
Performance Evaluation of Memory Caches in Multiprocessors �

Yung�Chin Chen Alexander V� Veidenbaum

MIPS Technologies� Inc� Center for Supercomputing Research and Development
Silicon Graphics� Inc� University of Illinois at Urbana�Champaign

Mountain View� CA ����� Urbana� IL �	
�	
ychen�mti�sgi�com alexv�csrd�uiuc�edu

Large�scale MIN�based shared�memory multiprocessor

systems have long shared memory latency� Private caches

can improve memory access latency but they may suf�

fer from the cache coherence problem and potentially

lower data locality due to data sharing and multiproces�

sor scheduling� These two problems also increase shared

memory load and may result in frequent memory stalls� In

this paper� we evaluate the performance of memory caches�

a cache memory placed in front of shared memory� in a

large�scale multiprocessor system in the presence of pro�

cessor caches� The memory cache is shown to have good

performance and scalability�

� Introduction

Large�scale multiprocessor systems in which processors
and memory modules are linked by interconnection net�
works have been proposed and designed in recent years�
One of the major problems associated with this type of ar�
chitecture is the speed of shared memory access due to long
network latency and slow shared memory� Private caches
and local memory that are associated with each proces�
sor are used to reduce the frequency of shared memory
accesses� The use of private caches in multiprocessor sys�
tems introduces the cache coherence problem� and caches
may not perform as e�ectively as those in uniprocessor
systems�

The cache coherence problem may also increase the
shared memory load because coherence maintenance can
cause additional locality loss and memory updates� For
software coherence schemes� there could be frequent cache
invalidations� For directory schemes� the false sharing ef�
fect may induce unnecessary cache misses� Parallel pro�
cessing can also cause spatial and temporal locality losses
due to data sharing and multiprocessor scheduling� Our
previous study ��� showed that a memory stall is still one
of the major performance bottlenecks even when processor
caches are present�

�This work was supported in part by the National Science

Foundation under Grant No� NSF ��������� NASA Ames Re�

search Center under Grant No� NASA NCC ��		�� and MIPS

company�

In addition� the speed gap between processors and
memory is increasing� The problem will become even worse
in the future� Faster memory can serve memory requests
more e�ciently but at a higher cost� More interleaving can
increase memory bandwidth but it is expensive and is not
always e�ective� e�g� hot spots� A cost�e�ective approach
is to place a cache memory in front of a shared memory
module� The memory cache with high hit ratios turns a
system having a slow shared memory access latency into
one having a fast shared memory access latency�

The memory cache is not a new idea� It was proposed �	�
as an alternative way to use cache memory without the
cache coherence problem� It was also implemented in the
Alliant FX
�� machine� However� the improvement in
performance due to memory caches is not as large as for
processor caches because a memory request still has to
traverse the interconnection networks to access data�

It is possible to have both types of caches in the system�
The processor cache can eliminate most of the requests
from a processor to shared memory� and the memory cache
can reduce the access latency for these requests� In this
paper� we evaluate the performance of memory caches in
a large�scale multiprocessor system with processor caches�
We study the performance improvement from the use of
the memory cache� the e�ects of its con�gurations and its
scalability�

� Memory Caches

The use of a memory cache has several advantages�
First� the memory cache does not induce any coher�
ence problem� and its design is transparent to processor
cache coherence protocols and architectures� Second� the
implementation of memory caches can utilize the latest
technology such as low�cost high�speed CDRAMs �Cache
DRAM� ���� A CDRAM integrates a cache into a large
DRAM with fast block transfer and options of set associa�
tivity� Third� the memory cache has very high hit ratios�
as will be shown in this paper�

We assume that the shared memory is interleaved in
such a way that a cache line belongs to a single memory
module� If we use a memory cache line size equal to that



of the processor cache� the memory cache uses mainly the
temporal locality of each memory line� It could utilize the
spatial locality if it had a larger line size� The temporal lo�
cality depends mainly on the degree of sharing� either true
sharing or false sharing� Therefore� it is a�ected by the
number of processors� the line size� scheduling algorithm�
and program behavior�

The temporal locality is high for a multiprocessor sys�
tem due to data sharing and the cache coherence prob�
lem� the two major problems that reduce the hit ratios of
processor caches� Part of the performance losses can be
compensated by the memory cache� The sharing of lines
causes unavoidable cold misses for each processor� When
the memory cache is used� the �rst cold miss can bring the
shared data into the memory cache� and subsequent cold
misses by other processors can hit in the memory cache�

The improvement on performance by the memory cache
can be thought of as increase of the processor cache hit ra�
tio� Without considering the e�ects of overlapped memory
accesses and resource con�icts� such an increase can be ex�
pressed by

� � ��� hpc�� hmc �
tmem � tmc

tmem � tpc
� ���

where tpc is the access time for a processor cache hit�
tmc is the access time for a memory cache hit�
tmem is the access time to shared memory�
hpc is the processor cache hit ratio�
and hmc is the memory cache hit ratio�

The improvement is proportional to the memory cache
hit ratio and the processor cache miss ratio� In addition�
it is related to the access times of the shared memory and
caches� When the shared memory becomes slower or the
memory cache becomes faster� the memory cache is more
e�ective� In practice� the actual improvement in shared
memory latency is hard to estimate without doing simula�
tion�

� System Architecture

The system organization that we simulate consists of an
equal number of ���bit RISC processors and shared mem�
ory modules interconnected by unidirectional� multistage
Omega networks� The weak consistency model ��� is used�
The processor data cache is a ���KB direct�mapped cache�
and the line size is �� bytes�

We use the simple software scheme ��� to maintain pro�
cessor cache coherence in most of our experiments� We
also use the directory scheme in one experiment� The
directory scheme in this study is based on Censier and
Feautrier�s distributed full�map directory scheme ���� For
the software scheme� we use a write�through write�allocate
cache with a small write�back cache as its write bu�er ����
This write policy was shown to have better performance
than pure write�through or write�back caches for software
schemes�

��

��

��

��

��

��

��

	�


��

��� 
 � � � 
� �� �� 
�� ���

Hit
Ratio

��

Cache Size�Module �KB�

SA�
 �

�

�

�

�

SA�� �

�

�

�

�

SA�� �

�

�

� �

SA�� �

�

�

� �

Figure 	� Average hit ratios of memory caches SA�
set associativity��

A memory cache is placed in front of each shared mem�
ory to handle all of the requests to shared memory� We
assume that the memory cache uses the write�back policy�
We observed that the write�through policy yields worse
performance� The LRU �least�recently�used� replacement
policy is used�

For more detailed description of these modules and their
timing models� see ����

Six Fortran programs are used as our benchmarks�
ARC�D� OCEAN� FLO��� TRFD� MDG� and MG�P�
Details about these benchmarks can be found in ��� ����
Event�driven timing simulation is used in our study� More
details about the trace generation� simulation methodol�
ogy� and benchmark characteristics can refer to ����

� Performance Evaluation

In this section� we evaluate the performance of mem�
ory caches� Unless otherwise speci�ed� we assume a ���
processor system� both processor and memory caches use
���byte lines�

Figure � shows the overall hit ratios for the memory
cache averaged over six benchmarks for di�erent memory
cache con�gurations� The set associativity is important
only when the cache size is small� A direct�mapped ��KB
cache is a cost�e�ective con�guration� whose average hit
ratio is approximately ���� while the maximal average hit
ratio is 	�� for a larger cache or a higher set associativity�
Most of the misses are read misses� and most of the read
misses are cold start misses �see �����

The memory cache can have a line size larger than that
of the processor cache and therefore capture spatial local�
ity� A longer processor cache line will increase data trans�



��

��

��

��

��

��

	�

	�


��

�KB�� �KB�� 
�KB�� ��KB�
 MAX

H
i
t

R
a
t
i
o

��

�Cache Size� Set Associativity��Module


 line �
�

�

�

�
�

� lines �

�

�

�

�

�

� lines �

�

�

�

�

�

� lines �

�

�

�

�

�

Figure �� Hit ratios of memory caches with di�erent
line sizes in number of processor cache lines��

fer time and cause more contention for caches� networks�
and memory� It also increases false sharing for directory
schemes� Consequently� the processor cache line size can�
not be made too long� On the other hand� there is not so
much overhead for memory caches because the physical lo�
cation of shared memory and memory caches are close� and
the data transfer does not have to traverse the networks�

Figure � shows the average hit ratios for the memory
cache using memory cache line sizes that are equal to ��
�� � and � processor cache lines� respectively� A longer
line has higher hit ratios due to higher spatial locality�
Increasing the line size from � to � processor cache lines
yields the largest improvement� Any further increase in
line size is less important� Also� when a long cache line
is used� a small cache with a high set associativity can
achieve hit ratios equivalent to a large cache with a lower
set associativity� This appears to be an economic choice
for memory caches if the use of a long cache line does not
incur a lot of overheads�

Hit ratios alone do not characterize performance of
caches� Some overheads� such as write stalls and network
and memory contention� are not re�ected in the hit ratios�
Therefore� we also measured average memory latency� The
latency for a given memory access consists of the default
minimal cycles required ��� cycles in our case� and extra
cycles due to resource contention �called the stall cycles��
The memory cache can reduce memory latencies for those
accesses that have processor cache misses in two ways� One
is to provide faster memory access �i�e�� a shorter minimal
latency� �� cycles in our case� for requests having memory
cache hits� The other is to reduce stalls on memory mod�
ules� The system with memory caches has fewer memory
stalls than the system without memory caches because the
cache memory can serve requests faster so that the average

w�o MC

MC ��
�

OPT

�




�

�

�

�

�

�

�

	


�






�


�

C
Y
C
L
E
S

STEPX FTRVMT FLO�� TRFD INTERF MG�P

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�

Figure �� Comparison of average stall cycles for a read
miss fetch between di�erent memory systems�

w�o MC

MC ��
�

OPT

�




�

�

�

�

�

�

�

	


�

C
Y
C
L
E
S

STEPX FTRVMT FLO�� TRFD INTERF MG�P

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

Figure �� Comparison of average memory read laten�
cies between di�erent memory systems�

queuing delays of these requests would be shorter� and the
load is shared among shared memory and memory caches�

To demonstrate how memory caches reduce stalls� Fig�
ure � shows the average stall cycles for a read miss fetch for
systems with and without memory caches� The OPT sys�
tem assumes �� hit ratios for memory caches� a perfor�
mance that can be thought of as the optimal performance
of memory caches as well as that of a system using shared
memory which is as fast as cache memory� The system
with the memory cache �MC� uses a direct�mapped ��KB
cache for each memory module� which yields maximal hit
ratios for most of these benchmarks� In general� MC per�
forms nearly as well as OPT because of its high hit ratios�
Both eliminate most of the memory stalls that occur in
the system without memory caches� However� they will
increase network contention at the same time due to a
higher tra�c rate� The reduction in stall cycles for a read
miss fetch ranges from ��� to ��� with an average ���
for MC� Write accesses to shared memory modules also
bene�t from the memory cache in the same way�

Figure � shows the average memory read latencies for
the same systems� The reduction in read latency ranges
from �� to ��� with an average ���� The reduction is
not as much as that in stall cycles because there is a mini�
mal latency required for each read miss� and the processor
cache has high hit ratios that mask o� the improvement
coming from a shorter processor cache miss service time�



��

��

��

��

��

��

	�

	�


��

�KB�� �KB�� 
�KB�� ��KB�
 MAX

H
i
t

R
a
t
i
o

��

�Cache Size� Set Associativity��Module

WTB �

�

�

�

�

�

WB �

�

�

�

�

�

DIR ��

�

�

�

�

WTWB �

�

�

�

�

�

Figure �� Comparison of hit ratios of the memory
cache for di�erent cache write policies and coherence
schemes�

Figure � shows the average overall hit ratios of the mem�
ory cache on systems using the directory scheme �DIR� and
the software scheme with write�back �WB�� write�through
�WT� and write�through with a write�back write�bu�er
�WTWB� caches� for several con�gurations of memory
caches� In general� their hit ratios are not very di�erent�

When the number of processors increases� the memory
cache hit ratios increase for the same memory cache con�
�guration �not shown here�� When the system size grows�
although the memory cache size for each module remains
the same� the combined memory cache size becomes much
larger� When the combined cache size is large enough to
contain the problem size� further increase in the cache size
will not improve hit ratios� We did observe that when two
systems with di�erent numbers of processors have mem�
ory caches with the same set associativity� cache line size
and combined cache size� their memory cache hit ratios
were about the same� The combined cache size that yields
maximal hit ratios depends on individual programs rather
than the system size� This argument is not always true for
processor caches because in this case di�erent caches may
have a copy of the same memory line� whereas memory
caches do not have sharing among each other�

� Conclusions

We evaluated the use of memory cache in front of each
memory module to further reduce shared memory access
latency in the presence of processor caches� The memory
cache does not have cache coherence problems� Its design
is transparent to processor cache coherence protocols and
architectures� We have shown that a reasonable size of

memory cache can always achieve high hit ratios� Mem�
ory caches reduce average shared memory access latency in
two ways� One is to reduce the minimal latency required
for each processor cache miss when it has a memory cache
hit� The other is to reduce memory stalls on shared mem�
ory modules� The memory cache can cut stall cycles by
approximately a half�

We also evaluated the performance of memory caches
for systems using directory schemes or software schemes
with di�erent processor cache write policies� They always
achieve similar high hit ratios�

The memory cache hit ratios depend on the combined
memory cache size� not the cache size per memory module�
As the system size grows� we can reduce the memory cache
size per module to maintain a constant combined memory
cache size and still have similar performance�

References

��� D� Bailey and H� Simon� �The NAS Parallel Bench�
marks�� Technical report� NASA Ames Research Cen�
ter� �		��

��� L�M� Censier and P� Feautrier� A New Solution to Co�
herence Problems in Multicache Systems� Transactions
on Computers� C�������������� November �	���

��� Y��C� Chen and A�V� Veidenbaum� An E�ective Write
Policy for Software Coherence Schemes� In Supercom�

puting� ��� �		��

��� Y��C� Chen and A� Veidenbaum� �Performance Evalua�
tion of Memory Caches in Multiprocessors�� Technical
Report ����� CSRD� University of Illinois at Urbana�
Champaign� �		��

��� G� Cybenko et al� �Supercomputer Performance Eval�
uation and the Perfect Benchmarks�� In Int� Conf� on

Supercomputing� �		�

��� K� Dosaka et al� �A �MHz �Mb Cache DRAM with
Fast Copy�Back Scheme�� In IEEE Int� Solid�State

Circuits Conf�� pages ������	� �		��

��� M� Dubois et al� �Memory Access Bu�ering in Mul�
tiprocessors�� In Int� Sym� on Computer Architecture�
pages �������� �	���

��� A�V� Veidenbaum� �A Compiler�assisted Cache Co�
herence Solution for Multiprocessors�� In Int� Conf�

on Parallel Processing� pages ��	����� August �	���

�	� P�C� Yeh et al� �Performance of Shared Cache for
Parallel�Pipelined Computer Systems�� In Int� Sym�

on Computer Architecture� pages �������� �	���


