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Abstract.  Instruction issue consumes a large amount of energy in out of order 
processors, largely in the wakeup logic. Proposed solutions to the problem 
require prediction or additional hardware complexity to reduce energy 
consumption and, in some cases, may have a negative impact on processor 
performance.  This paper proposes a mechanism for instruction wakeup, which 
uses a multi-block instruction queue design.  The blocks are turned off until the 
mechanism determines which blocks to access on wakeup using a simple 
successor tracking mechanism.  The proposed approach is shown to require as 
little as 1.5 comparisons per committed instruction for SPEC2000 benchmarks.  

Keywords: Superscalar processors, Out of order execution, Instruction 
window, Instruction wake up, Low power, CAM.   

1. Introduction  

Modern high-performance processors issue instructions in order but allow them to be 
executed out of order. The out-of-order execution is driven by the availability of 
operands; i.e. an instruction waits until its operands are ready and then is scheduled 
for execution. An instruction queue (IQ) is a CPU unit used to store waiting 
instructions after they are issued and until all their operands are ready. Associated 
with the instruction queue are wakeup logic and selection logic [1]. 
 
The wakeup logic is responsible for waking up instructions waiting in the instruction 
queue as their source operands become available. When an instruction completes 
execution, a register number (tag) of its result register is broadcast to all instructions 
waiting in the instruction queue. Each waiting instruction compares the result register 
tag with its own source operand register tags. Three-address instructions are assumed 
in this paper and an instruction may have 0, 1 or 2 source operands.  On a match, a 
source operand is marked as available. Thus, the instruction is marked ready to 
execute when all its operands are ready. 
  



 

Selection logic is responsible for selecting instructions for execution from the pool of 
ready instructions. A typical policy used by the selection logic is oldest ready first. 
A commonly used implementation of the instruction queue is shown in Fig. 1 and 
uses RAM-CAM arrays to store the necessary information [2]. The RAM section 
(solid area in the figure) stores the instruction opcode, the destination (result) register 
tag, and the busy bit indicating the entry is used. The CAM section stores the two 
source operand register tags and the corresponding ready bits. 
 

 
 

 
 
 
 
 
 
 
 
 
 

Figure 1: An Instruction Queue Architecture using RAM-CAM array (4-wide issue) 
 
One or more of its operands may be ready as the instruction is initially placed in the 
instruction queue. In this case they are immediately marked ready by setting the 
corresponding flag(s).  If one or more of its operands are not ready, the instruction 
waits in the queue until it is generated by the producing instruction.  As instructions 
complete execution and broadcast their destination register tag, each CAM entry 
performs a comparison of that tag with operand1 tag and/or operand2 tag. On a 
match, operand1 ready flag (Op1Rdy) and/or operand2 ready flag (OpRdy2) are set. 
When both Op1Rdy and Op2Rdy are set, the Instruction Ready (IRdy) flag is set.  
 
Figure 2 shows a more detailed view of the CAM section of the queue assuming an 
issue width of four instructions. Eight comparators are required per each IQ entry. All 
comparisons are ideally completed in one clock cycle to allow up to four instructions 
to wake up per cycle. It is clear from the figure that the wakeup logic is both time and 
energy consuming.  This paper focuses on reducing the latter. 
 
The energy consumption of the wakeup logic is a function of the queue size, issue 
width, and the design used. Overall, the energy used in the IQ is dominated by the 
total number of comparisons performed in the CAM portion of the IQ. Consider the 
CAM cell organization shown in Fig. 2b. The precharge signal enables the 
comparison in a given entry. Most of the energy dissipated during a comparison is due 
to the precharge and the discharge of the match line ML. Almost no energy is 
dissipated when the precharge of an entry is disabled.    
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Figure 2a: Organization of the CAM Section of the Instruction Queue 
 
The actual energy dissipated in a CAM cell depends on the cell design and the process 
parameters. It is, however, proportional to the number of comparisons performed. 
Therefore, the rest of this paper uses the number of comparisons to evaluate and 
compare different wakeup mechanisms. In general, a larger instruction queue is 
highly desirable in a dynamically scheduled processor as it can expose additional 
instruction level parallelism. This increases the energy consumption in the IQ even 
further. Several solutions have been proposed to address the IQ energy consumption.   
 
This paper proposes a new solution at the microarchitecture level, which is simple, 
requires minimal CPU modification, and yet results in a very large reduction in the 
number of comparisons required and therefore the energy consumption of the 
instruction queue.   
 
This solution can be used in conjunction with some of the previously proposed 
techniques to achieve even better results.  
 
One of the commonly used IQ designs partitions the instruction queue into integer, 
floating point, and load/store queues. This reduces the destination tag fanout and the 
number of comparisons performed.  The design proposed in this paper further divides 
each queue into a number of separate blocks. All queue blocks are normally disabled 
and perform no comparisons unless explicitly enabled (the precharge is turned on). A 
method for tracking which block(s) should be enabled upon an instruction completion 
is proposed.  In addition, only valid entries are compared within each block as 
proposed in [3]. The proposed design is shown to lead to a large reduction in the total 
number of comparisons.   The new design does not affect the IPC. 
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Figure 2b: A transistor-level design of an “n+1”-bit Entry CAM. 

The rest of the paper is organized as following. Section 2 describes related research, 
Section 3 presents the proposed wakeup mechanism, and Section 4 shows the results 
obtained. 

2. Related Work 

The energy consumption of a modern dynamically scheduled superscalar processor is 
between 50 and 100 Watts. At the micro-architecture level, the issue logic is one of 
the main consumers of energy responsible for approximately 25% of the total energy 
consumption [3]. Many approaches to designing the wakeup logic have been 
proposed, both to reduce delay and to reduce energy consumption. [4] proposed a 
pointer-based solution, where each instruction has a pointer to its dependent 
instruction for direct wakeup. This was done for a singe-issue, non-speculative 
processor, however. 
 
[5] extended the above solution to modern processors with wide issue and 
speculation. The effect of one, two, or three successor pointer entries per instruction 
was evaluated. Three approaches to deal with the case of an instruction with more 
successors than pointer entries were proposed. The first one stalled the instruction 
issue. The second one stopped recording successors and instead woke the instruction 
up when it reached the top of the instruction window.   Both of these approaches lead 
to a loss of IPC.  The third approach added a scoreboard to avoid stalls, an expensive 
approach to say the least.  Finally, successor pointers were saved on speculated 
branches, which is quite expensive. Overall, the solution does not require the use of 
CAM and thus significantly reduces both the delay and the energy consumption of the 
wakeup logic. 
 
[6] proposed a circuit design to adaptively resize an instruction queue partitioned into 
fixed size blocks (32 entries and 4 blocks were studied).  The resizing was based on 
IPC monitoring.  The use of self-timed circuits allowed delay reduction for smaller 
queue size. [7] further improved this design using voltage scaling.  The supply voltage 
was scaled down when only a single queue block was enabled.  
 



 

[8] used a segmented bit line in the IQ RAM/CAM design.  Only selected segments 
are used in access and comparison. In addition, a form of bit compression was used 
and a special comparator design to reduce energy consumption on partial matches. 
 
[3] proposed a design, which divided the IQ into blocks (16 blocks of 8 entries).  
Blocks which did not contribute to the IPC were dynamically disabled using a 
monitoring mechanism based on the IPC contribution of the last active bank in the 
queue.  In addition, their design dynamically disabled the wake up function for empty 
entries and ready operands1. 
 
[9] split the IQ into 0-, 1-, and 2-tag queues based on operand availability at the time 
an instruction enters the queue.  This was combined with a predictor for the 2-operand 
queue that predicted which of the two operands would arrive last. The wakeup logic 
only examined the operand predicted to arrive last. This approach reduces the IPC 
while saving energy. First, an appropriate queue with 0-, 1-, or 2-tags must be 
available at issue, otherwise a stall occurs. Second, the last-operand prediction may be 
incorrect, requiring a flush. 
 
[10] also used a single dependent pointer in their design. However, a tag comparison 
is still always performed requiring a full CAM. In the case of multiple dependent 
instructions a complex mechanism using Broadcast and Snoop bits reduces the total 
number of comparisons. The Broadcast bit indicates a producer instruction with 
multiple dependents (set on the second dependent).  Each such dependent is marked 
with a Snoop bit. Only instructions with a Snoop bit on perform a comparison when 
an instruction with a Broadcast bit on completes. Pointer(s) to squashed dependent 
instructions may be left dangling on branch misprediction and cause unnecessary 
comparisons, but tag compare guarantees correctness.  
 
[11] used a full bit matrix to indicate all successors of each instruction in the 
instruction queue.  Optimizations to reduce the size and latency of the dependence 
matrix were considered. This solution does not require the use of CAM but does not 
scale well with the number of physical registers and the IQ size which keep 
increasing. [12] also described a design of the Alpha processor using a full register 
scoreboard.  
 
[13] proposed a scalable IQ design, which divides the queue into a hierarchy of small, 
and thus fast, segments to reduce wakeup latency.  The impact on energy 
consumption was not evaluated and is hard to estimate. 
 
In addition, dynamic data compression techniques ([14], [15]) have been proposed as 
a way to reduce energy consumption in processor units.   They are orthogonal to the 
design proposed here. 



 

3. A New Instruction Wakeup Mechanism 

The main objective of this work is to reduce the energy consumption in the wakeup 
logic by eliminating more unnecessary comparisons. The new mechanism is described 
in this section and is presented for a single instruction completing execution. The 
wakeup logic for each source operand in the IQ entry is replicated for each of the 
multiple instructions completing in the same cycle.  
 
The approach proposed here takes advantage of the fact that in a distributed 
instruction queue with n blocks each source operand only requires one of the n blocks 
to be involved in instruction wake-up. In addition, a completing instruction typically 
has few dependent instructions waiting in the IQ for its operand [16]. For example, if 
an instruction has two successors then at most two out of the n IQ blocks need to be 
used for comparison. The remaining n-2 blocks can be “disabled” and do not need to 
be involved in the wakeup process. This can be accomplished by gating their 
precharge signal. Clearly, the benefits of this method will grow with an increase in n, 
but at some point the complexity of the design will become to high.  Four or eight 
blocks per instruction queue are a practical choice of n used in this paper. 
 
Consider an instruction queue partitioned into n blocks such that each block Bi can be 
enabled for tag comparison separately from all the others. All blocks are normally 
disabled and require an explicit enable to perform the tag search. A block mapping 
table, a key element of the proposed design, selects which block(s) hold the successor 
instructions and only these blocks are enabled to compare with the destination register 
tag of a completing instruction.  
 
The block mapping table (BT) is a bookkeeping mechanism that records which of the 
n blocks contain successor instructions for a given destination register.  It is organized 
as an n by M bit RAM, where n is the number of banks and M is the number of 
physical registers. It is shown in the upper left corner of Fig. 3. The table records for 
each destination register which IQ blocks contain its successor instructions. A BT row 
thus corresponds to a producing instruction and is checked when the instruction 
completes.  It is read using the destination register tag of the completing instruction to 
find all the banks that contain its successor instructions. Such a row will be called a 
block enable vector (BE) for the register.   An individual bit in BE will be called a 
block entry.  For example, Fig. 3 shows BT[4], the BE for the physical register 4, with 
only entries for blocks 0 and 2 are set to “1”.  The 1’s indicate that successor 
instructions using register 4 are in blocks 0 and 2. 
 
The operation of the proposed design is as follows. When an instruction is decoded it 
is entered into the instruction queue with the source operand designators specifying 
the physical register sources.  An IQ block to enter the instruction is selected at this 
time.  Several block assignment algorithms are possible; the results presented in this 
paper are based on the round-robin assignment algorithm. The destination and source 
physical register tags are then entered in the IQ as per Figure 1.  At this point two 
operations on the BT take place concurrently. 
 



 

BE Allocation. The enable vector for the instruction’s destination register Ri, BT[i], 
is cleared. It is guaranteed that by this time all dependent instructions have obtained a 
previous copy of this register. 
 
BE Entry Modification. A BE entry for each source register of the instruction that is 
not ready is set. This will indicate for each register what blocks contain its dependent 
instructions. The source operand register tag is used to select a BT row to modify.  
The modification consists of setting the block entry in the BE to a 1.   For example, an 
instruction allocated to IQ block “j” that uses a source operand register “i” sets entry 
“j” in BT[i] to “1”.   Note that multiple instructions in a block can all set the entry. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: The Block Mapping Table and a 4-Block Instruction Queue 
 
The BE is used when an instruction completes execution and produces a result. Its 
destination register is used to index the Block Table and to read out a corresponding 
block enable vector. Only the wakeup logic in blocks enabled by a “1” in the BE is 
going to perform comparisons. Furthermore, within an enabled block any of the 
previously proposed designs for wakeup logic in a centralized queue can be used to 
further reduce the number of comparisons.  Only active entries are compared in each 
block in this paper. 
 
The addition of the BT access in the path of the CAM precharge signal may lead to an 
increased delay. Pipelining can be used if a design overlapping the BT access with 
other parts of the CAM operation is impossible. The result tag can be broadcast to the 
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BT one cycle earlier and the BT access completed and latched before the CAM 
access.    This is possible in current and future processors with deep pipelines that 
take several cycles to select/schedule an instruction after wakeup. 
 
A final issue to consider is the impact of branch prediction.  All instructions that were 
executed speculatively are deleted from the IQ on branch misprediction. Their BEs 
remain in the table, possibly with some entries set. However, this is not a problem 
since the deleted instructions will not complete and their destination register will 
eventually be re-allocated and cleared.  BEs for instructions prior to the branch may, 
however, contain entries corresponding to mispredicted and deleted instructions.   
 

 
 
These entries may cause unnecessary activation of IQ banks for comparisons.   In the 
worst case, a deleted instruction may be the only dependent instruction in a block and 
cause its activation. This does not affect correctness or performance of a program, but 
may lead to unnecessary energy consumption.  The impact of this, in our experience, 
is negligible.  

4. Results and Analysis 

The proposed approach was simulated using an Alpha 21264-like microarchitecture. 
The SimpleScalar simulator was re-written to accomplish this. The processor 
configuration is shown in Table 1.   The reorder buffer with 256 entries was used to 
avoid bottlenecks. 
 
As in the R10K design, separate integer and floating-point instruction queues were 
used. In addition, Ld/St instructions were dealt with in the Ld/St queue as far as 
wakeup was concerned.  Only one source operand was assumed necessary for 

Element Configuration 
Reorder Buffer 256 entries 
Load/Store Queue 64 entries 

Integer Queue 32-64 entries 
Floating Point queue 32-64 entries 
Fetch/decode/commit 
width 4/4/4 

Functional units 4 integer/address ALU, 2 integer 
mult/div, 4 fp adders, 2 mult/div and 2 
memory ports. 

Branch predictor 16 K-entry GShare 
Branch penalty 8 cycles 
L1 Data cache 32 KB, 4 way, 32 byte/line, 1 cycles 
L1 Instruction cache 32 KB, 4 way, 32 byte/line, 1 cycles 
L2 Unified cache 512 KB, 4 way, 64 byte/line, 10 cycles 
TLB 64 entries, 4 way, 8KB page, 30 cycles  
Memory 100 cycles 
Integer Register file 128 Physical Registers 

FP Register file 128 Physical Registers 

Table 1: Processor Configuration  



 

memory access instructions, namely the address.  All entries in the LSQ are compared 
to the integer result register tag.  Data for stores is dealt with separately during 
commit when stores access memory. The integer and f.p. Instruction Queues were 
split into either 4 or 8 blocks.  
 
SPEC2000 benchmarks were compiled for the DEC Alpha 21264 and used in 
simulation. A dynamic sequence of instructions representing its behavior was chosen 
for each benchmark and 200M committed instructions were simulated, with statistics 
gathered after a 100M-instruction “warm-up” period.  
 
A queue design that disables comparison on ready operands and empty IQ entries 
(collectively called active entries), similar to [3] but without dynamic queue resizing 
is referred to as Model A. The impact of the proposed queue design, Model C, is 
evaluated using the number of wakeup comparisons per committed instruction and is 
compared with model A. Model C also uses only active entries in comparisons.    The 
proposed design is utilized only in the integer and f.p. queues, the Ld/St queue are 
identical in both models. The number of comparisons performed in the Ld/St queue is 
thus the same in both models and is not reported. 
 
Comparisons are divided into those that result in a match on each wakeup attempt 
(necessary) and all the rest (unnecessary) in the analysis.  The former are labeled 
“Match” in the graphs and the latter labeled “No-Match”. 
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Figure 4: Comparisons per Instruction for Model A and Integer Benchmarks 

 
Figs. 4 and 5 show comparisons per committed instruction for integer and f.p. 
benchmarks, respectively, and the Model A queue design. They show that most of 
comparisons are unnecessary and that, on average, the integer and f.p. queues have 
similar behavior. The number of comparisons per committed instruction is 13 and 15, 



 

on average, for integer queue size of 32 and 64, respectively. The averages are 12 and 
17 for the same f.p. queue sizes. 
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Figure 5: Comparisons per Instruction for Model A and F.P. Benchmarks 

 
 
Figs. 6 and 7 compare the two different queue designs and the effect of the queue size 
and of the number of blocks. The results are averaged over all integer and all f.p. 
benchmarks, respectively, and show the total number as well as the fraction of 
necessary comparisons per committed instruction.  The results for Model C are 
always significantly better than Model A results for both 4- and 8–block queue 
organization.   They are even better for a 1-block Model C design, which is a single 
queue, because some instructions do not use a destination register and the use of the 
BT allows wakeup to be completely avoided in this case. In general, results improve 
with the increase in the number of blocks.  
 
The 4-block IQ design achieves a 78% improvement, on average, over model A for 
the integer queue and 73% for the f.p. queue.   The relative improvement is almost 
identical for both queue sizes.   In absolute terms, the number of comparisons 
performed is higher for the larger queue size. 
 
The 8-block design results in fewest comparisons.   It reduces the number of 
comparisons in Model A by 87% for both the 32- and the 64-entry IQ for integer 
benchmarks.  For f.p. benchmarks the reduction is 85%.   More than one third of the 
total comparisons are necessary indicating the potential for further improvement. 
 
The total number of comparisons per committed instruction is 1.45 and 1.72, on 
average, for integer queue sizes of 32 and 64, respectively, and eight blocks. The 
averages are 1.59 and 2.59 for f.p. benchmarks for the same queue sizes. 
 



 

Overall, a larger instruction queue has more valid IQ entries, which explains the 
increase in the number of comparisons per instruction.   For example, the average 
number of IQ entries per cycle is ~41% higher in the 64-entry/8-block queue for f.p. 
benchmarks as compared to the 32-entry queue.   The difference is smaller for integer 
benchmarks, approximately 20%.  
 
The associated IPC increase is small, only about 13% for f.p. codes and near 0 for 
integer codes (using a harmonic mean instead of an average). 

0

2

4

6

8

10

12

14

16

int fp int fp int fp int fp int fp int fp int fp int fp

A1 C1 C4 C8 A1 C1 C4 C8

32 64

SPECint

Match No Match

 
Figure 6: Average Number of Comparisons per Instruction for Integer Codes 
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Figure 7: Average Number of Comparisons per Instruction for F.P. Benchmarks 



 

5. Energy Consumption of the Wakeup Logic 

The results presented above evaluated the change in the number of tag comparisons 
performed by various organizations of the instruction queue.   This section presents an 
estimate of the energy consumption and shows the optimal IQ configuration to 
minimize the energy consumption.  
 
The energy consumption of the wakeup logic was estimated using models of RAM 
and CAM from the Wattch [17] simulator.   The RAM is the Mapping Table that is 
organized as R entries of B bits, where R is the number of physical registers in the 
CPU (128) and B is the number of blocks in the IQ.  The RAM has 8 write and 4 read 
ports since it can be accessed by four instructions each cycle.  Each instruction can 
update 2 entries when issued and each completing instruction reads an entry to find 
successor IQ blocks. 
 
The CAM is the portion of the IQ storing tags and has (IQS / B) entries, where IQS is 
the number of IQ entries.   An entry contains two separate source register tags of 7 
bits each and has 4 write and 4 read ports.  The total CAM size is 32 or 64 entries, but 
an access only goes to one block of the CAM. 
 
The number of blocks in the IQ was varied from 1 to 64 in order to find the optimal 
organization.   An IQ with one block represents the standard design.   The IQ with 
block size of 1 does not even require a CAM; the Mapping Table entry identifies each 
dependent instruction in the IQ. 
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Figure 8: Normalized IQ Energy Consumption for Integer Queue 

 



 

The energy consumption in the wakeup logic is computed as follows.  For each access 
to the instruction queue a CAM lookup is performed. If more than 1 block is used 
than the RAM access energy is also included for Mapping Table access, but a smaller 
CAM is accessed in this case. The total lookup energy is the sum of RAM and CAM 
access.  The lookup energy per program is the total lookup energy per access 
multiplied by the total number of accesses in the program. 
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Figure 9: Normalized IQ Energy Consumption for Floating Point Queue 

 
The total wakeup energy per program for each IQ configuration is normalized to the 
energy consumption of the IQ with 64 entries and 1 block.   Figure 8 shows the total 
normalized energy for the Integer Queue and Figure 9 for the Floating point Queue.  
The total normalized energy is averaged over all integer and all floating point 
benchmarks, respectively, for IQs with 32 and 64 entries.  In each case the number of 
blocks is varied from 1 to 32 or 64.   The RAM and CAM energy consumption are 
shown separately. 
 
As the number of blocks is increased, the CAM energy consumption is reduced 
because only one block is accessed at a time and the number of entries accessed is 
reduced.  At the same time, the Mapping Table RAM entry has more bits and requires 
more energy to access.   The optimal configuration varies between 4 and 8 blocks 
depending on the total IQ size. The difference between the 4- and 8-block 
configurations is small. 



 

6. Conclusions 

The instruction queue architecture presented in this paper uses a multi-block 
organization and delivers a large reduction in the number of comparisons per 
instruction.  The major contribution of this work is the use of the block mapping 
mechanism that allows fast determination of blocks to activate for wakeup when an 
earlier instruction completes execution.  It does not require prediction or adaptivity to 
achieve the energy savings. This multi-block design performs approximately one and 
a half comparisons per committed instruction for a 32-entry instruction queue 
organization with eight blocks (recall that integer and  f.p. queues  are separate). 
 
It is hard to compare results across designs due to the differences in processor 
configuration, benchmarks, and compilers used. However, an estimate of the design 
complexity can be made.   The design proposed in this paper does not affect the IPC 
and only reduces energy use. It uses simple hardware and does not require 
modification outside the instruction queue itself.  Compared to other multi-block 
queue designs it does not require prediction or monitoring.  For example, multi-queue 
design of [9] requires management of multiple queues and a predictor for the last 
operand.  The pointer-based designs are usually more complex. Approaches presented 
in [5] and [10] require modifications in the register renaming logic and quite complex 
pointer/bit vector manipulation to add successors.  Finally, the full dependence matrix 
is not scalable and has its own overheads [11] [12].  The design proposed here is a 
simpler alternative delivering a very large reduction in energy consumption.   Its 
results can be further improved by using compression and other techniques. 
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