
A Distributed Processor State Management

Architecture for Large-Window Processors

Isidro González
1
 Marco Galluzzi

1
 Alex Veindenbaum

2
 Marco A. Ramírez

3
 Adrián Cristal

4
 Mateo Valero

1,4

1
Department of Computer Architecture, UPC, Barcelona, Spain
2
Department of Computer Science, UC Irvine, Irvine, USA

3
Center for Computing Research, IPN, México City, México

4
Department of Computer Architecture, BSC – CNS, Barcelona, Spain

{iglez, galluzzi, mateo}@ac.upc.edu Alex.Veindenbaum@uci.edu mars@cic.ipn.mx adrian.cristal@bsc.es

Abstract— Processor architectures with large instruction

windows have been proposed to expose more instruction-level

parallelism (ILP) and increase performance. Some of the

proposed architectures replace a re-order buffer (ROB) with a

check-pointing mechanism and an out-of-order release of

processor resources. Check-pointing, however, leads to an

imprecise processor state recovery on mis-predicted branches

and exceptions and re-execution of correct-path instructions after

state recovery. It also requires large register files complicating

renaming, allocation and release of physical registers.

This paper proposes a new processor architecture called a Multi-

State Processor (MSP). The MSP does not use check-pointing,

avoids the above-mentioned problems, and has a fast, distributed

state recovery mechanism. The MSP uses a novel register

management architecture allowing implementation of large

register files with simpler and more scalable register allocation,

renaming, and release. It is also key to precise processor state

recovery mechanism. The MSP is shown to improve IPC by 14%,

on average, for integer SPEC CPU2000 benchmarks compared to

a check-pointing based mechanism ([2]) when a fast and simple

branch predictor is used. With a very aggressive branch

predictor the IPC improvement is 1%, on average, and 3% if

some of the programs are optimized for the MSP. The MSP also

reduces the average number of executed instructions by 16.5%

(12% for the aggressive branch predictor), mostly due to precise

state recovery. This improves the MSP processor energy

efficiency even though it uses a larger register file.

Keywords-component; Check-pointing; register renaming;

register file; misprediction recovery; large-window

1 INTRODUCTION

Recently proposed large instruction window processors,
such as Kilo-instruction Processors [1] and Checkpoint
Processing and Recovery (CPR) [2, 15], allow thousands of in-
flight instructions to uncover distant ILP and mask long
memory latencies. They use check-pointing mechanisms,
which allow the release of resources associated with each
instruction as soon as the instruction has been successfully
executed. This allows large instruction windows to be
implemented with a tolerable increase in required processor
resources.

Check-pointing mechanisms define a checkpoint as a
hardware structure containing the information necessary to
recover a processor’s state. An exception or a branch
misprediction leads to restoration of the processor state to a
previous checkpoint and re-execution from the checkpoint. In
general, the components of a state include physical register
values, mapping of logical to physical registers, and pending
stores. However, a check-point only stores the register
mapping, with processor releasing registers only when a check-
point commits. This makes restoring register state relatively
simple and fast [18], but requires more physical registers.
Pending stores in a store queue are handled separately and
require a more complex and time consuming mechanism. For
instance, the time delay of scanning a large, 2

nd
-level store

queue [2] for load-forwarding roll-back can be significant.

The performance of this type of processor depends on the
available resources, e.g. register file size, store queue size,
instruction queue size, etc. and on the check-pointing
mechanism itself. How well the latter functions, depends on the
number of available checkpoints and on check-point placement
along the program execution path. Typically, a new checkpoint
is created at branches with high misprediction rates or at other
instruction likely to produce an exception. Several different
check-point management mechanisms have been proposed
[19]. For instance, one of them is based on a confidence
estimator that computes the confidence for every branch
prediction done (including indirect branches). A new check-
point is created if the estimator gives low confidence for the
current prediction [6].

When all instructions between the oldest and the second
oldest check-points have successfully executed and thus could
not be discarded due to a recovery, the oldest check-point can
be released. At this time all instructions between the oldest
check-point and the next one are committed.

When a branch misprediction occurs, the processor rolls
back the state to the youngest checkpoint preceding the branch.
On an exception, execution cannot resume at the excepting
instruction and also has to resume at the preceding check-point.
This will require re-execution of a number of instructions,
which were correctly executed. There can be a significant
amount of instructions to re-execute depending branch

prediction accuracy, the number of check-points and the check-
point management mechanism [18, 19]. This lack of precision
in branch misprediction or exception recovery overhead
degrades processor performance and increases power
consumption. Increasing the number of check-points does not
guarantee an improvement in performance and is undesirable
due to hardware costs of check-pointing [18] and the hardware
delays it may introduce. Also, increasing the number of check-
points does not guarantee an improvement in performance.
Thus a new solution is necessary to avoid this loss of
performance due to imprecise recovery.

Another problem with large-window check-pointing
processors is that they require a large number of registers
which complicates register management: renaming of a logical
register, allocating a physical register, freeing a physical
register, and recovering from branch mispredictions and
exceptions. Consider renaming, for instance. Many modern
processors use a CAM-based structure, which stores a physical
to logical register mapping. Thus for a processor like the CPR
with 192 registers, the required CAM is large resulting in an
increase in access time and energy consumption. Even larger
register files may be desirable for very large instruction
windows. Also, tracking when all the uses of a physical register
have occurred and it can be released complicates things. For
instance, CPR used reference counters [9] to release a physical
register immediately after the last use of the register. Counters
are easy to update but introduce additional complexity in state
recovery when instructions are squashed. Last but not least,
wider issue width requires wider renaming, such as in IBM
Power4 [23], which is harder to implement, has high power
consumption, and is a thermal hot-spot which can lead to
hardware faults. This calls for a new mechanism to more
efficiently manage large register files.

The architecture proposed in this paper solves both of the
above problems, allowing precise recovery and efficient
management of a large register file in a unified approach and
without using either check-pointing or a traditional ROB. It is
called a Multi-State Processor (MSP). MSP assigns a state to
instructions in flight and defines an efficient and scalable state
management mechanism for instruction commit, release of
registers, and branch misprediction or exception recovery. A
new state is created on every instruction assigning a register,
with adjacent states differing by at most one change in the
register state. This allows fast register state recovery.

For physical register management the MSP proposes a new,
scalable register allocation, renaming, and release mechanism.
It does not use either of the traditional approaches: a physical
register free list and Register Alias Table (RAT) or CAM-
based designs. Instead, the MSP uses a mechanism for
releasing a physical register based on its use by dependent
instructions, which is integrated with state management and
commit. Allocation and renaming are distributed and done
separately for each logical register. The proposed mechanism
can reduce the high power density and overall power
dissipation of a renaming unit and the register file.
Furthermore, it allows the register file itself to be banked in a
novel way, reducing bank port requirements to 1 read and 1
write ports.

The rest of the paper is organized as following. Section 2
introduces our definition of processor state and state
management. Section 3 describes the micro-architecture of the
MSP. Section 4 presents the state recovery mechanism and
Section 5 describes how to implement limited-size state
identifiers. Section 6 presents the performance evaluation of
the MSP and compares it with the CPR processor. The paper
concludes by discussing related work and summarizing our
results.

2 PROCESSOR STATE MANAGEMENT

This section describes state definition and management
proposed in the MSP architecture. Consider a dynamic
instruction sequence shown in Fig. 1. Let us use it to illustrate
the problem of state recovery in a check-pointing processor to
motivate the state management of the MSP.

Assume that a check-point is set at instruction 3, a branch
with a low-confidence estimate. However, this branch is
predicted correctly. But a branch misprediction occurs at
instruction 7, where a check-point has not been set. As part of
branch misprediction recovery, the processor’s state is restored
to the state stored in the previous checkpoint – the one set at
instruction 3. Execution resumes from instruction 3 and the
processor re-executes instructions from 3 to 6 (the dashed box
in Fig. 1), even though they were already correctly executed
prior to branch misprediction.

In summary, restoring processor state to a check-point
causes all instructions in the pipeline that are younger than the
check-point to be squashed. It also restores the logical to
physical register mapping, adds released physical registers to
the free list, and releases possible younger checkpoints.

2.1 MSP State and State Management

The goal of the MSP processor is to restore processor state
precisely to the desired instruction. To achieve this, the MSP
processor defines a processor state as the state of its registers. It
assigns a new state to each instruction that writes a destination
register. Thus the state difference between two adjacent
instructions is at most the state of one register. The allocation,
recovery and release or commit of a state in the MSP processor
are thus strongly tied to register management. Stores to
memory are dealt with separately via the store queue but in
order determined by processor state.

No PC Instruction StateId

1 @+00 store r2, @data 0

2 @+04 add r1, r2, r2 1

3 @+08 bne r2, @+2c 1

4 @+0c sub r2, #1, r2 2

5 @+10 mov r2, r1 3

6 @+14 add r1, r2, r2 4

7 @+18 bne r3, @+3e 4

8 @+1c add r1, r2, r1 5

Figure 1. Example of a dynamic instruction sequence

A processor state is assigned a value called a StateId
maintained by a binary counter. StateId is incremented when an
instruction is added to the instruction window and the
instruction assigns a logical register (allocates a new physical
register). Instructions not assigning a register, such as branches
or stores, do not change the state. The current StateId is
associated with the instruction entering the window.

For each physical register a range of consecutive states in
which the register is valid, called its StateId Range, is
maintained. The Lower StateId of the range is the StateId of the
instruction assigning the physical register. The Upper StateId
of the range is the StateId of the instruction preceding the
instruction that next renames the corresponding logical register.
The StateId range allows identification of all instructions
(states) using a given physical register.

State recovery becomes a simple process: instructions with
a StateId greater than the StateId of the instruction causing the
recovery are discarded. Stores in the store queue are also
released using the same condition.

For instructions in Fig. 1, the assigned StateIds are in the
column “StateId” of the figure. The StateId range associated
with each physical register is shown in Fig. 2. The notation
Rx.y describes (renaming) version y of a logical register x.
Thus R2.0 and R2.1 are two instances of the logical register
R2, they correspond to two physical registers allocated on two
consecutive assignments to R2.

The Rx.y notation is key to the MSP register management
mechanism (described in Sec. 3).

The MSP branch misprediction recovery proceeds as
follows (for instruction 7 in Fig. 1). The MSP sets the Recovery
StateId (explained in more detail in Sec. 5) to the StateId
associated with this branch instruction, i.e. to state number 4.
All instructions with a StateId greater than 4 are squashed.
Physical registers whose Lower StateId > 4 can be released –
only register R1.2 in the example.

3 MICRO-ARCHITECTURE OF THE MSP PROCESSOR

The micro-architecture of the MSP processor and its
pipeline are shown in Fig. 3. The micro-architecture uses a
banked physical register file with 1 read and 1 write ports per
bank. This requires arbitration to detect register port access
conflicts and the MSP adds an arbitration stage to the pipeline.
The register management is distributed among banks as
described below.

This micro-architecture does not use a standard reorder
buffer, renamer, etc. Instead, the State Control Tables (SCT)
and associated logic manage these functions in a distributed
fashion. Some of the functions require interaction between all
SCT, such as commit. This involves the Last Committed
StateId (LCS) logic and State Counter shown in Fig. 3. In the
MSP architecture described in this paper register release and
commit happen at the same time. A new LCS value is
computed every clock cycle.

Every instruction in the instruction queue sets Use bits in
the dependency tracking logic for each physical register it uses.
A Use bit is reset once such an instruction consumed the
register value. An OR of all use bits and of the Ready bit for a
given physical register generates the RelIQ signal used in
register management.

3.1 Register and State Id management

MSP integrates state and register management in a single,
scalable mechanism. To make register management a
distributed mechanism the MSP imposes the following two
constraints:

a) Each logical register is renamed to a fixed subset of
physical registers (a bank of physical registers)

b) Physical registers are allocated and released in order
within such a bank for a logical register

These constraints allow register allocation, renaming, and
source register lookup to be performed independently for each
logical register and makes them independent of the physical
register file size. It allows the physical register to be identified
as R.x, where R is the logical register number. A global free list
of physical registers and a global Register Alias Table [26] or a
CAM-based allocator/renamer [23] are no longer required.

3.2 MSP operation

The management of MSP registers and state is divided into
local management for each logical register (bank), and global
management interacting with the rest of the processor and
using information from all banks.

3.2.1 Local Management
The local management logic is shown in Figs. 4 and 5. It

consists of a State Control Table (SCT) plus rename and
release pointers with their associated logic. An SCT entry is a
descriptor for one physical register and records the processor
state assigned to the instruction that assigns the register.

The management performs (locally) allocation of a new
physical register, renaming, tracking the use of each physical
register in the bank by dependent instructions in the IQ, and
release of physical registers on commit or state recovery.

An SCT entry for a physical register in a bank contains:

• StateId: the value of the Lower StateId, the StateId of
the instruction assigning the physical register. The
Upper StateId is implicit – it is the value of the next
SCT entry minus one (recall Fig. 2). For the most
recent entry (last renaming) the Upper StateId is Null.

StateId Range Associated registers

Lower Upper Logical Physical

0 0 R2.0

1 1 R2.1

2 3 R2.2

4 5

R2

R2.3 *

0 2 R1.0

3 4 R1.1 *

5 5

R1

R1.2

Figure 2. StateId Range for instructions in Fig. 1

• Valid Bit (Vb): specifies whether the entry is in use.

The control logic associated with each entry consists of:

• StateId Range Comparator: It compares the StateId of
the entry and the next one with a StateId broadcast by
the Global Control. A physical register is released and
instruction committed if its StateId < LCS (unless it is
the last such register in a bank). StateId range
comparison is used to update the rename pointer.

• Logic to track if an instruction has written this register
result and logic to detect if this value has been
consumed by all dependent instructions. The commit
process and the release of physical registers for
committed instructions is a continuous process and
instructions are committed in the StateId order.

• Recovery logic to receive a globally broadcast
Recovery StateId and detect if a physical register needs
to be released (see Sec. 5 for details). A register is
released if its StateId > Recovery StateId.

Two local pointers are associated with an SCT. Let us
assume that they are implemented as one-hot bit vectors using
circular shift registers, but other implementations are also
possible:

• Rename Pointer (RenP): points to the last allocated
physical register (SCT entry), which is the most recent
renaming of the associated logical register. On a new

renaming, the pointer will be shifted by one position to
the next spatially adjacent entry. The current mapping
of the associated logical register to a physical register
is the logical register identifier and the RenP index
pair.

• Release Pointer (RelP): points at the first physical
register in the bank that can not be released. The value
in this register either has not been produced (Ready bit
Rb=0) or has not been consumed by all its dependent
instructions or some of the instructions associated with
this StateId have not yet executed. RelP takes part in
the global computation of the Last Committed State or

LCS = Min(RelPi), where i ε [0, NumLogReg-1], as
described in more detail below.

Any StateId in the bank/SCT such that StateId < RelP can
potentially be committed and the corresponding registers
released. The value in such a register has been produced
(Ready bit Rb=1) and consumed by all its dependent
instructions. All the instructions associated with this StateId
have executed (without exceptions). “can potentially be
committed” was used above instead of “can be committed”
because StateId’s are committed iff StateId < LCS.

Min(StateId[RelPi]) = LCS is the oldest entry in the
processor that cannot yet be committed. It is computed every
clock by the global control logic. Any StateId < LCS in any
bank can be committed and its register released (unless it is the
last renaming). Thus multiple StateIds across multiple banks

Figure 3. The MSP micro-architecture

can be committed in the same cycle. Example in Fig. 4 shows
pointer change in a cycle after LCS becomes 4.

In summary, local register management functions
performed are:

a) Allocating a new physical register and renaming the
corresponding logical register, accomplished by incrementing
(shifting) the rename pointer RenP,

b) Source register renaming by encoding RenP and
concatenating it with the logical register number (bank
number),

c) Releasing a physical register, accomplished by setting
the Valid bit to 0 for any physical register i such that
SCT.StateId(i) < LCS,

d) Tracking uses of each register in a bank by dependent
instructions

3.2.2 Global Management
The global management maintains the current state of the

processor and determines the oldest non-committable StateId,
LCS. This is accomplished by the following two functional
blocks:

• The StateId Counter (SC), defines the current processor
StateId. It is incremented for each decoded instruction
that assigns a logical register.

• The Last Committed StateId (LCS) unit, computes the
minimum (oldest) StateId of all SCT[RelP] entries
every cycle. The LCS is the oldest state in the MSP
that can not yet be committed. Thus any StateId’s older
than LCS can be committed. This may commit multiple
older states.

Recall that several additional instructions may belong to
one state and the state can only be committed when all of them
have executed. Such instructions do not assign registers and
thus cannot be tracked through the SCTs or through their
register dependencies once they leave the instruction queue.
This is why the state of instructions issued but still in the
pipeline is tracked in Fig. 3.

A mechanism used to release processor resources of
committed instructions/states, registers and Store Queue
entries, is based on LCS. The logic in a local scope control of
each logical register releases physical registers of entries with
StateId < LCS. The Store Queue logic uses LCS to store to
memory entries with a StateId older (smaller) than the LCS.

The number of SCTs is equal to the number of logical
registers, typically 32, and the StateId is 9bits for a 256-entry
physical register file (8 plus an “overflow” bit explained
below). Thus the hardware needed to compute the LCS is a
five-level binary tree of comparators and multiplexors. Each
comparator finds the smaller of the two StateIds at its inputs
and passes it through to the next level. This computation may
take multiple clock cycles but can be pipelined to produce a
new minimum. Latency of LCS computation is not a critical
timing issue, even a 4-cycle LCS computation degrades
performance by less than 1% compared to a 1-cycle
computation. As for power, static 9bit comparators with low
power consumption can be used.

A special condition occurs if (RenP=RelP and
RelIQ[RenP]=0), i.e. all physical registers have been renamed,
produced and consumed by all consumer instructions. The
StateId of the SCT entry pointed by both RelP and RenP is not
used in the computation of the LCS.

3.3 Renaming of Multiple Instructions per cycle

So far we have described several register management
functions: allocation, renaming, release, and misprediction
/exception recovery. Note that shadowing (or checkpointing) of
the register map is not needed in the MSP, its function is
performed by state recovery. The source operand lookup is
performed by reading the RenP in a given SCT.

In the simplest case described above, the renaming process
advances the rename pointer, RenP, by one in the required
bank. However, the renaming process is complicated by the
fact that multiple instructions may assign the same destination
logical register in one clock cycle.

Our analysis of the impact and frequency of occurrence of
such multiple renaming in the same cycle showed that

Figure 4. Local Management (release and recovery)

renaming at most two instructions assigning the same logical
register per cycle is sufficient. Allowing three or more such
instructions to be renamed per cycle does not improve
performance. However, allowing only one to be renamed leads
to a 5% reduction in IPC. Therefore, the renaming logic
described in this section allows up to four destination registers
to be renamed per cycle, two of which can be the same logical
register.

Fig. 5 shows a block diagram of the renaming logic for a
logic register (per SCT). This logic is enabled by a logical
register identifier, LogRegId, of a register to be renamed. There
can be at most four SCTs activated in a cycle (assuming an
issue width of 4). In an activated SCT the entry to be written by
a new renaming is pointed to by the next RenP. The renaming
logic also generates the “next RenP” value, which is used if the
associated logical register is renamed again in the same cycle.

The next RenP bit vector is a logical shift of the current
RenP bit vector, by one or two positions. The current RenP bit
vector value of each SCT, RenPindex, is sent to Renaming
Control Unit, and used as base pointers to the corresponding
source operands of instructions in the renaming cycle. The
RAW dependences are resolved by increasing these pointers by
the number of previous instructions which write in the same
logical register (this control is very similar to traditional RAW
dependency control). A port decoder identifies write ports to
use, up to two, using the new values of the RenP. Finally, the
StateIds to be written into the selected entries are the StateIds
of up to two new instructions being renamed. These StateIds
are computed by adding the current StateId (the value of the SC
counter) and the SC offset of each instruction generating a new

state. The SC offset is the position of the instruction in the
current set of four being renamed (only two of which can be in
the given SCT). The figure shows an example of two
instructions being renamed, first and last in this group of four.
The SCT is assumed to use one write port per entry and two
multiplexors are used to select the two computed StateIds to
write. A stall is generated if there are more than two
instructions renaming the register.

Lack of physical registers for renaming in a bank may
cause a stall of all stages prior to Rename. The stall is detected
by an SCT and broadcast to all other SCTs and to the global
renaming control unit. The stall control logic prevents
advancing of RenP pointers in other SCTs, which rename
younger instructions in the same cycle. Note that this lack of
space in a bank can be detected very early in the renaming
cycle.

3.4 Tracking Register Use

To detect when the last use of a register occurs and also
when all instructions associated with a register state have
completed execution could be done with reference counters [9].
MSP proposes a different solution.

A bit vector RelIQ of the size equal to instruction queue
size, is used to track dependents of a register and of all
instructions belonging to the same state. During renaming of
source operands the bits of this vector corresponding to
dependent instructions are set to “1”. As instructions are issued,
they reset the corresponding bit of the vector for each source
register, UseBit. Note that this can be done within each SCT in

Figure 5. Local Management (renaming logic for one logical register)

a distributed fashion.

The RelIQ bit vector is also used to track instructions that
belong to the corresponding register state but themselves do not
assign a destination register. The state can only be retired when
all such instructions consumed their operands and complete
execution without exceptions.

Finally, on branch misprediction or exception recovery all
bits in a column of RelIQ vectors corresponding to the position
of the cancelled instructions are reset.

3.5 The State Recovery Mechanism

The state recovery mechanism on a branch misprediction
proceeds as following. The processor state is reset to the
StateId of the branch. All instructions in the IQ following the
Processor branch are squashed and their Use bits cleared. The
front end is restarted with a branch target PC. The Recovery
StateId is broadcast to all SCTs and all physical registers with a
StateId greater than the Recovery StateId are released.

An exception is actually taken only when the instruction
causing the exception is committable and all prior instruction
have executed. Any younger instructions are cancelled. The
Recovery StateId is set to the StateId of the instruction causing
the exception or the StateId of the previous one if this
instruction produced a new state. Similar to branch
misprediction recovery, multiple instructions associated with a
single state have to be dealt with correctly. A 5-bit id is
assigned to instrunctions in the same state, in order, to achieve
this. After the recovery is complete, the SC is set to the
Recovery StateId and the Recovery StateId is disabled.

3.6 StateId Overflow

The StateId size is log2(M) = m bits, where M is the
register file size. Thus the State Counter SC will eventually
overflow. The MSP uses a saturation bit, Sb, added as the most
significant bit to the log2(M) bits of the StateId to control the
overflow. The SC is initialized to zero and is incremented until
it reaches the maximum value of all “1”s. Since there are at

most M states in flight, all current states must now have the
saturation bit set to 1. At this point the Sb bits of all stored
StateIds are reset to 0 and the SC is set to value M+1, that is,
the Sb to 1 and the rest of the bits to 0.

4 PERFORMANCE EVALUATION

The following architectures are evaluated and compared in
this section:

• Baseline. A reasonably standard out-of-order, single-
thread, superscalar processor.

• CPR. An architecture without an ROB using a
selective check-pointing mechanism, a hierarchical
store queue, and aggressive release mechanism for
physical registers. It has a register file with all required
ports and does not use the arbitration stage in the
pipeline.

• n-SP. The Multi-State Processor architecture with n
physical registers per logical register and the same
hierarchical store queue as CPR. It uses arbitration.

• ideal MSP. MSP with an infinite hierarchical store
queue and an infinite, fully-ported register file.

The parameters of the four architectures are shown in Table
1, with many chosen to be identical to the CPR processor

1
 in

[2]. A notable difference with CPR are branch predictors used
in this paper: gshare and partially TAgged GEometric history
length (TAGE) [27] predictor. The former is an example of a
simple, fast predictor and the latter of a complex but more
accurate one.

The performance evaluation was conducted using a
modified version of the execution-driven simulator SMTsim
[17] and the SPEC CPU2000 benchmark suite [14]. The
benchmarks were compiled with the Compaq C V5.8-015

1 Even so, our CPR results should not be expected to the same as in

[2] because we simulated a different ISA and used a different compiler and

simulator.

TABLE I. PROCESSOR CONFIGURATION

Processor core Baseline CPR n-SP ideal MSP

Reorder buffer size 128 - - -

Instruction queue size 48 128 128 128

Number of checkpoints - 8 (out-of-order release) - -

Fetch | Rename | Issue | Retire width 3 | 3 | 5 | 3 3 | 3 | 5 | - 3 | 3 | 5 | - 3 | 3 | 5 | -

nt | Fp register file size 96 | 96 192 | 192 n | n (each LogReg) ∞ | ∞ (each LogReg)

Ld | L1St | L2St buffer size 48 | 24 | - 48 | 48 | 256 48 | 48 | 256 48 | ∞ | ∞

Confidence branch estimator - 64k entries | 4 bits - -

LCS propagation delay - - 1 cycle 0 cycle

Int | Fp | LdSt units 4 | 4 | 2

Branch predictor gshare TAGE

Branch predictor parameters PHT size: 64k 8 components

Memory Subsystem

I-cache size 64 KB, 4-way, 1 cycle hit

D-cache size 64 KB, 4-way, 4 cycle hit

L2-cache size 1 MB, 8-way, 16 cycle hit

Caches line size 64 bytes

Main memory latency 380 cycles

compiler under Compaq UNIX V4.0 with the optimization
option –O3. 300 million representative instructions per
benchmark were simulated using input reference sets. These
instructions were selected by analyzing the distribution of basic
blocks per [12].

4.1 SPECInt Results

Fig. 6 shows the IPC of the four architectures described
above using a 64K-entry gshare predictor. The n-SP processor
is evaluated with n physical registers per logical register bank,

8 ≤ n ≤ 128, to understand the impact of n on performance.

On average, MSP performance exceeds CPR’s in all cases.
The 8-SP architecture achieves a 5% average performance
improvement. CPR does not use the arbitration stage and yet
16-SP+Arb achieves a 14% performance improvement. Further
improvement from increasing n is relatively small. The
performance of the 128-SP is basically identical to the ideal
MSP. Performance of individual benchmarks for 8-SP varies
with respect to CPR, it is only the 32-SP architecture that
always has better performance than CPR.

The four architectures were also compared using the most
accurate but possibly slower branch predictor – a very
aggressive TAGE predictor. The results in Fig. 7 show that a
branch predictor has a much bigger impact on CPR
performance than on the MSP’s. The 8-SP IPC average is now
10% lower than CPR and the 16-SP+Arb is 1% better than
CPR. However, overall the IPC trend is the same as with the
gshare predictor.

Also shown in the figure are the 16-SP+Arb processor stall
cycles from just three of the registers that contribute the most
to performance loss. Even with 512 registers, the stalls can be
very high as MSP exhausts physical registers in a bank.

4.2 SPECfp Results

The IPC results for the floating point benchmarks are
shown in Fig. 8. The MSP performance is now better than that
of CPR only with 64 physical registers per bank. This is again
due to the fraction of execution time when MSP is stalled due
to lack of registers (two right-most bars in Fig. 8) on most-
frequently used registers. In programs with very low stall
cycles, such as fma3d, the 8-SP performance is better than that
of CPR. In other cases CPR does better.

4.3 Reducing Register Stalls

Figs. 7 and 8 show a significant impact on MSP
performance due to insufficient registers in a bank and the
performance improvement obtained with an increase in the
bank size. The main reason is a physical register allocation
only within a logical register bank. This may happen in loops
that use only a few registers. An 8-SP processor would stall
after at most 8 iterations of a small loop. In a flat register file
with traditional renaming this does not happen.

One can eliminate or significantly reduce this problem by
two simple modifications of a program. One is loop unrolling
and the other is a modification to the register allocation in a
loop to avoid reusing the same register (even without

Figure 6. SPECint IPC with gshare and 16-SP stalls due to lack of registers

Figure 7. SPECint IPC with the TAGE predictor and 16-SP stalls due to lack of registers

Figure 8. SPECfp IPC with the TAGE predictor and 16-SP stalls due to lack of registers

unrolling). Both of these can be easily implemented in a
compiler. A small subset of benchmarks with high stalls was
modified by hand changing 1 to 3 important loops per program.

Table 2 shows the performance of modified programs using
the TAGE predictor. CPR uses a banked physical register file
with 192 registers. After modifying only a few loops in some
SPEC-traces, the 16-SP (with arbitration) has a 3% higher IPC,
on average, than CPR for the entire SPECInt suite. We believe
that when a compiler optimizes all loops in a program causing
stalls the MSP performance improvement will be even higher.
For SPECfp the performance of 16-SP+Arb is now close to
CPR. The 8-SP performance is also much improved.

IPC for CPR with 256 and 512 physical registers (fully
ported and without arbitration) and the TAGE branch predictor
for SPECint benchmarks was also evaluated. CPR with 256
registers has a 1% IPC improvement and with 512 registers a
1.3% improvement over CPR with 192 registers. Given that
16-SP+Arb (with two modified programs) has a 3% IPC
improvement for SPECint over CPR with 192 registers, the
reason for MSP performance improvement is NOT its larger
register file.

4.4 Reduction in Instruction Re-execution

Fig. 9 shows the total number of executed instructions and
the number of correct-path instructions executed by the CPR
and the 16-SP architectures for integer benchmarks. The results
are presented for two different branch predictors. 16-SP+Arb
executes, on average, 16.5% (9.5% due to precise recovery)

fewer instructions than CPR using the gshare predictor. The
reduction is 12% (7% due to precise recovery) with the TAGE
predictor. Further reduction beyond the precise state recovery
is a side-effect of the renaming mechanism. The reduction in
executed instructions and the reduced execution time result in
power savings.

TABLE II. IPC FOR MODIFIED BENCKMARKS WITH TAGE BRANCH
PREDICTOR

Benchmark

function
L
o
o
p
s
u
n
ro
ll
e
d

%
 E
x
e
c
u
ti
o
n
 t
im
e

V
e
r
si
o
n

C
P
R

8
-S
P
+
A
r
b

1
6
-S
P
+
A
r
b

id
ea
l
M
S
P

original 2.2 1.8 1.9 2.3 256.bzip2

generateMTFValues
1 65

modified 2.2 2.0 2.1 2.3

original 0.6 0.5 0.6 0.8 300.twolf
new_dbox_a

3 19
modified 0.6 0.6 0.6 0.8

original 0.7 0.3 0.5 0.7 171.swim
calc3

0 25
modified 0.7 0.4 0.7 0.7

original 1.2 0.5 0.5 1.5 172.mgrid

resid
0 52

modified 1.2 1.0 1.2 1.5

original 0.3 0.1 0.2 0.4 183.equake

smvp
0 54

modified 0.3 0.2 0.3 0.4

280

300

320

340

360

380

400

420

440

460

480

500

520

540

560

C
P

R
 g

s
h

a
re

C
P

R
 T

A
G

E

1
6

-S
P

 g
s

h
a

re

1
6

-S
P

 T
A

G
E

C
P

R
 g

s
h

a
re

C
P

R
 T

A
G

E

1
6

-S
P

 g
s

h
a

re

1
6

-S
P

 T
A

G
E

C
P

R
 g

s
h

a
re

C
P

R
 T

A
G

E

1
6

-S
P

 g
s

h
a

re

1
6

-S
P

 T
A

G
E

C
P

R
 g

s
h

a
re

C
P

R
 T

A
G

E

1
6

-S
P

 g
s

h
a

re

1
6

-S
P

 T
A

G
E

C
P

R
 g

s
h

a
re

C
P

R
 T

A
G

E

1
6

-S
P

 g
s

h
a

re

1
6

-S
P

 T
A

G
E

C
P

R
 g

s
h

a
re

C
P

R
 T

A
G

E

1
6

-S
P

 g
s

h
a

re

1
6

-S
P

 T
A

G
E

C
P

R
 g

s
h

a
re

C
P

R
 T

A
G

E

1
6

-S
P

 g
s

h
a

re

1
6

-S
P

 T
A

G
E

C
P

R
 g

s
h

a
re

C
P

R
 T

A
G

E

1
6

-S
P

 g
s

h
a

re

1
6

-S
P

 T
A

G
E

C
P

R
 g

s
h

a
re

C
P

R
 T

A
G

E

1
6

-S
P

 g
s

h
a

re

1
6

-S
P

 T
A

G
E

C
P

R
 g

s
h

a
re

C
P

R
 T

A
G

E

1
6

-S
P

 g
s

h
a

re

1
6

-S
P

 T
A

G
E

C
P

R
 g

s
h

a
re

C
P

R
 T

A
G

E

1
6

-S
P

 g
s

h
a

re

1
6

-S
P

 T
A

G
E

C
P

R
 g

s
h

a
re

C
P

R
 T

A
G

E

1
6

-S
P

 g
s

h
a

re

1
6

-S
P

 T
A

G
E

C
P

R
 g

s
h

a
re

C
P

R
 T

A
G

E

1
6

-S
P

 g
s

h
a

re

1
6

-S
P

 T
A

G
E

gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf Average

m
il

li
o

n
s

Wrong-Path Executed

Correct-Path Re-Executed

Correct-Path Executed

Figure 9. Total number of executed instructions for SPECint benchmarks

5 HARDWARE ISSUES

This section discusses hardware complexity, area, power
and access time issues arising in the MSP architecture.

5.1 Area Considerations

A banked register file can use 2 Read and 1 Write ports per
bank with only a very minor increase in access conflicts [11,
7]. MSP uses 1rd/1wr port per bank because a given instruction
needs at most one operand from a given bank – the latest
renaming of a logical register. CPR, if banked, needs at least 2
Read /1 Write because a single instruction may need two
different source operands from the same bank. The area of such
a 512-entry register file is 0.1sq.mm while area of a 256-entry
register file in CPR is 0.21sq.mm for 45nm technology (per
CACTI 4.2 [29] but without banking).

MSP uses extra area for SCTs but they replace register
renamer and some of the ROB and commit logic. Note that an
8 Read/4 Write port standard renamer is quite a large structure.

Finally, MSP adds the register use tracking matrix. It is a
structure requiring 1 bit of storage per physical register for
each instruction in the instruction queue. The matrix needs 3
Write ports and no read ports or output drivers. Each bit’s
output is permanently connected to the OR gate generating the
RelIQ signal. Write operations and tracking control are
completely independent between each sub-matrix (associated
to a SCT).

5.2 Power Consumption and Access Time

A physical register file was designed and laid out for the
16-SP architecture. Each bank has 16 64b entries [25] and 1 Rd
and 1Wr ports. The power and access time of one bank were
evaluated using SPICE based on predictive technology models
for 65nm and 45nm process. Similarly, 4- and 8-bank register
files with 192 entries but fully ported banks for CPR were also
evaluated.

Total access power was computed using the following
equation

2
, which includes leakage power of idle banks:

TAcc_power = Acc_power + (N – 1) x Idle_power, where
TAcc_power is total average power, Acc_power is a bank
access power, Idle_power is idle bank power, and N is the
number of banks.

2 Power consumption of the address decoder is the same in all designs

as they use a similar address decoder. It is not included here.

The results clearly show in Table 3 that the power
consumption and access time (see footnote) of the larger 16-SP
register file are lower than that of a banked CPR register file.

Of course much higher energy savings are achieved by the
MSP due to executing fewer instructions.

6 RELATED WORK

Smith and Pleszkun [13] studied support for precise
interrupts, such as the history buffers, organized similarly to an
ROB, and the future file that works together with a ROB to
improve scalability. However, none of these approaches can
support a large number of instructions in flight.

Hwu and Patt [5] proposed the use of checkpoints to
implement precise interrupts but discarding useful work on
recovery, i.e. without precise recovery. Cherry [8] allows more
instructions in flight but still uses a ROB in combination with
one checkpoint to release resources earlier, when it can be
guaranteed that all branches have been completed and all
memory instructions have been issued.

The Kilo-instruction Processor [1] is a multiple check-
point based architecture, allowing even more instructions in
flight. It uses a pseudo-ROB for younger instructions to
minimize the amount of correct-path instructions re-executed.
Another similar proposal is the CPR [2], which uses check-
pointing without a ROB and thus also has to re-execute useful
instructions. CPR proposed other mechanisms like the
hierarchical store queue and an aggressive release of physical
registers based on reference counters. The Continual Flow
Pipeline architecture (CFP) [15] improves on CPR by
incorporating a two-level instruction queue, adding the Slice
Data Buffer where the instructions depending on a L2 cache
miss are stored. CFP shows some performance improvement
over CPR.

Reference [18] proposed to stall decode while there are
many outstanding and likely to be miss-predicted branches.
Reference [19] used a simple confidence estimator to allocate
checkpoints selectively to reduce power and maintain
performance (it precedes CPR) [20] proposed to overlap
recovery with renaming down the correct-path. Reference [22]
proposed a virtual context architecture (VCA) to support both
multithreading and register windows, providing higher
performance with significantly fewer registers than a
conventional machine and the idea of giving each logical
register a FIFO queue of physical registers [28] has been
previously used to make register reclamation easy in a very

TABLE III. REGISTER FILE ACCESS POWER AND ACCESS TIME (MW | FO4)

CPR

192 / 64bits per entry

4 banks

8Rd/4Wr ports per bank

CPR

192 / 64bits per entry

8 banks

8Rd/4Wr ports per bank

16-SP

512 / 64bits per entry

32 banks

1Rd/1Wr ports per bank

Technology Write Read Write Read Write Read

65nm 4.75 | 1.06 4.50 | 5.51 2.75 | 1.06 2.65 | 5.51 2.05 | 0.85 2.10 | 4.44

45nm 3.30 | 1.29 2.60 | 6.11 2.10 | 1.29 2.10 | 6.11 2.00 | 1.11 1.65 | 5.92

different context for clustered architectures. Runahead+CPR
was compared with CFP in [15] thus indicating Runahead’s
capabilities. Qualitatively, as branch predictors become better,
the advantages of large-window processors (CPR, CFP, Kilo,
MSP) over Runahead should increase. Reference [21]
independently proposed a register reference counting scheme
based on binary counters represented as matrices (the same
idea was part of our Technical Report [24]).

7 CONCLUSIONS

The Multi-State Processor architecture proposed in this
paper enables implementation of large-window processors with
a large physical register file and precise recovery of execution
state on mis-predicted branches and exceptions. It does not use
a traditional ROB or check-pointing to achieve this. MSP uses
a novel, scalable register management architecture, integrated
with commit and register release. This includes a new approach
to register renaming. Its banked register file can use just 1 Rd
and 1 Wr port per bank significantly reducing its size and
power consumption. MSP with the TAGE branch predictor
achieves an average IPC increase of 3% compared to the CPR
architecture with a 192-entry fully-ported register file and 14%
using the gshare predictor. The performance of the MSP is
affected by integer and f.p. register file stalls. We believe that
these can be reduced or completely eliminated with compiler
optimizations. MSP also executes 16.5% fewer instructions
with gshare and 12% with TAGE, mostly due to precise state
recovery. This and the lower power consumption in the register
file make it more power efficient than CPR.

ACKNOWLEDGMENTS

The authors would like to thank Alex Pajuelo and Oliverio
J. Santana for their comments and advice in the preliminary
stages of this work. This work was supported by the UPC
research grant, by the Ministry of Science and Technology of
Spain under contracts TIN–2004–07739–C02–01 and TIN–
2007–60625, and by the Framework Programme 6 HiPEAC
Network of Excellence (IST–004408) and by Framework
Programme 7 HiPEAC 2 (IST-217068). Veidenbaum was
supported in part by the National Science Foundation award
CNS-0220069 for NSF/EU collaboration.

REFERENCES

[1] A. Cristal, M. Valero, A. Gonzalez, and J. Llosa, “Large virtual ROBs
by processor checkpointing,” UPC-DAC-2002-43 Technical Report,
Sept. 2002.

[2] H. Akkary, H. R. Rajwar, and S.T. Srinivasan, “Checkpoint processing
and recovery: towards scalable large instruction window processors,”
MICRO-36, December 2003.

[3] M. Goshima, K. Nishino, T. Kitamura, Y. Nakashima, S. Tomita, and S.
Mori, “A high-speed dynamic instruction scheduling scheme for
superscalar processors,” MICRO-34, 2001.

[4] S. Heo, K. Barr, M. Hampton, and K. Asanovic, "Dynamic fine-grain
leakage reduction using leakage-biased bitlines," isca, p. 0137, 29th
Annual International Symposium on Computer Architecture (ISCA'02),
2002.

[5] W. Hwu, and Y. Patt, “Checkpoint repair for out-of-order execution
machines,” ISCA-14, 1987.

[6] E. Jacobsen, E. Rotenberg, and J. E. Smith, “Assigning confidence to
conditional branch predictions,” MICRO-29, 1996.

[7] N. S. Kim, and T. Mudge, “Reducing register file ports using delayed
write-back queues and operand pre-fetch,” Proc. ICS-17, 2003.

[8] J. F. Martinez, J. Renau, M. C. Huang, M. Prvulovic, and J. Torrellas,
“Cherry: checkpointed early resource recycling in out-of-order
microprocessors,” MICRO-35, 2002.

[9] M. Moudgill, K. Pingali, and S. Vassiliadis, “Register renaming and
dynamic speculation: an alternative approach,” MICRO-26, 1993.

[10] S. Palacharla, “Complexity-effective superscalar processors,” Ph.D
Thesis, 1998.

[11] I. Park, M. D. Powell, and T. N. Vijaykumar, “Reducing register ports
for higher speed and lower energy,” MICRO-35, 2002.

[12] T. Sherwood, E. Perelman, and B. Calder, “Basic block distribution
analysis to find periodic behaviour and simulation points in
applications,” PACT-10, 2001.

[13] J. E. Smith, and A. R. Pleszkun, “Implementation of precise interrupts in
pipelined processors,” ISCA-12, 1985.

[14] SPEC. Standard performance evaluation corporation (spec) 2000
benchmark suite.

[15] S. T. Srinivasan, R. Rajwar, H. Akkary, A. Gandhi, and M. T. Upton,
“Continual flow pipelines,” ASPLOS-XI, 2004.

[16] J. H. Tseng, and K. Asanovic, “A speculative control scheme for an
energy-efficient banked register file,” IEEE Transactions on Computers,
2005.

[17] D.M. Tullsen, “Simulation and modelling of a simultaneous
multithreading processor,” Int’l Ann. Computer Measurement Group
Conference, 1996.

[18] P. Akl, and A. Moshovos, “BranchTap: improving performance with
very few checkpoints through adptive speculation control,” Int’l
Conference on Supercomputing, 2006.

[19] A. Moshovos, “Checkpointing alternatives for high performance, power-
aware processors,” Int’l Symposium on Low Power Electronics and
Design, 2003.

[20] P. Zhou, S. Onder, and S. Carr, “Fast branch misprediction recovery in
out-of-order superscalar processors,” Int’l Conference on
Supercomputing, 2005.

[21] A. Roth, “Physical register reference counting,” IEEE Computer
Architecture Letters, 2007.

[22] D. W. Oehmke, N. L. Binkert, T. Mudge, and S. K. Reinhardt, “How to
fake 1000 registers,” MICRO-38, 2005.

[23] T. N. Buti, R. G. McDonald, Z. Khwaja, A. Ambekar, H. Q. Le, W. E.
Burky, and B. Williams, “Organization and implementation of the
register-renaming mapper for out-of-order IBM POWER4 processors,”
IBM Journal of Research and Development, 2005 Vol. 49, Number 1,
p.167.

[24] I. Gonzalez, M. Galluzzi, A. Cristal, A. Pajuelo, O. J. Santana, and M.
Valero, “The multi-state processor: ROB-free architecture with precise
recovery,” UPC-DAC-RR-2007-45 Technical Report, Sept. 2007.

[25] I. Gonzalez, A. Cristal, A. Veindenbaum, M. A. Ramirez, and M.
Valero, “The MSP processor’s register file timing and power
evaluation,” UPC-DAC-RR-2008-51 Technical Report, Sept. 2008.

[26] K. C. Yeager, “The MIPS R10000 superscalar microprocessor,” IEEE
MICRO, April 1996.

[27] A. Seznec, and P. Michaud, “A case for (partially) tagged geometric
history length branch prediction,” IRISA/INRIA/HiPEAC, 2006.

[28] R. Nair, and M. E. Hopkinks, “Exploiting instruction level parallelism in
processors by caching scheduled groups,” ISCA-24, 1997.

[29] D. Tarjan, S. Thoziyoor, and N. P. Jouppi, “CACTI 4.0,” HP
Laboratories Palo Alto, HPL-2006-86 Technical Report, June 2006.

