognize the superoperators as new bytecode instructions
and generate the corresponding optimized assembly code by
using the emit_<application_name>_<SO_id>(. . .) methods
that we have added.

4.2 PJ-extended VM configuration
Since PicoJava folding patterns can be considered very

small superoperators, we initially developed this configura-
tion with the purpose of comparing its results to the effects
of the SO-extended VM configuration on benchmarks’ exe-
cution performance. In this section we will present the mod-
ifications we have made to the original VM configuration in
order to detect and optimally execute all the PicoJava fold-
ing patterns present in the Java applications.

4.2.1 PicoJava folding patterns description

Due to the stack architecture employed by Java bytecodes,
there is inherent redundancy that impacts the execution per-
formance of the JVM. One approach to alleviate the negative
effects is instruction folding, which turns a sequence of stack-
based instructions that have true data dependency into one
register-based instruction. Bytecode instruction folding was
implemented along bytecode hardware translation in the Pi-
coJava II core ([15]).

During our profiling of the benchmark suite we have no-
ticed that some bytecode instructions that were initially
classified as non-foldable appeared very often. Since we are
implementing PicoJava folding patterns in software, we de-
cided to change the folding types of getfield, getstatic, put-
field and putstatic from non-foldable (NF) to one of the other
4 foldable types (similar changes in folding types of byte-
codes have been done in [4]).
Based on the bytecode folding type classification, groups of
bytecodes can be determined as belonging to one of the fol-
lowing patterns:

1.LV, LV, OP, MEM e.g. iload_1 iload_2 iadd istore 4

2.LV, LV, OP e.g. iconst_1 iload 6 imul

3.LV, LV, BG2 e.g. iconst_1 iload_1 if_icmplt

4.LV, OP, MEM e.g. iload_2 iadd istore 3

5.LV, BG2 e.g. iload_1 if_icmpne

6.LV, BG1 e.g. iload_0 ifgt

7.LV, OP e.g. iload_1 isub

8.LV, MEM e.g. iload 4 istore 5

9.OP, MEM e.g. iadd istore 3

In order to detect and execute all the PicoJava folding pat-
terns, we have added pattern-detection code to the platform-
independent baseline compiler, more precisely in the begin-
ning of the fetch-decode while loop shown in Fig. 2(a), before
the switch statement. New emit_PicoJava _pattern_<X>(. . . )
methods that generate optimized assembly code for each one
of the 9 patterns (upon pattern detection) have been also
added to the compiler.

4.3 SOPJ-extended VM configuration
After exploring the previous two approaches, an interest-

ing question that arises naturally is: what would the impact
on execution performance be if we were to combine the two
configurations?
Since we have classified the new bytecode instructions added
for superoperators as being non-foldable(NF) instructions,

there would be no runtime conflict between superoperators
and PicoJava folding patterns if we were to merge the two
approaches presented above.

Also, as we will see in the next section, by developing the
SOPJ-extended configuration we have combined the benefits
of having superoperators tailored on the needs of each appli-
cation with the advantages of executing all“general-purpose”
PicoJava folding patterns present in every application in the
benchmark suite.

5. PERFORMANCE EVALUATION

5.1 JikesRVM overview
In our performance evaluation we have used the Jikes Re-

search Virtual Machine (JikesRVM)([18]).
JikesRVM is a research platform where new bytecode com-
pilation and execution ideas can be explored and tested. It
makes for an attractive choice because it is completely im-
plemented in Java and is very well modularized. JikesRVM
provides two compilers: the baseline compiler, which simply
translates bytecodes to machine code, mimicking the virtual
stack behavior of the VM, and an optimizing compiler that
can be used in their JIT compilation system, paired with
adaptive optimization.

5.2 Performance evaluation
First, we have measured the performance of the three

different approaches presented in section 4, relative to the
performance achieved by the JikesRVM baseline, fast-to-
develop, compiler in the “production” configuration and in
non-adaptive mode. We used the processor cycles metric,
which denotes the number of processor cycles it takes for an
application to execute.
The set of “embedded-type” benchmarks used in our perfor-
mance evaluation, together with a brief description for each
one, is as follows:

[1] SpecJVM98. 201 compress: Modified Lempel-Ziv method
for code compression

[2] Blowfish: encrypts a text file using symmetric block
cipher with a variable-length key

[3] PNG: extracts properties of a PNG image (e.g. width,
depth) using the sample program PropertiesExample

.java contained in the sixlegs.com.png package([19]).

[4] GSM: Decompresses GSM encoded files into PCM au-
dio files

[5] DES.encrypt: DES-based encryption of a text file us-
ing the bouncycastle.crypto package. Encrypts a
text file using the DESExample.java encryption/
decryption sample program in the BouncyCastle Crypto
package([20]).

[6] DES.decrypt: DES-based decryption of a text file using
the bouncycastle.crypto package. Decrypts a text
file using the DESExample.java encryption/decryption
sample program in the BouncyCastle Crypto pack-
age([20]).

We have run our experiments on a 300 MHz PowerPC 750
processor with 384 MB of RAM. One of the reasons why we
chose this platform to conduct our performance evaluation is
that it provides hardware performance counters. The oper-
ating system is Ubuntu Linux 5.10 for Macintosh. We have



Figure 3: Speedups achieved by the three developed VM

configurations over the unoptimized VM configuration

added performance counter support by modifying the 2.6.12
Linux kernel in order to include the perfctr library([21]).
The JikesRVM version that we have used is 2.3.3, “produc-
tion”configuration, cross-built using a Linux/i386 platform,
with added support for accessing the hardware performance
counters through the perfctr library. We have introduced
the specific perfctr support for the PowerPC750 processor
to JikesRVM.

We first compare our performance results relative to the
performance of the JikesRVM baseline compiler with no re-
compilation enabled (we called it“baseline”or“unoptimized”
configuration). Fig. 3 shows the speedups of each of the PJ-
extended, SO-extended and SOPJ-extended configurations
over the baseline configuration. As can be seen in Fig. 3,
the PJ-extended configuration yields speedups that range
between a factor of 1.23 and a factor of 1.38, with an aver-
age of 1.33. We were expecting performance improvements
in this range since the code coverage provided by the Pico-
Java patterns executed is small for all applications in the
benchmark suite.

Figure 3 shows that the speedups for the SO-extended
configuration range from 1.41 to 2.94, with an average of
1.79. As can be observed in Fig. 3, Blowfish and DES.decrypt

are the top two benchmarks in terms of speedup. Table 2
lists the number of superoperators used by each application
as new bytecode instructions, as well as the minimum size
and maximum size of the superoperators (measured as num-
ber of bytecodes contained in a superoperator). As can be

No of SOs Min. size of SOs Max. size of SOs

201 compress 9 4 30

Blowfish 1 550 550

PNG 9 5 41

GSM 12 3 27

DES.encrypt 1 214 214

DES.decrypt 1 214 214

Table 2: Superoperators’ characteristics

seen in Table 2, very few superoperators are being added
to the applications: three of the benchmarks use only one
superoperator, two of the applications have a set of 9 su-

peroperators each, while the GSM benchmark has the largest
number of superoperators, 12. The sizes of the superopera-
tors vary considerably. The benchmarks with a larger set
of superoperators have modestly-sized SOs (e.g. PNG, GSM),
while the applications with a small number of superopera-
tors have very large sizes (e.g. DES.encrypt, Blowfish).
Overall, the size of the superoperators ranges from 3 byte-
codes to 550 bytecodes.

Let us further analyze the speedups of the SO-extended
configuration. From Fig. 3 we see that Blowfish and DES.

decrypt have the largest performance improvements. This
is due to the fact that these two benchmarks have large-sized
superoperators, which create considerably more possibilities
of optimizing the generated assembly code corresponding
to these superoperators than in the case of modestly-sized
superoperators.

There is one problem that might arise in the case of very
large superoperators: are there enough registers to perform
register allocation and consequently optimizations? For these
two benchmarks, the superoperators have repetitive pat-
terns (from loop unrolling), making it possible to reuse reg-
isters and also making it fairly easy to generate assembly
code corresponding to the superoperators.

As can be seen in Fig. 3, the GSM and _201_compress

benchmarks have reasonable speedups, but not as much as
we would expect, considering the fact that they implement
9 and 12 superoperators respectively. This is due to the
fact that the most important superoperators implemented
for these benchmarks are modestly-sized, thus offering fewer
possibilities of optimizing the generated assembly code.

The SOPJ-extended configuration is the one that yields
the largest speedups, as it was expected, since in this config-
uration applications benefit both from the customized super-
operators and from the “general-purpose” PicoJava folding
patterns. The speedup ratios vary between 1.52 and 3.07,
with an average of 1.98.

One might ask why the speedups for the SOPJ approach
are not merely the sum of the speedups for the PJ-extended
and the SO-extended configurations for each application.
The answer is that many of the PicoJava folding patterns
that were initially executed by the PJ-extended configura-
tion (and contributed to the speedups achieved by that con-
figuration) are contained in the superoperators added in the
SO-extended configuration. In conclusion, the improvement
in speedup for the SOPJ-extended VM over the speedup
yielded by the SO-extended VM comes only from the opti-
mal execution of PicoJava folding patterns that are not part
of the selected superoperators.

So far we have compared the performance results that
we have obtained to the performance of the unoptimized
VM configuration. Since we want the proposed compilation
system to deliver competitive performance w.r.t. state-of-
the-art VMs, we will now compare the speedups achieved by
the SOPJ-extended VM to the performance results obtained
by JikesRVM’s adaptive optimization system (AOS2).

As can be seen in Fig. 4, the compress, Blowfish and
GSM benchmarks, when executed using the SOPJ-extended
VM, show differences in speedups of a factor of 2.89, 4.08 and
3.92, respectively, w.r.t. the speedups achieved by the AOS

configuration. This behavior can be explained by the wide

2
AOS denotes the JikesRVM “production” configuration with the

adaptive optimization system turned on(−enable recompilation =
true) and having the optimizing compiler as the initial compiler.



Figure 4: Comparison of speedups achieved by SOPJ and

AOS configurations, relative to baseline configuration

range of optimizations performed by the optimizing com-
piler and by the dynamic recompilation of “hot” methods
employed by the AOS configuration. However, dynamic re-
compilation and the application of many expensive optimiza-
tions are not suitable for resource-constrained embedded
processors, due to large memory consumption. Our profile-
guided compilation system is much more modest w.r.t. re-
source consumption and thus is an appropriate alternative
to a JIT/AO system in the field of resource-constrained en-
vironments (see section 5.4).

Compared to the speedups achieved in the SOPJ-extended
VM, the PNG benchmark performs slightly worse in the AOS

configuration, while DES.encrypt and DES.decrypt experi-
ence considerable decrease in performance by a factor of 0.15
and 0.22, respectively. This shows that for simpler bench-
marks, as many embedded applications are, a few less ex-
pensive, but very targeted profile-guided optimizations lead
to better performance than a JIT/AO system.

5.3 Method inlining
In order to improve the selected SOs and consequently

achieve performance results closer to the AOS performance,
we decided to perform selective inlining of method calls
embedded in the chosen superoperators for the compress,
Blowfish and GSM benchmarks, as directed by runtime pro-
filing data. We chose to perform selective, profile-guided
inlining only on these benchmarks since the speedups pro-
duced by the SOPJ-extended configuration for these appli-
cations are less than the AOS performance results. We used
the Javassist toolkit([22]) in order to perform the high-
level (bytecode) inlining of the method calls present in the
original superoperators. The reason why we selected only
the method calls present in the chosen superoperators for in-
lining is because runtime profiling data indicated that these
method calls accounted for a considerable portion of execu-
tion time. This led to the increase in size of many of the
initial superoperators, thus not only removing the overhead
incurred by the (now inlined) method calls, but also expos-
ing more possibilities of optimizing the generated assembly
code for the superoperators.

We inlined 3 method calls for the Blowfish benchmark, 5
method calls for the compress benchmark and 11 method

Figure 5: Comparison of speedups achieved by SOPJ-I and

AOS configurations, relative to the baseline configuration

calls for the GSM benchmark. Most of the method calls
present in the original superoperators had 0 depth (i.e. there
were no other embedded method calls present). However,
we did handle 4 method calls of depth 1 (present in the GSM

benchmark) by recursively inlining bottom-up.
Figure 5 shows the speedups attained by the SOPJ-I VM,

which consists of the SOPJ-extended VM with all the method
calls present in the original superoperators being inlined. We
can see from Figure 5 that selectively inlining the method
calls and modifying the original superoperators to reflect it
led to a general speedup increase. The performance differ-
ences between the proposed SO-extended VM and the AOS
VM are now 2.16 for the compress benchmark (was 2.89 be-
fore inlining), 3.29 for the Blowfish benchmark (was 4.08
before inlining) and 3.01 for the GSM benchmark (was 3.92
before inlining). Thus we have managed to bring our per-
formance results much closer to the AOS performance.

When measuring the modifications in benchmarks’ size
due to inlining, we found that the benchmarks had increased
by only 2.9% on average (0.1KB for the Blowfish bench-
mark, 1.9KB for the compress benchmark and 0.5KB for
the GSM benchmark). We conclude that performing profile-
guided, selective inlining of method calls led to further con-
siderable improvement in runtime performance, with only
minimal effect on the benchmarks’ size.

5.4 Runtime memory consumption
Our profile-guided compilation system represents a viable

alternative to full JIT compilation for resource-constrained
environments, not only in terms of performance (as in-
dicated by the results presented in sections 5.2 and 5.3),
but also from a runtime memory consumption point of
view. We have measured the runtime memory usage of our
SO-extended VM vs. the amount of memory needed by the
AOS VM.

Avg. RSS % Avg. VSZ %

SO-extended VM 2.89 2.13

AOS VM 47.67 45.11

Table 3: Runtime memory consumption increase

Table 3 shows the increases in resident set size(RSS) and



virtual memory size(VSZ) needed by our SO-extended VM
and by the AOS VM, w.r.t. the amount of runtime memory
that the original (baseline) VM needs. The results presented
in Table 3 represent the average of runtime memory mea-
surements for all the applications in the benchmark suite
(presented in section 5.2), over multiple executions.

We can see that full JIT compilation, paired with adap-
tive optimization causes a considerable increase in runtime
memory consumption (namely a RSS increase of 47.67% and
a VSZ increase of 45.11%), while our SO-extended compi-
lation system achieves competitive execution performance,
with only a negligible increase in runtime memory require-
ments (namely a RSS increase of 2.89% and a VSZ increase
of 2.13%). Thus, the proposed SO-extended VM performs
better than the JIT/AO VM by approximately a factor of
16, on average, w.r.t. runtime memory consumption.

6. CONCLUSIONS AND FUTURE WORK
The research presented in this paper proposes a profile-

directed, lightweight bytecode compilation system to improve
execution performance of Java applications on resource con-
strained embedded systems.

In order to make our system a viable alternative to state-
of-the-art JIT compilers and adaptive optimization systems
for resource-constrained environments, we use profile-selected,
extended bytecode basic blocks as new bytecode instructions
(SOs) and apply annotation-directed optimizations only to
the selected superoperators. We also evaluate the impact
on execution performance due to profile-directed, selective
inlining of method calls embedded in the superoperators cho-
sen for each application. In our simplified compilation sys-
tem, this compensates for the adaptive inlining performed
by JIT/AO systems.

Compared to a JIT/AO system, our SO-extended VM
shows a difference in speedup that is within a factor of 2
for the worst performing applications. However, w.r.t. run-
time memory consumption, our SO-extended VM outper-
forms the JIT/AO system by a factor of 16.
All of the above make the proposed compilation system a
viable choice for resource-constrained devices.

For future work, since one of the most important con-
straints for embedded systems is low energy consumption,
we are working on evaluating the energy savings provided
by our simplified compilation system on a 405EP PowerPC
system. From preliminary evaluations we have determined
that, in our proposed compilation system, applications ex-
perience considerable reduction in the number of completed
instructions, which we believe will lead to substantial reduc-
tion in energy consumption.
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