An Integrated Hardware/Software Data Prefetching Scheme for

Shared-Memory Multiprocessors *

Edward H. Gornish

Alexander Veidenbaum

Center for Supercomputing Research and Development
University of Illinois at Urbana-Champaign
Urbana, Ilinois, 61801

gornish@csrd.uiuc.edu

Abstract

Both hardware and software prefetching have been shown
to be effective in tolerating the large memory latencies in-
herent in shared-memory multiprocessors; however, both
types of prefetching have their shortcomings. In this paper,
we propose an integrated hardware/software prefetching
method that uses simple hardware that can handle most
data accesses and software prefetching for the few remain-
ing accesses. This yields an effective scheme that mini-
mizes both CPU overhead and hardware costs. Execution-
driven simulations show our method to be very effective.

1 Introduction

Memory latency has always been a major issue in shared-
memory multiprocessors. This is even more true as the gap
between processor and memory speeds continues to grow.
In order to fully utilize such systems, it is essential to use
the memory hierarchy effectively, in order to reduce mem-
ory latency. In this paper, we study how data prefetching
into the first-level cache can eliminate cache misses. In ad-
dition, our techniques can generalize to data prefetching
in other levels of the memory hierarchy.

There are two main classes of data prefetching. In hard-
ware prefetching, the hardware alone decides what data to
prefetch and when and where to prefetch the data. In
software prefetching, the hardware supports a prefetching
instruction. The user, or compiler, then directs prefetching
by inserting prefetching instructions into the code. Both
hardware and software prefetching have been studied ex-
tensively, and have been shown to be effective; however,
both types of prefetching have their shortcomings. For ex-
ample, hardware prefetching can require complex and ex-
pensive hardware, while software prefetching requires ex-
tra CPU instructions. In this paper, we propose a method
for integrated hardware/software prefetching. Our method
uses simple hardware that can handle most data accesses
and software prefetching for the few remaining accesses.
This yields an effective scheme that minimizes both CPU

*This work was supported by NASA Ames Research Center
under Grant No. NASA NCC 2-559, the Department of Energy
under Grant No. DE-FG02-85ER25001, the National Science
Foundation under Grant No. MIP-8920891, and an Intel Foun-
dation Graduate Fellowship.

overhead and hardware costs.

In order to effectively evaluate our integrated prefetch-
ing method, we analyze the performance of our scheme
using a multiprocessor simulator that accurately models
the memory subsystem, including network contention.

The remainder of this paper will be organized as fol-
lows. First we present related work in both hardware and
software prefetching in Section 2. We then present our in-
tegrated prefetching scheme in Section 3. In Section 4, we
present the methodology used in this study, and in Sec-
tion 5, we present our results.

2 Related Work

Hardware Prefetching Smith [1] discusses one block
lookahead (OBL) prefetching schemes (i.e., upon a refer-
ence to line [, line [4 1 is considered for prefetching).
Two problems with OBL methods are that they might
not prefetch data early enough to tolerate memory laten-
cies and that they cannot deal with strides larger than
the size of the cache line. Jouppi [2] addresses the former
problem. He presents a scheme based on multiple prefetch
buffers, that can prefetch data with a lookahead greater
than one. The latter problem is addressed in several simi-
lar schemes proposed by Baer and Chen [3], Fu, Patel and
Janssens [4] and Jegou and Temam [5].
use tables that keep track of the access history of a load
instruction in an attempt to predict the reference’s stride.

These schemes

Dahlgren, Dubois and Stenstrom [6] present a prefetch-
ing method that varies the size of a block that is prefetched
on a miss, depending on what percentage of prefetched
data actually gets used.

Software Prefetching The most extensive software
prefetching study was done by Mowry, Lam and Gupta [7].
They developed an extensive compiler algorithm for
prefetching data into both levels of a two-level cache
hierarchy. Callahan, Kennedy and Porterfield [8] pre-
sented a similar, but less sophisticated, scheme. Chen et
al. [9] and Klaiber and Levy [10] proposed prefetching into
a separate prefetch buffer in order to reduce cache con-
tention. Gornish, Granston and Veidenbaum [11] devel-
oped a compiler algorithm to determine the earliest time,
in a program’s execution, that data can be prefetched.
They showed that prefetching has tremendous potential
in a vector multiprocessor system.

Integrated Prefetching There is only one other pro-
posal for an integrated scheme that we are aware of.
Chen [12] describes a scheme where software prefetching is
used to prefetch large chunks of data from global memory
to the second level cache. His original hardware algorithm
([3] described above) is then used to prefetch data from
the second level cache to the first level cache. This scheme
differs from the one that we present in this paper, in that
both software and hardware prefetching prefetch data into
the first level cache, in our case.

3 Integrated Hardware and Software
Prefetching

We now summarize some of the differences between hard-
ware and software prefetching as a motivation for our in-
tegrated prefetching scheme.

Software schemes requires less hardware support than
hardware schemes. However, software schemes requires
many more CPU instructions; therefore, code size increases
both statically and dynamically. Software schemes can of-
ten determine, at compile time, data access strides and
the appropriate prefetching lookahead. Hardware schemes
have to get progressively more complex to be able to han-
dle large strides and to increase the prefetching lookahead.
Software schemes can also handle irregular accesses, such
as those generated by references with subscripted sub-
scripts.

Based on this discussion, we now present an integrated
hardware/software prefetching scheme that combines the
best aspects of both types of prefetching.

Our method is geared to array accesses in loops. We
classify such accesses by the type of access stream they
form. In a reference such as A(ci), where ¢ is the loop
index and ¢ is a constant, we say that the elements of A
that are referenced form a constant stride access stream
(CSAS). Assume that the cache line size is L. If ¢ < L,
we say that the reference generates a small constant stride
access stream (SCSAS). If ¢ > L, then we say that the
reference generates a large constant stride access stream
(LSCAS). In a reference such as A(f(7)), where the stride
is unpredictable, we say that the reference generates a non-
constant stride access stream (NCSAS).

Our goal 1s to provide the simplest hardware possible
that can still handle the bulk of the prefetching possibili-
ties. All other cases are handled in software. This way we
minimize both the hardware costs and the number of CPU
prefetching instructions that have to be executed. To this
end, we divide up the prefetching tasks as follows. Soft-
ware prefetching is responsible for LCSASs;, NCSASs and
the first accesses of an SCSAS, while hardware prefetching
is responsible for subsequent accesses of an SCSAS.

Our method is based upon the concept of the prefetch-
ing degree. We define the prefetching degree (PD) as the
number of lines in advance of the first reference to a line,
I, that { is prefetched!. That is, line I + PD of an access

1The term prefetching degree is used differently from its use

stream would be prefetched during an access to line {. An
OBL scheme always uses PD = 1.

We now describe the necessary hardware and software
support for our integrated data prefetching method.

3.1 Hardware Support

The hardware mechanism to support this scheme is based
on the tagged prefetching (OBL) scheme (i.e., on the first
access to line [, line {41 is prefetched). However, we extend
the basic scheme to support a prefetching degree greater
than one. This is accomplished as follows. Each cache
line, I, has an additional field designated DEGREE(). In
addition, the software prefetching instruction takes a sec-
ond operand that specifies a prefetching degree. When
a line, I, is prefetched, the prefetching degree specified
by the prefetching instruction is stored in DEGREE(!).
Upon the first demand access to line I, line [+ DEGREE({)
is prefetched, and DEGREE({ + DEGREE(!)) is set to
DEGREE({). In this way the prefetching degree gets prop-
agated throughout the lifetime of an access stream. In ad-
dition, the prefetching degree specified by the last prefetch-
ing instruction is saved in a location designated DEFAULT-
DEGREE. In the event that a read access misses in the
cache, the DEGREE field of the new line gets set to DE-
FAULTDEGREE.

3.2 Compiler Support

It is the job of the compiler to determine which data will
be automatically prefetched by the hardware and which
data need to be prefetched by explicit software instruc-
tions. There are three basic steps to the compiler analysis:

1. Access Stream Detection
2. Memory Latency Analysis

3. Temporal Locality Analysis

Access Stream Detection Access streams and their
types are determined in this phase. In the case of a CSAS,
spatial locality analysis is used to determine if the access
stream is an SCSAS or an LCSAS. Prefetches are generated
for each reference of an LCSAS or an NCSAS. In the case
of an SCSAS, prefetches are generated as described below
in the Memory Latency Analysis phase.

Redundant software prefetches are eliminated by detect-
ing data reuse and locality—i.e. when the same datum is
used more than once and will not be replaced before the
subsequent uses. In this case, the datum only needs to
be prefetched once?. Using reuse analysis, the compiler
can also determine that the elements used by two different
references are actually part of the same access stream.

in [6].

?Redundant hardware prefetches can be eliminated if the
cache is first checked to see if the requested data is already
present before issuing a prefetch.

Memory Latency Analysis In this step, PD is calcu-
lated for each SCSAS detected in the previous step. The
prefetching degree for stream a can be calculated as fol-
lows. Given a cache line size, L, and a stride, S(a), a new
cache line is needed every L/S iterations. Therefore, given
an iteration time of Tj(a) and a memory latency of Ths:

PD(a) = TuS(a)/Ty(a)L (1)

The prefetching degree can vary from program to pro-
gram, and even within the same program depending on
the strides of the different access streams and the iteration
times of the surrounding loops.

The compiler generates software instructions to prefetch
the first PD elements of an SCSAS, and it passes the value
PD to the hardware, as an operand of the prefetching in-
struction, as described above. In this way the prefetching
degree is determined separately for each SCSAS.

Temporal Locality Analysis A hardware prefetch of
a particular cache line is triggered by the use of a previous
cache line. If there are too many intervening data refer-
ences between the use of the two lines, then the prefetched
data might already be replaced before it is needed. In this
case, it would be necessary to reschedule the appropriate
prefetches or issue additional prefetches.

We have incorporated this compile time framework into

the PARAFRASE compiler [13].

4 Experimental Methodology

In order to evaluate the performance of our prefetching
schemes, we have developed a detailed architecture simula-
tor of a shared-memory multiprocessor. Processing nodes
are connected to shared memory nodes through forward
and reverse omega networks. Network contention is accu-
rately modeled.

Each processing node consists of a processor, a 16K
direct-mapped data cache, an instruction cache, and a
fetch unit. The processor models a RISC architecture.
The timings for floating point operations are based on the
MIPS R3000. All other instructions execute in one cycle.
All instructions are assumed to hit in the instruction cache.

The cache uses the write-through write-allocate no-fetch
policy, and a software mechanism is used to maintain
cache coherence. Each processing node is allowed 2 out-
standing reads, 32 outstanding writes and 16 outstanding
prefetches. A maximum of 16 requests per processing node
are allowed in the network. In the event that the processor
attempts to issue more than 16 requests, demand requests
take priority over prefetch requests. Requests for cache
lines that are outstanding are not duplicated.

We use the Parafrase compiler to generate input for the
simulator. PARAFRASE restructures sequential programs
and parallelizes them. Prefetches are generated, based on
the framework developed in Section 3. PARAFRASE then
generates pseudo-assembly level output. Some basic peep-
hole optimizations are then applied to this code.

Benchmark | Description

CG conjugate gradient solver

EFLUX subroutine from the Perfect
Club benchmark FLO52

INTERP subroutine from the NAS

Parallel benchmark MG

Table 1: Benchmarks

Config. No. of | Cache Switch | Min. Read
No. Procs. | Line Size | Size Latency

1 64 32 4 x4 60

2 64 32 2x2 108

3 64 16 4 x4 58

4 64 16 2x2 106

Table 2: Simulated system configurations

5 Performance Analysis and Compari-
son of Prefetching Schemes

We tested the effectiveness of our prefetching method on
the three benchmarks listed in Table 1. We ran each bench-
mark using three different prefetching techniques:
NP—mno prefetching used as a baseline result
HP—hardware prefetching We wuse the tagged
prefetching method [1].

IP—integrated prefetching We use our scheme pre-
sented in Section 3.

For each prefetching technique, we used the four differ-
ent system configurations listed in Table 2. Each memory
module and network switch has a delay of 8 cycles.

As can be seen from Figure 1, hardware prefetching is
effective at removing some of the memory access stalls, but
it is not as powerful as the integrated scheme. In addition,
the integrated scheme performs well for all four configu-
rations. We chose these configurations because they are
practical and feasible, and because the parameters that
are varied directly affect the prefetching degree. By vary-
ing the prefetching degree for each access stream, the in-
tegrated scheme is able to conform to the different archi-
tectural configurations.

6 Prefetching Adaptivity

As can be seen in Figure 1, there is often a significant por-
tion of the memory stall time that the integrated scheme
does not eliminate. A possible reason is that a prefetch-
ing degree based on the minimum latency might not be
sufficient.

This suggests two possible improvements to the inte-
grated scheme that we are currently investigating:

1. Perhaps the compiler should use a larger effective la-
tency, for calculating the prefetching degree.

2. Adapting the prefetching degree at runtime, on a pro-
gram by program and stream by stream basis, might

be beneficial.

@ @ @
£ 2211 £ 203.4 £ 202.4
£ 2201 £ 200} £ 200}
é 200f [memory access stalls é 180} M memory access stalls é 1ol B memory access stalls
3 - instructions 3 instructions 3 instructions
g wol M g o] W 0] W 596
4 160} a 1381 5 138.2
=t 3 1404 A 136.1 - 10} 1342
SREPT) & 1386 = =]]
€ 120} g er T 120 112.7 [L17.2
5 5 100.0 5 100.0 99.2
s s 100 H 5 100 H 95.3
Z 100 1200 94.6 z 86.2 =
82.1 804 sof s 79.0

80} 60.2 63.0 67.7 66.9

6o 1610, o 54.9 59.2 60§~ 155.554.6 54.8 54.0 545 60 -

pry B a0} a0t

20} 204 20}

0 0
NP HP IP NP HP IP NP HP IP NP HP IP NP HP IP NP HP IP NP HP 1P NP HP IP NP HP IP NP HP IP NP HP IP NP HP IP

Config. 1 Config. 2 Config. 3 Config. 4 Config. 1 Config. 2 Config. 3 Config. 4 Config. 1 Config. 2 Config. 3 Config. 4

CcG EFLUX INTERP

Figure 1: Performance Comparison Between Different Prefetching Strategies for Configurations Listed in Table 2
(NP = No Prefetching, HP = Hardware Prefetching only, IP = Integrated Prefetching)

7 Conclusion tional Symposium on Microarchitecture, pp. 102-110,

Dec. 1992.
Data prefetching has been shown to be a very promis-

ing technique for tolerating the large memory latencies
common in shared-memory multiprocessors. Both hard-

[5] Y. Jegou and O. Temam, “Speculative prefetching,”
in International Conference on Supercomputing, 1993.

ware and software data prefetching schemes have been [6] F. Dahlgren, M. Dubois, and P. Stenstrom, “Fixed
proposed and evaluated; however, both types of prefetch- and adaptive sequential prefetching in shared mem-
ing have their shortcomings. We propose an integrated ory multiprocessors,” in International Conference on
hardware/software prefetching scheme that incorporates Parallel Processing, 1993.

the best aspects of both forms of prefetching. We demon- [7] T. C. Mowry, M. S. Lam, and A. Gupta, “Design and

strate the effectiveness of our integrated scheme through

evaluation of a compiler algorithm for prefetching,”
the detailed simulation of several benchmarks.

in Architectural Support for Programming Languages

Our integrated scheme is more efficient than a pure soft- and Operating Systems, pp. 62-73, Oct. 1992.
ware approach, since our scheme requires fewer prefetching B
instructions. Mowry, Lam and Gupta [7] found that soft- [8] D. Callahan, K. Kennedy, and A. Porterfield, “Soft-

ware prefetching,” in Architectural Support for Pro-

ware prefetching can increase the number of instructions by) '
gramming Languages and Operating Systems, pp. 40—

up to 50%, whereas our scheme has relatively little instruc-

tion overhead. We are currently performing quantitative 52, Apr. 1991.

comparisons between our integrated scheme and software [9] W. Y. Chen, S. A. Mahlke, P. P. Chang, and W. mei

prefetching. W. Hwu, “Data access microarchitectures for super-
Hardware prefetching schemes need to get progressively scalar processors with compiler-assisted data prefetch-

more complex in order to handle large strides and a ing,” in International Symposium on Microarchitec-

prefetching lookahead greater than one block. These two ture, pp. 69-73, Nov. 1991.

facets are handled by the software support in our inte- [10] A. C. Klaiber and H. M. Levy, “An architecture

grated scheme; therefore, our hardware support is simpler for software-controlled data prefething,” in Interna-
than that of other hardware prefetching schemes. However, . . .
tional Symposium on Computer Architecture, pp. 43—

in our scheme, most data accesses can still be handled in 531991
hardware. ’ ’

[11] E. H. Gornish, E. D. Granston, and A. V. Veiden-
baum, “Compiler-directed data prefetching in multi-
processors with memory hierarchies,” in International
Conference on Supercomputing, June 1990.

References

[1] A. J. Smith, “Cache memories,” Computing Surveys,
vol. 14, pp. 473-530, Sept. 1982. [12] T.-F. Chen, Data Prefetching for High-Performance

Processors. PhD thesis, Dept. of Computer Science

2] N. P. Jouppi, “Improving direct-mapped cache per-
2] pp b 8 PP b and Engineering, University of Washington, 1993.

formance by the addition of a small fully-associative

cache and prefetch buffers,” in International Sympo- [13] D. J. Kuck, R. H. Kuhn, B. Leasure, and M. Wolfe,

stum on Computer Architecture, pp. 364-373, 1990. “The structure of an advanced vectorizer for pipelined
[3] J-L. Baer and T.-F. Chen, “An effective on-chip processors,” in Fourth International Computer Soft-

preloading scheme to reduce data access penalty,” in ware and Applications Conference, Oct. 1980.

Supercomputing, pp. 176-186, 1991.
[4] J. W. Fu, J. H. Patel, and B. L. Janssens, “Stride

directed prefetching in scalar processors,” in Interna-

