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Abstract— Processor architectures with large instruction 

windows have been proposed to expose more instruction-level 

parallelism (ILP) and increase performance. Some of the 

proposed architectures replace a re-order buffer (ROB) with a 

check-pointing mechanism and an out-of-order release of 

processor resources. Check-pointing, however, leads to an 

imprecise processor state recovery on mis-predicted branches 

and exceptions and re-execution of correct-path instructions after 

state recovery. It also requires large register files complicating 

renaming, allocation and release of physical registers. 

This paper proposes a new processor architecture called a Multi-

State Processor (MSP). The MSP does not use check-pointing, 

avoids the above-mentioned problems, and has a fast, distributed 

state recovery mechanism. The MSP uses a novel register 

management architecture allowing implementation of large 

register files with simpler and more scalable register allocation, 

renaming, and release. It is also key to precise processor state 

recovery mechanism. The MSP is shown to improve IPC by 14%, 

on average, for integer SPEC CPU2000 benchmarks compared to 

a check-pointing based mechanism ([2]) when a fast and simple 

branch predictor is used. With a very aggressive branch 

predictor the IPC improvement is 1%, on average, and 3% if 

some of the programs are optimized for the MSP. The MSP also 

reduces the average number of executed instructions by 16.5% 

(12% for the aggressive branch predictor), mostly due to precise 

state recovery. This improves the MSP processor energy 

efficiency even though it uses a larger register file. 

Keywords-component; Check-pointing; register renaming; 

register file; misprediction recovery; large-window 

1  INTRODUCTION 

Recently proposed large instruction window processors, 
such as Kilo-instruction Processors [1] and Checkpoint 
Processing and Recovery (CPR) [2, 15], allow thousands of in-
flight instructions to uncover distant ILP and mask long 
memory latencies. They use check-pointing mechanisms, 
which allow the release of resources associated with each 
instruction as soon as the instruction has been successfully 
executed. This allows large instruction windows to be 
implemented with a tolerable increase in required processor 
resources. 

Check-pointing mechanisms define a checkpoint as a 
hardware structure containing the information necessary to 
recover a processor’s state. An exception or a branch 
misprediction leads to restoration of the processor state to a 
previous checkpoint and re-execution from the checkpoint. In 
general, the components of a state include physical register 
values, mapping of logical to physical registers, and pending 
stores. However, a check-point only stores the register 
mapping, with processor releasing registers only when a check-
point commits. This makes restoring register state relatively 
simple and fast [18], but requires more physical registers. 
Pending stores in a store queue are handled separately and 
require a more complex and time consuming mechanism. For 
instance, the time delay of scanning a large, 2

nd
-level store 

queue [2] for load-forwarding roll-back can be significant. 

The performance of this type of processor depends on the 
available resources, e.g. register file size, store queue size, 
instruction queue size, etc. and on the check-pointing 
mechanism itself. How well the latter functions, depends on the 
number of available checkpoints and on check-point placement 
along the program execution path. Typically, a new checkpoint 
is created at branches with high misprediction rates or at other 
instruction likely to produce an exception. Several different 
check-point management mechanisms have been proposed 
[19]. For instance, one of them is based on a confidence 
estimator that computes the confidence for every branch 
prediction done (including indirect branches). A new check-
point is created if the estimator gives low confidence for the 
current prediction [6]. 

When all instructions between the oldest and the second 
oldest check-points have successfully executed and thus could 
not be discarded due to a recovery, the oldest check-point can 
be released. At this time all instructions between the oldest 
check-point and the next one are committed. 

When a branch misprediction occurs, the processor rolls 
back the state to the youngest checkpoint preceding the branch. 
On an exception, execution cannot resume at the excepting 
instruction and also has to resume at the preceding check-point. 
This will require re-execution of a number of instructions, 
which were correctly executed. There can be a significant 
amount of instructions to re-execute depending branch 



prediction accuracy, the number of check-points and the check-
point management mechanism [18, 19]. This lack of precision 
in branch misprediction or exception recovery overhead 
degrades processor performance and increases power 
consumption. Increasing the number of check-points does not 
guarantee an improvement in performance and is undesirable 
due to hardware costs of check-pointing [18] and the hardware 
delays it may introduce. Also, increasing the number of check-
points does not guarantee an improvement in performance. 
Thus a new solution is necessary to avoid this loss of 
performance due to imprecise recovery. 

Another problem with large-window check-pointing 
processors is that they require a large number of registers 
which complicates register management: renaming of a logical 
register, allocating a physical register, freeing a physical 
register, and recovering from branch mispredictions and 
exceptions. Consider renaming, for instance. Many modern 
processors use a CAM-based structure, which stores a physical 
to logical register mapping. Thus for a processor like the CPR 
with 192 registers, the required CAM is large resulting in an 
increase in access time and energy consumption. Even larger 
register files may be desirable for very large instruction 
windows. Also, tracking when all the uses of a physical register 
have occurred and it can be released complicates things. For 
instance, CPR used reference counters [9] to release a physical 
register immediately after the last use of the register. Counters 
are easy to update but introduce additional complexity in state 
recovery when instructions are squashed. Last but not least, 
wider issue width requires wider renaming, such as in IBM 
Power4 [23], which is harder to implement, has high power 
consumption, and is a thermal hot-spot which can lead to 
hardware faults. This calls for a new mechanism to more 
efficiently manage large register files. 

The architecture proposed in this paper solves both of the 
above problems, allowing precise recovery and efficient 
management of a large register file in a unified approach and 
without using either check-pointing or a traditional ROB. It is 
called a Multi-State Processor (MSP). MSP assigns a state to 
instructions in flight and defines an efficient and scalable state 
management mechanism for instruction commit, release of 
registers, and branch misprediction or exception recovery. A 
new state is created on every instruction assigning a register, 
with adjacent states differing by at most one change in the 
register state. This allows fast register state recovery. 

For physical register management the MSP proposes a new, 
scalable register allocation, renaming, and release mechanism. 
It does not use either of the traditional approaches: a physical 
register free list and Register Alias Table (RAT) or CAM-
based designs. Instead, the MSP uses a mechanism for 
releasing a physical register based on its use by dependent 
instructions, which is integrated with state management and 
commit. Allocation and renaming are distributed and done 
separately for each logical register. The proposed mechanism 
can reduce the high power density and overall power 
dissipation of a renaming unit and the register file. 
Furthermore, it allows the register file itself to be banked in a 
novel way, reducing bank port requirements to 1 read and 1 
write ports. 

The rest of the paper is organized as following. Section 2 
introduces our definition of processor state and state 
management. Section 3 describes the micro-architecture of the 
MSP. Section 4 presents the state recovery mechanism and 
Section 5 describes how to implement limited-size state 
identifiers. Section 6 presents the performance evaluation of 
the MSP and compares it with the CPR processor. The paper 
concludes by discussing related work and summarizing our 
results. 

2 PROCESSOR STATE MANAGEMENT 

This section describes state definition and management 
proposed in the MSP architecture. Consider a dynamic 
instruction sequence shown in Fig. 1. Let us use it to illustrate 
the problem of state recovery in a check-pointing processor to 
motivate the state management of the MSP. 

Assume that a check-point is set at instruction 3, a branch 
with a low-confidence estimate. However, this branch is 
predicted correctly. But a branch misprediction occurs at 
instruction 7, where a check-point has not been set. As part of 
branch misprediction recovery, the processor’s state is restored 
to the state stored in the previous checkpoint – the one set at 
instruction 3. Execution resumes from instruction 3 and the 
processor re-executes instructions from 3 to 6 (the dashed box 
in Fig. 1), even though they were already correctly executed 
prior to branch misprediction. 

In summary, restoring processor state to a check-point 
causes all instructions in the pipeline that are younger than the 
check-point to be squashed. It also restores the logical to 
physical register mapping, adds released physical registers to 
the free list, and releases possible younger checkpoints. 

2.1 MSP State and State Management 

The goal of the MSP processor is to restore processor state 
precisely to the desired instruction. To achieve this, the MSP 
processor defines a processor state as the state of its registers. It 
assigns a new state to each instruction that writes a destination 
register. Thus the state difference between two adjacent 
instructions is at most the state of one register. The allocation, 
recovery and release or commit of a state in the MSP processor 
are thus strongly tied to register management. Stores to 
memory are dealt with separately via the store queue but in 
order determined by processor state. 

No PC Instruction StateId 

1 @+00 store  r2, @data 0 

2 @+04 add  r1, r2, r2 1 

3 @+08 bne  r2, @+2c  1 

4 @+0c sub  r2, #1, r2 2 

5 @+10 mov  r2, r1 3 

6 @+14 add  r1, r2, r2 4 

7 @+18 bne  r3, @+3e 4 

8 @+1c add  r1, r2, r1 5 

Figure 1. Example of a dynamic instruction sequence 



A processor state is assigned a value called a StateId 
maintained by a binary counter. StateId is incremented when an 
instruction is added to the instruction window and the 
instruction assigns a logical register (allocates a new physical 
register). Instructions not assigning a register, such as branches 
or stores, do not change the state. The current StateId is 
associated with the instruction entering the window. 

For each physical register a range of consecutive states in 
which the register is valid, called its StateId Range, is 
maintained. The Lower StateId of the range is the StateId of the 
instruction assigning the physical register. The Upper StateId 
of the range is the StateId of the instruction preceding the 
instruction that next renames the corresponding logical register. 
The StateId range allows identification of all instructions 
(states) using a given physical register. 

State recovery becomes a simple process: instructions with 
a StateId greater than the StateId of the instruction causing the 
recovery are discarded. Stores in the store queue are also 
released using the same condition. 

For instructions in Fig. 1, the assigned StateIds are in the 
column “StateId” of the figure. The StateId range associated 
with each physical register is shown in Fig. 2. The notation 
Rx.y describes (renaming) version y of a logical register x. 
Thus R2.0 and R2.1 are two instances of the logical register 
R2, they correspond to two physical registers allocated on two 
consecutive assignments to R2. 

The Rx.y notation is key to the MSP register management 
mechanism (described in Sec. 3). 

The MSP branch misprediction recovery proceeds as 
follows (for instruction 7 in Fig. 1). The MSP sets the Recovery 
StateId (explained in more detail in Sec. 5) to the StateId 
associated with this branch instruction, i.e. to state number 4. 
All instructions with a StateId greater than 4 are squashed. 
Physical registers whose Lower StateId > 4 can be released –
only register R1.2 in the example.  

3 MICRO-ARCHITECTURE OF THE MSP PROCESSOR 

The micro-architecture of the MSP processor and its 
pipeline are shown in Fig. 3. The micro-architecture uses a 
banked physical register file with 1 read and 1 write ports per 
bank. This requires arbitration to detect register port access 
conflicts and the MSP adds an arbitration stage to the pipeline. 
The register management is distributed among banks as 
described below. 

This micro-architecture does not use a standard reorder 
buffer, renamer, etc. Instead, the State Control Tables (SCT) 
and associated logic manage these functions in a distributed 
fashion. Some of the functions require interaction between all 
SCT, such as commit. This involves the Last Committed 
StateId (LCS) logic and State Counter shown in Fig. 3. In the 
MSP architecture described in this paper register release and 
commit happen at the same time. A new LCS value is 
computed every clock cycle. 

Every instruction in the instruction queue sets Use bits in 
the dependency tracking logic for each physical register it uses. 
A Use bit is reset once such an instruction consumed the 
register value. An OR of all use bits and of the Ready bit for a 
given physical register generates the RelIQ signal used in 
register management. 

3.1 Register and State Id management 

MSP integrates state and register management in a single, 
scalable mechanism. To make register management a 
distributed mechanism the MSP imposes the following two 
constraints: 

a) Each logical register is renamed to a fixed subset of 
physical registers (a bank of physical registers) 

b) Physical registers are allocated and released in order 
within such a bank for a logical register 

These constraints allow register allocation, renaming, and 
source register lookup to be performed independently for each 
logical register and makes them independent of the physical 
register file size. It allows the physical register to be identified 
as R.x, where R is the logical register number. A global free list 
of physical registers and a global Register Alias Table [26] or a 
CAM-based allocator/renamer [23] are no longer required. 

3.2 MSP operation 

The management of MSP registers and state is divided into 
local management for each logical register (bank), and global 
management interacting with the rest of the processor and 
using information from all banks. 

3.2.1 Local Management 
The local management logic is shown in Figs. 4 and 5. It 

consists of a State Control Table (SCT) plus rename and 
release pointers with their associated logic. An SCT entry is a 
descriptor for one physical register and records the processor 
state assigned to the instruction that assigns the register. 

The management performs (locally) allocation of a new 
physical register, renaming, tracking the use of each physical 
register in the bank by dependent instructions in the IQ, and 
release of physical registers on commit or state recovery. 

An SCT entry for a physical register in a bank contains: 

• StateId: the value of the Lower StateId, the StateId of 
the instruction assigning the physical register. The 
Upper StateId is implicit – it is the value of the next 
SCT entry minus one (recall Fig. 2). For the most 
recent entry (last renaming) the Upper StateId is Null. 

StateId Range Associated registers 

Lower Upper Logical Physical 

0 0 R2.0  

1 1 R2.1  

2 3 R2.2  

4 5 

R2 

R2.3 * 

0 2 R1.0  

3 4 R1.1 * 

5 5 

R1 

R1.2  

Figure 2. StateId Range for instructions in Fig. 1 



• Valid Bit (Vb): specifies whether the entry is in use. 

The control logic associated with each entry consists of: 

• StateId Range Comparator: It compares the StateId of 
the entry and the next one with a StateId broadcast by 
the Global Control. A physical register is released and 
instruction committed if its StateId < LCS (unless it is 
the last such register in a bank). StateId range 
comparison is used to update the rename pointer. 

• Logic to track if an instruction has written this register 
result and logic to detect if this value has been 
consumed by all dependent instructions. The commit 
process and the release of physical registers for 
committed instructions is a continuous process and 
instructions are committed in the StateId order. 

• Recovery logic to receive a globally broadcast 
Recovery StateId and detect if a physical register needs 
to be released (see Sec. 5 for details). A register is 
released if its StateId > Recovery StateId. 

Two local pointers are associated with an SCT. Let us 
assume that they are implemented as one-hot bit vectors using 
circular shift registers, but other implementations are also 
possible: 

• Rename Pointer (RenP): points to the last allocated 
physical register (SCT entry), which is the most recent 
renaming of the associated logical register. On a new 

renaming, the pointer will be shifted by one position to 
the next spatially adjacent entry. The current mapping 
of the associated logical register to a physical register 
is the logical register identifier and the RenP index 
pair. 

• Release Pointer (RelP): points at the first physical 
register in the bank that can not be released. The value 
in this register either has not been produced (Ready bit 
Rb=0) or has not been consumed by all its dependent 
instructions or some of the instructions associated with 
this StateId have not yet executed. RelP takes part in 
the global computation of the Last Committed State or 

LCS = Min(RelPi), where i ε [0, NumLogReg-1], as 
described in more detail below. 

Any StateId in the bank/SCT such that StateId < RelP can 
potentially be committed and the corresponding registers 
released. The value in such a register has been produced 
(Ready bit Rb=1) and consumed by all its dependent 
instructions. All the instructions associated with this StateId 
have executed (without exceptions). “can potentially be 
committed” was used above instead of “can be committed” 
because StateId’s are committed iff StateId < LCS. 

Min(StateId[RelPi]) = LCS is the oldest entry in the 
processor that cannot yet be committed. It is computed every 
clock by the global control logic. Any StateId < LCS in any 
bank can be committed and its register released (unless it is the 
last renaming). Thus multiple StateIds across multiple banks 

 
Figure 3. The MSP micro-architecture 



can be committed in the same cycle. Example in Fig. 4 shows 
pointer change in a cycle after LCS becomes 4. 

In summary, local register management functions 
performed are: 

a) Allocating a new physical register and renaming the 
corresponding logical register, accomplished by incrementing 
(shifting) the rename pointer RenP, 

b) Source register renaming by encoding RenP and 
concatenating it with the logical register number (bank 
number), 

c) Releasing a physical register, accomplished by setting 
the Valid bit to 0 for any physical register i such that 
SCT.StateId(i) < LCS, 

d) Tracking uses of each register in a bank by dependent 
instructions 

3.2.2 Global Management 
The global management maintains the current state of the 

processor and determines the oldest non-committable StateId, 
LCS. This is accomplished by the following two functional 
blocks: 

• The StateId Counter (SC), defines the current processor 
StateId. It is incremented for each decoded instruction 
that assigns a logical register. 

• The Last Committed StateId (LCS) unit, computes the 
minimum (oldest) StateId of all SCT[RelP] entries 
every cycle. The LCS is the oldest state in the MSP 
that can not yet be committed. Thus any StateId’s older 
than LCS can be committed. This may commit multiple 
older states. 

Recall that several additional instructions may belong to 
one state and the state can only be committed when all of them 
have executed. Such instructions do not assign registers and 
thus cannot be tracked through the SCTs or through their 
register dependencies once they leave the instruction queue. 
This is why the state of instructions issued but still in the 
pipeline is tracked in Fig. 3. 

A mechanism used to release processor resources of 
committed instructions/states, registers and Store Queue 
entries, is based on LCS. The logic in a local scope control of 
each logical register releases physical registers of entries with 
StateId < LCS. The Store Queue logic uses LCS to store to 
memory entries with a StateId older (smaller) than the LCS. 

The number of SCTs is equal to the number of logical 
registers, typically 32, and the StateId is 9bits for a 256-entry 
physical register file (8 plus an “overflow” bit explained 
below). Thus the hardware needed to compute the LCS is a 
five-level binary tree of comparators and multiplexors. Each 
comparator finds the smaller of the two StateIds at its inputs 
and passes it through to the next level. This computation may 
take multiple clock cycles but can be pipelined to produce a 
new minimum. Latency of LCS computation is not a critical 
timing issue, even a 4-cycle LCS computation degrades 
performance by less than 1% compared to a 1-cycle 
computation. As for power, static 9bit comparators with low 
power consumption can be used. 

A special condition occurs if (RenP=RelP and 
RelIQ[RenP]=0), i.e. all physical registers have been renamed, 
produced and consumed by all consumer instructions. The 
StateId of the SCT entry pointed by both RelP and RenP is not 
used in the computation of the LCS. 

3.3 Renaming of Multiple Instructions per cycle 

So far we have described several register management 
functions: allocation, renaming, release, and misprediction 
/exception recovery. Note that shadowing (or checkpointing) of 
the register map is not needed in the MSP, its function is 
performed by state recovery. The source operand lookup is 
performed by reading the RenP in a given SCT. 

In the simplest case described above, the renaming process 
advances the rename pointer, RenP, by one in the required 
bank. However, the renaming process is complicated by the 
fact that multiple instructions may assign the same destination 
logical register in one clock cycle.  

Our analysis of the impact and frequency of occurrence of 
such multiple renaming in the same cycle showed that 

 
Figure 4. Local Management (release and recovery) 



renaming at most two instructions assigning the same logical 
register per cycle is sufficient. Allowing three or more such 
instructions to be renamed per cycle does not improve 
performance.  However, allowing only one to be renamed leads 
to a 5% reduction in IPC. Therefore, the renaming logic 
described in this section allows up to four destination registers 
to be renamed per cycle, two of which can be the same logical 
register. 

Fig. 5 shows a block diagram of the renaming logic for a 
logic register (per SCT). This logic is enabled by a logical 
register identifier, LogRegId, of a register to be renamed. There 
can be at most four SCTs activated in a cycle (assuming an 
issue width of 4). In an activated SCT the entry to be written by 
a new renaming is pointed to by the next RenP. The renaming 
logic also generates the “next RenP” value, which is used if the 
associated logical register is renamed again in the same cycle. 

The next RenP bit vector is a logical shift of the current 
RenP bit vector, by one or two positions. The current RenP bit 
vector value of each SCT, RenPindex, is sent to Renaming 
Control Unit, and used as base pointers to the corresponding 
source operands of instructions in the renaming cycle. The 
RAW dependences are resolved by increasing these pointers by 
the number of previous instructions which write in the same 
logical register (this control is very similar to traditional RAW 
dependency control). A port decoder identifies write ports to 
use, up to two, using the new values of the RenP. Finally, the 
StateIds to be written into the selected entries are the StateIds 
of up to two new instructions being renamed. These StateIds 
are computed by adding the current StateId (the value of the SC 
counter) and the SC offset of each instruction generating a new 

state. The SC offset is the position of the instruction in the 
current set of four being renamed (only two of which can be in 
the given SCT). The figure shows an example of two 
instructions being renamed, first and last in this group of four. 
The SCT is assumed to use one write port per entry and two 
multiplexors are used to select the two computed StateIds to 
write. A stall is generated if there are more than two 
instructions renaming the register. 

Lack of physical registers for renaming in a bank may 
cause a stall of all stages prior to Rename. The stall is detected 
by an SCT and broadcast to all other SCTs and to the global 
renaming control unit. The stall control logic prevents 
advancing of RenP pointers in other SCTs, which rename 
younger instructions in the same cycle. Note that this lack of 
space in a bank can be detected very early in the renaming 
cycle. 

3.4 Tracking Register Use 

To detect when the last use of a register occurs and also 
when all instructions associated with a register state have 
completed execution could be done with reference counters [9]. 
MSP proposes a different solution. 

A bit vector RelIQ of the size equal to instruction queue 
size, is used to track dependents of a register and of all 
instructions belonging to the same state. During renaming of 
source operands the bits of this vector corresponding to 
dependent instructions are set to “1”. As instructions are issued, 
they reset the corresponding bit of the vector for each source 
register, UseBit. Note that this can be done within each SCT in 

 
Figure 5. Local Management (renaming logic for one logical register) 



a distributed fashion. 

The RelIQ bit vector is also used to track instructions that 
belong to the corresponding register state but themselves do not 
assign a destination register. The state can only be retired when 
all such instructions consumed their operands and complete 
execution without exceptions.  

Finally, on branch misprediction or exception recovery all 
bits in a column of RelIQ vectors corresponding to the position 
of the cancelled instructions are reset. 

3.5 The State Recovery Mechanism 

The state recovery mechanism on a branch misprediction 
proceeds as following. The processor state is reset to the 
StateId of the branch. All instructions in the IQ following the 
Processor branch are squashed and their Use bits cleared. The 
front end is restarted with a branch target PC. The Recovery 
StateId is broadcast to all SCTs and all physical registers with a 
StateId greater than the Recovery StateId are released. 

An exception is actually taken only when the instruction 
causing the exception is committable and all prior instruction 
have executed. Any younger instructions are cancelled. The 
Recovery StateId is set to the StateId of the instruction causing 
the exception or the StateId of the previous one if this 
instruction produced a new state. Similar to branch 
misprediction recovery, multiple instructions associated with a 
single state have to be dealt with correctly. A 5-bit id is 
assigned to instrunctions in the same state, in order, to achieve 
this. After the recovery is complete, the SC is set to the 
Recovery StateId and the Recovery StateId is disabled. 

3.6 StateId Overflow 

The StateId size is log2(M) = m bits, where M is the 
register file size. Thus the State Counter SC will eventually 
overflow. The MSP uses a saturation bit, Sb, added as the most 
significant bit to the log2(M) bits of the StateId to control the 
overflow. The SC is initialized to zero and is incremented until 
it reaches the maximum value of all “1”s. Since there are at 

most M states in flight, all current states must now have the 
saturation bit set to 1. At this point the Sb bits of all stored 
StateIds are reset to 0 and the SC is set to value M+1, that is, 
the Sb to 1 and the rest of the bits to 0. 

4 PERFORMANCE EVALUATION 

The following architectures are evaluated and compared in 
this section: 

• Baseline. A reasonably standard out-of-order, single-
thread, superscalar processor. 

• CPR. An architecture without an ROB using a 
selective check-pointing mechanism, a hierarchical 
store queue, and aggressive release mechanism for 
physical registers. It has a register file with all required 
ports and does not use the arbitration stage in the 
pipeline. 

• n-SP. The Multi-State Processor architecture with n 
physical registers per logical register and the same 
hierarchical store queue as CPR. It uses arbitration. 

• ideal MSP. MSP with an infinite hierarchical store 
queue and an infinite, fully-ported register file. 

The parameters of the four architectures are shown in Table 
1, with many chosen to be identical to the CPR processor

1
 in 

[2]. A notable difference with CPR are branch predictors used 
in this paper: gshare and partially TAgged GEometric history 
length (TAGE) [27] predictor. The former is an example of a 
simple, fast predictor and the latter of a complex but more 
accurate one. 

The performance evaluation was conducted using a 
modified version of the execution-driven simulator SMTsim 
[17] and the SPEC CPU2000 benchmark suite [14]. The 
benchmarks were compiled with the Compaq C V5.8-015 

                                                                        
1  Even so, our CPR results should not be expected to the same as in 

[2] because we simulated a different ISA and used a different compiler and 

simulator. 

TABLE I. PROCESSOR CONFIGURATION 

Processor core Baseline CPR n-SP ideal MSP 

Reorder buffer size 128 - - - 

Instruction queue size 48 128 128 128 

Number of checkpoints - 8 (out-of-order release) - - 

Fetch | Rename | Issue | Retire width 3 | 3 | 5 | 3 3 | 3 | 5 | - 3 | 3 | 5 | - 3 | 3 | 5 | - 

nt | Fp register file size 96 | 96 192 | 192 n | n (each LogReg) ∞ | ∞ (each LogReg) 

Ld | L1St | L2St buffer size 48 | 24 | - 48 | 48 | 256 48 | 48 | 256 48 | ∞ | ∞ 

Confidence branch estimator - 64k entries | 4 bits - - 

LCS propagation delay - - 1 cycle 0 cycle 

Int | Fp | LdSt units 4 | 4 | 2 

Branch predictor gshare TAGE 

Branch predictor parameters PHT size: 64k 8 components 

Memory Subsystem  

I-cache size 64 KB, 4-way, 1 cycle hit 

D-cache size 64 KB, 4-way, 4 cycle hit 

L2-cache size 1 MB, 8-way, 16 cycle hit 

Caches line size 64 bytes 

Main memory latency 380 cycles 

 



compiler under Compaq UNIX V4.0 with the optimization 
option –O3. 300 million representative instructions per 
benchmark were simulated using input reference sets. These 
instructions were selected by analyzing the distribution of basic 
blocks per [12]. 

4.1 SPECInt Results 

Fig. 6 shows the IPC of the four architectures described 
above using a 64K-entry gshare predictor. The n-SP processor 
is evaluated with n physical registers per logical register bank, 

8 ≤ n ≤ 128, to understand the impact of n on performance. 

On average, MSP performance exceeds CPR’s in all cases. 
The 8-SP architecture achieves a 5% average performance 
improvement. CPR does not use the arbitration stage and yet 
16-SP+Arb achieves a 14% performance improvement. Further 
improvement from increasing n is relatively small. The 
performance of the 128-SP is basically identical to the ideal 
MSP. Performance of individual benchmarks for 8-SP varies 
with respect to CPR, it is only the 32-SP architecture that 
always has better performance than CPR. 

The four architectures were also compared using the most 
accurate but possibly slower branch predictor – a very 
aggressive TAGE predictor. The results in Fig. 7 show that a 
branch predictor has a much bigger impact on CPR 
performance than on the MSP’s. The 8-SP IPC average is now 
10% lower than CPR and the 16-SP+Arb is 1% better than 
CPR. However, overall the IPC trend is the same as with the 
gshare predictor. 

Also shown in the figure are the 16-SP+Arb processor stall 
cycles from just three of the registers that contribute the most 
to performance loss. Even with 512 registers, the stalls can be 
very high as MSP exhausts physical registers in a bank. 

4.2 SPECfp Results 

The IPC results for the floating point benchmarks are 
shown in Fig. 8. The MSP performance is now better than that 
of CPR only with 64 physical registers per bank. This is again 
due to the fraction of execution time when MSP is stalled due 
to lack of registers (two right-most bars in Fig. 8) on most-
frequently used registers. In programs with very low stall 
cycles, such as fma3d, the 8-SP performance is better than that 
of CPR. In other cases CPR does better. 

4.3 Reducing Register Stalls 

Figs. 7 and 8 show a significant impact on MSP 
performance due to insufficient registers in a bank and the 
performance improvement obtained with an increase in the 
bank size. The main reason is a physical register allocation 
only within a logical register bank. This may happen in loops 
that use only a few registers. An 8-SP processor would stall 
after at most 8 iterations of a small loop. In a flat register file 
with traditional renaming this does not happen. 

One can eliminate or significantly reduce this problem by 
two simple modifications of a program. One is loop unrolling 
and the other is a modification to the register allocation in a 
loop to avoid reusing the same register (even without 

 

Figure 6. SPECint IPC with gshare and 16-SP stalls due to lack of registers 



 

 

Figure 7. SPECint IPC with the TAGE predictor and 16-SP stalls due to lack of registers 

 
Figure 8. SPECfp IPC with the TAGE predictor and 16-SP stalls due to lack of registers 



unrolling). Both of these can be easily implemented in a 
compiler. A small subset of benchmarks with high stalls was 
modified by hand changing 1 to 3 important loops per program. 

Table 2 shows the performance of modified programs using 
the TAGE predictor. CPR uses a banked physical register file 
with 192 registers. After modifying only a few loops in some 
SPEC-traces, the 16-SP (with arbitration) has a 3% higher IPC, 
on average, than CPR for the entire SPECInt suite. We believe 
that when a compiler optimizes all loops in a program causing 
stalls the MSP performance improvement will be even higher. 
For SPECfp the performance of 16-SP+Arb is now close to 
CPR. The 8-SP performance is also much improved. 

IPC for CPR with 256 and 512 physical registers (fully 
ported and without arbitration) and the TAGE branch predictor 
for SPECint benchmarks was also evaluated. CPR with 256 
registers has a 1% IPC improvement and with 512 registers a 
1.3% improvement over CPR with 192 registers. Given that 
16-SP+Arb (with two modified programs) has a 3% IPC 
improvement for SPECint over CPR with 192 registers, the 
reason for MSP performance improvement is NOT its larger 
register file. 

4.4 Reduction in Instruction Re-execution 

Fig. 9 shows the total number of executed instructions and 
the number of correct-path instructions executed by the CPR 
and the 16-SP architectures for integer benchmarks. The results 
are presented for two different branch predictors. 16-SP+Arb 
executes, on average, 16.5% (9.5% due to precise recovery) 

fewer instructions than CPR using the gshare predictor. The 
reduction is 12% (7% due to precise recovery) with the TAGE 
predictor. Further reduction beyond the precise state recovery 
is a side-effect of the renaming mechanism. The reduction in 
executed instructions and the reduced execution time result in 
power savings. 

TABLE II. IPC FOR MODIFIED BENCKMARKS WITH TAGE BRANCH 
PREDICTOR 
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resid 
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modified 1.2 1.0 1.2 1.5 

original 0.3 0.1 0.2 0.4 183.equake 

smvp 
0 54 

modified 0.3 0.2 0.3 0.4 
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Figure 9. Total number of executed instructions for SPECint benchmarks 



5 HARDWARE ISSUES 

This section discusses hardware complexity, area, power 
and access time issues arising in the MSP architecture. 

5.1 Area Considerations 

A banked register file can use 2 Read and 1 Write ports per 
bank with only a very minor increase in access conflicts [11, 
7]. MSP uses 1rd/1wr port per bank because a given instruction 
needs at most one operand from a given bank – the latest 
renaming of a logical register. CPR, if banked, needs at least 2 
Read /1 Write because a single instruction may need two 
different source operands from the same bank. The area of such 
a 512-entry register file is 0.1sq.mm while area of a 256-entry 
register file in CPR is 0.21sq.mm for 45nm technology (per 
CACTI 4.2 [29] but without banking). 

MSP uses extra area for SCTs but they replace register 
renamer and some of the ROB and commit logic.  Note that an 
8 Read/4 Write port standard renamer is quite a large structure. 

Finally, MSP adds the register use tracking matrix. It is a 
structure requiring 1 bit of storage per physical register for 
each instruction in the instruction queue. The matrix needs 3 
Write ports and no read ports or output drivers. Each bit’s 
output is permanently connected to the OR gate generating the 
RelIQ signal. Write operations and tracking control are 
completely independent between each sub-matrix (associated 
to a SCT). 

5.2 Power Consumption and Access Time 

A physical register file was designed and laid out for the 
16-SP architecture. Each bank has 16 64b entries [25] and 1 Rd 
and 1Wr ports. The power and access time of one bank were 
evaluated using SPICE based on predictive technology models 
for 65nm and 45nm process. Similarly, 4- and 8-bank register 
files with 192 entries but fully ported banks for CPR were also 
evaluated.  

Total access power was computed using the following 
equation

2
, which includes leakage power of idle banks: 

TAcc_power = Acc_power + ( N – 1 ) x Idle_power, where 
TAcc_power is total average power, Acc_power is a bank 
access power, Idle_power is idle bank power, and N is the 
number of banks. 

                                                                        
2  Power consumption of the address decoder is the same in all designs 

as they use a similar address decoder. It is not included here. 

The results clearly show in Table 3 that the power 
consumption and access time (see footnote) of the larger 16-SP 
register file are lower than that of a banked CPR register file. 

Of course much higher energy savings are achieved by the 
MSP due to executing fewer instructions. 

6 RELATED WORK 

Smith and Pleszkun [13] studied support for precise 
interrupts, such as the history buffers, organized similarly to an 
ROB, and the future file that works together with a ROB to 
improve scalability. However, none of these approaches can 
support a large number of instructions in flight. 

Hwu and Patt [5] proposed the use of checkpoints to 
implement precise interrupts but discarding useful work on 
recovery, i.e. without precise recovery. Cherry [8] allows more 
instructions in flight but still uses a ROB in combination with 
one checkpoint to release resources earlier, when it can be 
guaranteed that all branches have been completed and all 
memory instructions have been issued. 

The Kilo-instruction Processor [1] is a multiple check-
point based architecture, allowing even more instructions in 
flight. It uses a pseudo-ROB for younger instructions to 
minimize the amount of correct-path instructions re-executed. 
Another similar proposal is the CPR [2], which uses check-
pointing without a ROB and thus also has to re-execute useful 
instructions. CPR proposed other mechanisms like the 
hierarchical store queue and an aggressive release of physical 
registers based on reference counters. The Continual Flow 
Pipeline architecture (CFP) [15] improves on CPR by 
incorporating a two-level instruction queue, adding the Slice 
Data Buffer where the instructions depending on a L2 cache 
miss are stored. CFP shows some performance improvement 
over CPR. 

Reference [18] proposed to stall decode while there are 
many outstanding and likely to be miss-predicted branches. 
Reference [19] used a simple confidence estimator to allocate 
checkpoints selectively to reduce power and maintain 
performance (it precedes CPR) [20] proposed to overlap 
recovery with renaming down the correct-path. Reference [22] 
proposed a virtual context architecture (VCA) to support both 
multithreading and register windows, providing higher 
performance with significantly fewer registers than a 
conventional machine and the idea of giving each logical 
register a FIFO queue of physical registers [28] has been 
previously used to make register reclamation easy in a very 

TABLE III. REGISTER FILE ACCESS POWER AND ACCESS TIME (MW | FO4) 

CPR 

192 / 64bits per entry 

4 banks 

8Rd/4Wr ports per bank 

CPR 

192 / 64bits per entry 

8 banks 

8Rd/4Wr ports per bank 

16-SP 

512 / 64bits per entry 

32 banks 

1Rd/1Wr ports per bank 

Technology Write Read Write Read Write Read 

65nm 4.75 | 1.06 4.50 | 5.51 2.75 | 1.06 2.65 | 5.51 2.05 | 0.85 2.10 | 4.44 

45nm 3.30 | 1.29 2.60 | 6.11 2.10 | 1.29 2.10 | 6.11 2.00 | 1.11 1.65 | 5.92 

 



different context for clustered architectures. Runahead+CPR 
was compared with CFP in [15] thus indicating Runahead’s 
capabilities. Qualitatively, as branch predictors become better, 
the advantages of large-window processors (CPR, CFP, Kilo, 
MSP) over Runahead should increase. Reference [21] 
independently proposed a register reference counting scheme 
based on binary counters represented as matrices (the same 
idea was part of our Technical Report [24]). 

7 CONCLUSIONS 

The Multi-State Processor architecture proposed in this 
paper enables implementation of large-window processors with 
a large physical register file and precise recovery of execution 
state on mis-predicted branches and exceptions. It does not use 
a traditional ROB or check-pointing to achieve this. MSP uses 
a novel, scalable register management architecture, integrated 
with commit and register release. This includes a new approach 
to register renaming. Its banked register file can use just 1 Rd 
and 1 Wr port per bank significantly reducing its size and 
power consumption. MSP with the TAGE branch predictor 
achieves an average IPC increase of 3% compared to the CPR 
architecture with a 192-entry fully-ported register file and 14% 
using the gshare predictor. The performance of the MSP is 
affected by integer and f.p. register file stalls. We believe that 
these can be reduced or completely eliminated with compiler 
optimizations. MSP also executes 16.5% fewer instructions 
with gshare and 12% with TAGE, mostly due to precise state 
recovery. This and the lower power consumption in the register 
file make it more power efficient than CPR. 
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