
Drift with Devil: Security of Multi-Sensor Fusion based Localization in
High-Level Autonomous Driving under GPS Spoofing

(Extended Version)

Junjie Shen
UC Irvine

junjies1@uci.edu

Jun Yeon Won
UC Irvine

junyeonw@uci.edu

Zeyuan Chen
UC Irvine

zeyuac4@uci.edu

Qi Alfred Chen
UC Irvine

alfchen@uci.edu

Abstract
For high-level Autonomous Vehicles (AV), localization is
highly security and safety critical. One direct threat to it is
GPS spoofing, but fortunately, AV systems today predomi-
nantly use Multi-Sensor Fusion (MSF) algorithms that are
generally believed to have the potential to practically defeat
GPS spoofing. However, no prior work has studied whether
today’s MSF algorithms are indeed sufficiently secure under
GPS spoofing, especially in AV settings. In this work, we
perform the first study to fill this critical gap. As the first
study, we focus on a production-grade MSF with both design
and implementation level representativeness, and identify two
AV-specific attack goals, off-road and wrong-way attacks.

To systematically understand the security property, we first
analyze the upper-bound attack effectiveness, and discover a
take-over effect that can fundamentally defeat the MSF design
principle. We perform a cause analysis and find that such vul-
nerability only appears dynamically and non-deterministically.
Leveraging this insight, we design FusionRipper, a novel and
general attack that opportunistically captures and exploits
take-over vulnerabilities. We evaluate it on 6 real-world sen-
sor traces, and find that FusionRipper can achieve at least 97%
and 91.3% success rates in all traces for off-road and wrong-
way attacks respectively. We also find that it is highly robust
to practical factors such as spoofing inaccuracies. To improve
the practicality, we further design an offline method that can
effectively identify attack parameters with over 80% average
success rates for both attack goals, with the cost of at most
half a day. We also discuss promising defense directions.

1 Introduction
Today, various companies are developing high-level self-
driving cars [1] such as Level-4 Autonomous Vehicles
(AV) [2], and some of them are already providing services on
public roads such as self-driving taxi from Google’s Waymo
One [3] and self-driving trucks from TuSimple [4]. To enable
such high-level driving automation, the Autonomous Driving
(AD) system in an AV needs to not only perform the per-
ception of surrounding obstacles, but also centimeter-level

localization of its own global positions on the map [5,6]. Such
localization function is highly security and safety critical in
the AV context, since positioning errors can directly cause an
AV to drive off road or onto a wrong way. Since in high-level
AD systems the perception module is only designed for obsta-
cle detection and the localization module is in full charge of
identifying road deviations [7–11], even when the perception
module is functioning perfectly, it cannot prevent a variety of
road hazards specific to localization errors such as driving off
road to hit road curbs, falling down the highway cliff, or being
hit by other vehicles that fail to yield, especially when the
AV is on the wrong way. However, recent security research in
AD systems concentrates on AD perception, e.g., malicious
stickers on traffic signs [12–15], which leaves the security of
AD localization an open problem.

For outdoor localization in general, GPS is the de facto
location source, and thus a direct threat to it is GPS spoof-
ing, a long-existing but still unsolved security problem with
practicality proven on a wide range of end systems [16–24],
including low-autonomy AVs such as Tesla cars [22]. Fortu-
nately, to achieve robust localization, real-world high-level
AD systems today predominantly use Multi-Sensor Fusion
(MSF) algorithms that combine GPS input with position in-
puts from other sensors, typically IMU (Inertial Measurement
Unit) and LiDAR (Light Detection and Ranging) [7, 25–33].
Since in such design GPS input alone can not dictate the lo-
calization output, it is generally believed to have the potential
to practically defeat GPS spoofing [18, 23, 34–37]. However,
state-of-the-art MSF algorithms are mainly designed for im-
proving accuracy and robustness, instead of security. This
thus makes it largely unclear how secure they can be under
GPS spoofing. Given its widespread use in AVs and high im-
portance to road safety, it is thus imperative to systematically
understand this as early as possible.

To fill this critical research gap, in this work we perform the
first study on the security property of MSF-based localization
in AV settings. As the very first study in this direction, we
focus on GPS spoofing as the attack vector since it is one
of the most mature attack vectors to the MSF input sources.
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We focus on a production-grade MSF implementation, Baidu
Apollo MSF (BA-MSF), due to its high representativeness in
both design (KF-based MSF) and implementation (centimeter-
level accuracy evaluated by real-world AV fleet), which will
be detailed later in §2.1. We consider the attack goal as using
GPS spoofing to cause large lateral deviations in the MSF
output, i.e., deviating to the left or right. This can cause the
AV to drive off road or onto a wrong way, which we call
off-road attack and wrong-way attack respectively.

To systematically understand the security property, we first
analyze the upper-bound attack effectiveness via a dynamic
blackbox analysis since BA-MSF is released in the binary
form. We find that in the real-world trace, the majority (71%)
of even such upper-bound attack results can only cause less
than 50 cm deviation, which is far from causing either off-road
or wrong-way attacks (need over 90 cm and 2.4 m respec-
tively). This shows that MSF can indeed generally enhance
the security against GPS spoofing. Interestingly, we also ob-
serve that there still exist a few upper-bound attack results
that can cause over 2 meters deviations. For all of them, we
find that GPS spoofing is able to cause exponential growths
of deviations. This allows the spoofed GPS to become the
dominating input source in the fusion process and eventually
cause the MSF to reject other input sources, which thus fun-
damentally defeats the design principle of MSF. In this paper,
we call it a take-over effect. We then perform a cause analysis
and find that this only appears when the MSF is in relatively
unconfident periods due to a combination of dynamic and
non-deterministic real-world factors such as sensor noises
and algorithm inaccuracies.

Such take-over vulnerabilities are highly attractive for
attackers since they can exploit the exponential deviation
growths to achieve arbitrary deviation goals. However, as
discovered earlier, the vulnerable periods are created dynami-
cally and non-deterministically. Thus, we design FusionRip-
per, a novel and general attack that opportunistically captures
and exploits take-over vulnerabilities with 2 stages: (1) vul-
nerability profiling, which measures when vulnerable periods
appear, and (2) aggressive spoofing, which performs exponen-
tial spoofing to exploit the take-over opportunity.

We implement FusionRipper and evaluate it on 6 real-world
sensor traces from Apollo and the KAIST Complex Urban
dataset. Our results show that when the attack can last 2
minutes, there always exists a set of attack parameters for
FusionRipper to achieve at least 97% and 91.3% success
rates in all traces for the off-road and wrong-way attacks
respectively, with less than 35 seconds success time on av-
erage. To understand the attack practicality, we evaluate it
with practical factors such as (1) spoofing inaccuracies, and
(2) AD control taking effect, and find that for both cases the
attack success rates are affected by less than 4%. Attack de-
mos showing the end-to-end attack impact are available at
https://sites.google.com/view/cav-sec/fusionripper.

In addition, we observe that the attack effectiveness is sensi-

tive to the selection of the attack parameters. Thus, to improve
the practicality, we further design an offline attack parameter
profiling method that can collect effective parameters with-
out causing obvious safety problems during such profiling to
stay stealthy. Our results on real-world traces show that our
method can effectively identify attack parameters with 84.2%
and 80.7% success rates for off-road and wrong-way attacks
respectively, with the profiling cost of at most half a day.

Considering the critical role of localization for safe and
correct AV driving, the discovered attack against the state-
of-the-art MSF algorithm requires immediate attention and
defense discussion. To facilitate this, we also discuss both
long-term and short-term defense directions.

In summary, this work makes the following contributions:
• We perform the first security study on MSF-based local-

ization in high-level AV settings under GPS spoofing.
We focus on a production-grade MSF with both design
and implementation level representativeness, and iden-
tify two attack goals specific to the AV settings.

• We analyze the upper-bound attack effectiveness, and
discover a take-over effect that can fundamentally defeat
the MSF design principle. We further perform a cause
analysis and find that such vulnerability only appears
dynamically and non-deterministically.

• We design FusionRipper, a novel and general attack that
opportunistically captures and exploits the take-over vul-
nerability we discover. We evaluate it on 6 real-world
sensor traces, and find that it can achieve high effec-
tiveness (over 97% and 91.3% success rates) for both
off-road and wrong-way attacks. We also find that such
high effectiveness is robust to various practical factors.

• To improve the attack practicality, we further design
an offline attack parameter profiling method that can
effectively identify attack parameters with 84.2% and
80.7% success rates for off-road and wrong-way attacks
respectively, with the profiling cost of at most half a day.
We also discuss promising defenses directions.

2 Background
2.1 AD Localization and Multi-Sensor Fusion
In real-world high-level (e.g., Level 4 [2]) AD system design,
localization is a critical module that needs to compute global
vehicle positions on the map in the real time based on posi-
tioning sensor inputs [7–11]. As shown in Fig. 1, its output is
used by various other modules in the AD system, e.g., the per-
ception module for detecting obstacles, the planning module
for driving decision making, and the control module for exe-
cuting these decisions. Such direct impact on various critical
decision making steps in AV driving thus makes localization
outputs highly security and safety critical.

To ensure safe and correct driving, AD localization needs
to not only have centimeter-level accuracy to localize the
AV at traffic lane level [5, 6, 38], but also have high robust-
ness under various road and weather conditions [38]. Thus,
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Figure 1: MSF-based localization and its use in high-level
AD systems.

Multi-Sensor Fusion (MSF) based design has become the
mainstream in both academia and industry since it can fuse re-
sults from multiple independent positioning sensors, typically
GPS, IMU, and LiDAR, and thus produce results with overall
higher accuracy and robustness [7–9, 25–33]. For example,
modern AV-grade GPS receivers can achieve centimeter-level
positioning accuracy with the error correction from ground
stations [39]. However, GPS signal quality can be easily de-
graded due to natural phenomena such as atmosphere delays
and multi-path effect [40]. LiDAR-based localization algo-
rithms, or LiDAR locators [26, 41–43], match laser scans to
pre-generated ones in a High Definition Map (HD Map) [44]
in order to provide highly accurate positioning. However, the
performance of such matching is susceptible to poor weather
conditions such as rain or fog and the outdatedness of the HD
Map. Thus, the goal of MSF is to leverage the strengths of
these different sources while compensating their weaknesses.

Kalman Filter (KF) based MSF and its representative-
ness. Among MSF-based localization algorithms for AD sys-
tems, KF-based MSF is adopted most extensively in both
academia and industry [25, 26, 28, 29, 31–33], and shown
to have the state-of-the-art performance [25]. To concretely
show its representativeness, we survey the MSF-based local-
ization papers from top-tier robotics conferences [45] in the
most recent 2 years (2018, 2019). As shown in Table 1, 14
(77.8%) of the total 18 papers adopt KF-based MSF, showing
a clear predominance in today’s MSF designs. Such represen-
tativeness can also be shown by the fact that it is taught in all
Self-Driving Car courses from Udacity [7,8] and Coursera [9].

KF is a Bayesian filter that calculates an optimal state
distribution with the lowest uncertainty from the sensor mea-
surement distributions. In the context of AD localization, the
state is composed of the vehicle’s position, velocity, and atti-
tude (PVA) and their uncertainties (or co-variance or variance
matrices). Specifically, KF iteratively applies two steps: pre-
diction (Eq. 1) and update (Eq. 2). In the k-th iteration, the
inputs are the previous iteration’s KF state x̂k−1 and its state
co-variance matrix P̂k−1, which describes the state uncertainty.
In the prediction, the acceleration and angular velocity from
IMU are integrated in Fk to generate xk and Pk, which are an
intermediate KF state and its co-variance. Next, the update
step takes the measurement zk and its uncertainty Rk from
GPS or LiDAR locator, and first use Rk to calculate Kalman

Table 1: Survey of MSF-based localization designs in papers
published in top-tier robotics conferences (IROS, ICRA, and
RSS) [45] in the most recent 2 years (2018 and 2019).

MSF Design Papers Percentage
Category Name

KF-based
Linear KF [25, 46–51] 7/18 (38.9%)

14/18 (77.8%)Extended KF [52–55] 4/18 (22.2%)
Unscented KF [56–58] 3/18 (16.7%)

Others
Particle Filter [59] 1/18 (5.6%)

4/18 (22.2%)Graph Optimization [60, 61] 2/18 (11.1%)
Neural Network [62] 1/18 (5.6%)

gain Kk. Kk is then used as a weight to determine how much
of the difference between zk and xk is updated to the new
state x̂k, and how much of Pk is updated to the new state co-
variance P̂k. In the equations, Q and H are typically constant
matrices, with the former used for tuning the system and the
latter for mapping the state space to the measurement space.

xk = Fkx̂k−1

Pk = FkP̂k−1FT
k +Q

(1)

x̂k = xk +Kk(zk−Hxk)

P̂k = Pk−KkHPk

Kk = PkHT (HPkHT +Rk)
−1

(2)

Fig. 1 shows an example of the KF operations. In the predic-
tion step, the acceleration and angular velocity from IMU are
integrated in the KF to generate an intermediate state (black
arrows in Fig. 1). In the update step, KF takes the position
measurements from GPS or LiDAR locator, and updates a
fraction of it to the KF state based on the uncertainties of the
KF state and the measurement. A larger KF state uncertainty
or a smaller measurement uncertainty will cause more updates
to the KF state.

Outlier detection. To prevent KF state from being easily
disrupted by occasional measurements that are too noisy in
the real world, the KF update is usually bounded by an outlier
detector. Fig. 1 shows an example where a GPS measurement
is discarded since its position deviates too much from the
KF state. Chi-squared test (Eq. 3) is one of the most widely
used outlier detectors for KF [29, 33, 63], which considers
a measurement zk as an outlier if the Chi-squared test value
χ2

k is larger than a statistical significance threshold (usually
3.841 [64]). An outlier measurement can be either discarded
or partially updated.

χ
2
k = (zk−Hxk)

T S−1
k (zk−Hxk)

Sk = HPkHT +Rk
(3)

Targeted MSF implementations and representative-
ness. In this paper, we perform our security study on concrete
MSF implementations for practicality and realism. In partic-
ular, our main target is an MSF design and implementation
from the Baidu Apollo team, which we call BA-MSF. It is pub-
lished in ICRA 2018 [25], a top-tier robotics conference [45],
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and follows the KF-based MSF design using high-end GPS,
LiDAR, and IMU, with the Chi-squared test as the outlier
detector conforming to the common practice [29, 33, 63]. As
described earlier, such design is the most representative in
today’s MSF-based AD localization (Table 1).

Besides its design, the implementation of BA-MSF is also
highly representative in today’s MSF-based AD localization:
it has been tested using a large AV fleet in various challeng-
ing scenarios such as urban downtown, highways, and tun-
nels [25], and shown the highest localization accuracy (0.054
m) among all MSF-based localization papers (including both
KF-based and non KF-based) in the top-tier robotics confer-
ences [45] of the most recent 2 years. Today, it is already
adopted in Baidu Apollo [10], a production-grade AD system
currently providing self-driving taxi services in China [65].

Besides BA-MSF, we also consider two other publicly-
available KF-based MSFs for generality evaluations (§6.4).
We follow the common parameter tuning process [66] but
can only reach at most 1-2 meter accuracy, which is far from
the centimeter-level accuracy required by AD systems [5, 6].
Thus, in the majority of our experiments, we target BA-MSF
as it is much more representative for AD systems.

2.2 GPS Spoofing and the Practicality
GPS spoofing has been a fundamental problem for civilian
GPS systems due to the lack of signal authentication in the
infrastructure. In GPS spoofing, the attacker transmits fabri-
cated GPS signals with stronger power than the authentic ones,
and thus causes the victim receiver to lock onto the attacker’s
signals and resolve positions controlled by the attacker. GPS
spoofing has been proven feasible theoretically [16] and em-
pirically [17]. So far, it has been demonstrated on various
end systems such as smartphones [18, 19], drones [20, 21],
yachts [23], and recently also low-level AVs such as Tesla
cars [22]. Recently, a year-long investigation identified 9,883
spoofing events that affected 1,311 civilian vessel systems in
Russia since 2016 [67]. Although GPS spoofers are illegal
to be sold in the U.S., they can be made cheaply from com-
mercial off-the-shelf components. For example, a low-end
spoofer is as cheap as $223 [18], and higher-end ones that
can simultaneously track 10+ satellites and transmit 10+ fake
GPS signals only cost similar to a laptop [17,68]. Considering
such high realism, in this paper we consider it as a practical
attack vector to AD localization.

3 Attack Model and Problem Formulation
3.1 Attack Goal and Incentives
Attack goals. In this paper, we target an attack scenario where
an attack vehicle tailgates a victim AV while launching a
GPS spoofing attack, which is both practical and effective
as evaluated by previous work using real cars [18]. In such
a scenario, we consider an attack goal of introducing large
lateral deviations to the localization output of the victim AV,
i.e., deviating to the left or right. Since all vehicles need to

drive within their designated road lanes for safety protections,
such lateral deviations can pose a direct threat to road safety.

In particular, in this paper we consider two concrete at-
tack goals specific to the AV context: off-road attacks and
wrong-way attack. As illustrated in Fig. 2, the former aims
at deviating to either left or right until the victim drives off
the road pavement, while the latter aims at deviating to the
left until the victim drives on the opposite traffic lane. Table 2
lists the required deviations to achieve these two goals, which
will be used in our subsequent security analysis.

In the AV context, these two attack goals can cause various
safety hazards specific to localization errors such as driving
off road to hit road curbs or falling down the highway cliff.
Since in high-level AD systems the perception module is only
designed for obstacle detection and the localization module is
in full charge of identifying road deviations [7–11], these haz-
ards cannot be prevented even when the perception module
is functioning perfectly. Moreover, such hazards cannot be
prevented even if high-level AD systems directly use percep-
tion sensors, e.g., cameras and ultrasonic sensors, for collision
avoidance. These two attack goals can also cause vehicle col-
lisions, e.g., with vehicles in adjacent or opposite traffic lanes.
Even when the AV can perform automatic emergency brake,
it cannot avoid being hit by other vehicles that fail to yield
on time, especially those human driving ones with over 2 sec
average driver reaction time [69].

Attack incentives. No matter whether road accidents are
caused, the victim AVs under the two attack goals are already
violating the traffic rules [70, 71] and exhibiting unsafe driv-
ing behaviors. These can already damage the reputation of the
corresponding AV company. Thus, a likely attack incentive is
business competition, which can allow one AV company to de-
liberately damage the reputation of its rival AV companies and
thus unfairly gain competitive advantages. This is especially
realistic today considering that there are over 40 companies
competing in the AV market [1]. Meanwhile, considering the
direct safety impact, we also cannot rule out the possible in-
centives for terrorist attacks or targeted murders, e.g., against
civilians, or controversial politicians or celebrities.
3.2 Threat Model
Attacker’s capability. We assume that the attacker can
launch GPS spoofing (§2.2) to control the positioning mea-
surements of the victim’s GPS receiver, with a similar level
of measurement uncertainty as the natural GPS signals. We
also assume that the attacker can track the physical positions
of the victim AV in the real time during the tailgating. This
can be achieved by computing the attack vehicle’s own po-
sition and offsetting it with the relative position between the
attack vehicle and the victim. One concrete scenario is that
the attack vehicle is also an AV with a similar set of sensors
and run state-of-the-art AD localization algorithms for its
own position and AD perception algorithms for the relative
position. Under this scenario, the attacker can thus accurately
track the victim positions since for AVs precisely tracking
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Figure 2: Illustration of the 2-stage attack design and consequences of FusionRipper.

Table 2: Required deviations for the two
attack goals considered in this paper.
The values are calculated based on com-
mon AV, lane, and road shoulder widths
(detailed in Appendix A).

Attack Goal Required Deviation (m)

Local Highway

Off-Road Attack 0.895 1.945
Wrong-Way Attack 2.405 2.855

the positions of surrounding obstacles in the real time is one
of the most basic tasks for ensuring correct and safe driving.
Such a scenario is especially realistic when the attack is from
rival AV companies (incentive discussed in §3.1).

AV control assumption. We assume that AD systems are
designed to drive on the center of traffic lanes, and constantly
tries to correct any deviation to the center. State-of-the-art AD
systems from both the academia [72] and industry [10, 11]
follow such design and use lateral controllers to enforce it
at a high frequency in the control module (e.g., 100 Hz in
Apollo [10]). This means that when the attacker introduces a
deviation to the MSF output (e.g., to the right in Fig. 2), the
victim AV will actively correct it and thus cause its physical-
world position to have the same amount of deviation but to
the opposite direction (e.g., to the left in Fig. 2).
3.3 Attack Formulation
Based on the attack model above, the attack in our study can
be formulated as the following optimization problem:

max
{δa

k |k=1,...,n}
D(xa

n,{xk|k = 1, ...,n})

where xa
k = M (xa

k−1,rk +δ
a
k ,z

lidar
k , imuk),x

a
0 = x0,

(4)

where δa
k is the GPS spoofing distance to the victim’s physical-

world position rk on the road plane, xk is the MSF output
without the attack, xa

k is the MSF output with the attack, zlidar
k

is the LiDAR locator output, imuk is the IMU measurement,
D(·) denotes the lateral deviation between a position and
a trajectory, and M (·) denotes an iteration in the KF-based
MSF algorithm (introduced in §2.1), and k is the iteration
index. As shown, mathematically our attack on MSF is to find
a sequence of spoofing distances {δa

k |k = 1, ...,n} that can
maximize the deviation of the n-th attacked MSF output to
the original trajectory {xk|k = 1, ...,n}.
4 Security Analysis of MSF Algorithm
To systematically understand the security property of MSF-
based AD localization, we start with the necessary first step:
understanding the upper-bound attack effectiveness, i.e., the
maximum possible deviation, under the attack formulation.
4.1 Upper-Bound Attack Effectiveness
Analysis methodology. To analyze the upper-bound attack
effectiveness, we perform exhaustive search of possible attack
inputs {δa

k |k = 1, ...,n} to the representative MSF implemen-
tation, BA-MSF, to find the one that can maximize Eq. 4.

We did not choose to use an optimizer since the BA-MSF
implementation is released in the binary form and thus we
cannot directly get its analytical formula. For a given sensor
input trace in our analysis, there are multiple possible attack
windows, i.e., from one GPS input to another later. For each
attack window, we iteratively search for the δa

k that can devi-
ate the most from xk, which is a method also used in previous
theoretical work on the security of single-source KF [73–76].
In accordance with our threat model, we set the measurement
uncertainty of GPS spoofing inputs as the median value in
real-world sensor input traces of BA-MSF.

We perform the analysis above on two types of sensor input
traces: (1) real-world trace, and (2) synthetic noise-free trace.
The former is obtained by directly recording the run-time
MSF input while the AV is driving in the real world. Analysis
results from this type of traces have the highest realism, but
the types of analysis we can perform are limited since we
cannot easily modify the sensor data without violating the
consistency among different sensor inputs, and the analysis in-
sights can be less clean due to real-world sensor noises. Thus,
we complement it with the latter, which synthesizes MSF in-
puts following a given driving trajectory, with all the LiDAR
locator and non-spoofed GPS inputs set to the ground truth
positions, their measurement uncertainty set to the medium
value in the real-world trace, and the IMU measurements
calculated according to the driving trajectory.

Experimental setup. We obtain the official BA-MSF im-
plementation from the Apollo AD system code base [10]. For
the real-world trace, we use the BA-MSF input trace released
by Apollo, which is recorded in Sunnyvale, CA and 4-min
long [77]. In this paper, we denote it as ba-local. For the syn-
thetic trace, we generate one for a common driving trajectory:
driving on a straight road with a constant velocity of 45 mph.
In our analysis, we use an attack window of 10 attack inputs,
which is 10 seconds since the GPS input is 1 Hz in Apollo. In
the exhaustive search, we enumerate δa

k from 0 to 10 meters
with step size of 0.04 meters on both left and right sides, since
we find that in our experiments GPS input deviations larger
than that are identified as outliers by the Chi-squared test in
BA-MSF. The medium measurement uncertainty values for
GPS and LiDAR locator are calculated from trace ba-local.

Results. Fig. 3 (a) shows the distribution of the upper-
bound deviations achieved in the 10-point attack windows for

5



0 1 2 3 4 5
Maximum Deviation (m)

(a)

0

25

50

75

100

Pe
rc

en
ta

ge
 (%

)

0.9 1.0 1.1 1.2 1.3
Best Fitted Exponential Base

(b)

0

2

4

M
ax

im
um

 D
ev

ia
tio

n 
(m

)

Real-world trace
Synthetic trace
Real-world trace windows
Synthetic trace windows

0.0740 0.0745 0.0750

50

100

Figure 3: (a) CDF of the maximum deviations for attack
windows in real-world and synthetic traces. Attack goals are
marked in red dotted lines. (b) Maximum deviations and best
fitted exponential bases of attack windows in the two traces.

each trace. As shown, in both real-world and synthetic traces,
even such maximum possible attack effectiveness is very lim-
ited: majority (76.0%) of the attack windows in the real-world
trace and all of those in the synthetic trace cannot reach even
the lowest required deviations (0.895 m) in Table 2. The main
reason behind such poor attack performances is as follows.
First, due to outlier detection, the maximum deviation achiev-
able by the first attack input is very small, e.g., at most 0.06
meters. Next, such tiny deviation can be quickly corrected
by LiDAR locator inputs since in between two GPS attack
inputs there are 5 LiDAR locator inputs (5 Hz in Apollo).
This makes it highly difficult for subsequent attack inputs to
build upon the deviations achieved by previous attack input.
Thus, production-grade KF-based MSF algorithms today can
indeed generally enhance the security against GPS spoofing.

At the same time, we also observe that the results between
the real-world trace and the synthetic trace have very sharp
differences: in the synthetic trace, the upper-bound deviations
for all attack windows are at most 0.076 meters, while those
in the real-world trace is generally larger, with 90.3% of them
larger than 0.076 meters. This suggests that sensor noises in
the real world can generally degrade the security of MSF. As
shown later, such real-world factors can actually enable highly
effective attacks that fundamentally break MSF in practice.

Observation: take-over effect. While our results show a
general lack of attack capability to achieve even the easiest
attack goal in Table 2, we also observe that for the real-world
trace there still exist 14% attack windows that can actually
achieve over 2 meters deviations, which are large enough for
some of our attack goals. For all of these windows, we find
that GPS spoofing is able to cause an exponential growth
of deviations, and one such example is shown on the left of
Fig. 4. As shown, its deviation trend is very different from
those in majority of other attack windows as shown on the
right of Fig. 4, which is almost flat.

To more quantitatively measure such observation, for each
window, we fit an exponential function f (x) = ax +b to the
deviations, where x is the x-th attack point and f (x) is the
deviations. For each 10-point window, we use the exponential
base a in the best fitted function (based on the mean squared
error) to measure the exponential growth trend. As shown in
Fig. 3 (b), such exponential growth trends have strict positive
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Figure 4: The deviations and best fitted exponential bases of
two example attack windows in the real-world trace. Left is
with take-over effect; Right is without take-over effect.
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Figure 5: The deviation growth and the best fitted exponential
base for BA-MSF with only the spoofed GPS input in KF
updates (or a single-source KF-based MSF) in the synthetic
trace under exhaustive search.

correlation with the upper-bound deviations in the attack win-
dows, and all windows that can have very large deviations,
e.g., over 3 meters for achieving all attack goals in Table 2,
have very clear exponential growth trend, e.g., with a being
at least 1.3 (the trend on the left of Fig. 4).

Such exponential growth trend is very similar to the situ-
ation when the spoofed GPS is the only positioning source
in KF updates, which is confirmed by re-running the upper-
bound attack analysis in the synthetic trace without LiDAR
locator inputs as shown in Fig. 5. This means that for these
windows with exponential deviation growths, GPS inputs
somehow become the dominating KF update source (we will
analyze the cause later). In fact, according to the Chi-squared
test values in the analysis logs, we find that LiDAR locator
inputs actually become outliers in the latter parts of these
windows and then can not provide corrections any more. This
thus fundamentally defeats the design principle of MSF, i.e.,
the fusion of multiple input sources for more robustness and
accuracy. In this paper, we call it take-over effect.

For an attacker, such take-over effect is the most desired
attack outcome, since it can efficiently cause arbitrary devia-
tions and thus lead to both off-road and wrong-way attacks,
and even larger ones if desired. Thus, in the next section we
perform a cause analysis to understand why such take-over
effect appears in the real-world trace.
4.2 Cause Analysis
Since take-over effect does not appear in all attack windows,
there must be some factors other than the attack input δa

k that
contribute to the take-over opportunity. To analyze the causes
for take-over effect, we first identify possible contributing
factors using theoretical analysis and experimental validation,
and then use correlation analysis to identify the most impor-
tant factors for the observed take-over effect in our analysis.

Derivation of contributing factors. To identify the set of
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Figure 6: A simplified but general MSF operation pipeline
under GPS spoofing attack for theoretical analysis.

possible contributing factors to the deviations in MSF, we first
perform theoretical analysis based on the general KF-based
MSF design (§2.1). For the ease of the theoretical analysis
without loss of generality, we target the smallest unit in the
attack, the MSF operation pipeline between two consecutive
GPS spoofing inputs, and simplify it to only have one IMU
input and one LiDAR locator input. Fig. 6 shows such simpli-
fied pipeline, and the notations we use in the analysis, where
dev1, devimu, devlidar, and dev2 denote the MSF output devi-
ations after the first GPS spoofing input, the IMU input, the
LiDAR locator input, and the second GPS spoofing inputs.

Here we derive the deviations after each step in the sim-
plified but general KF-based MSF operation pipeline for the-
oretical contributing factor analysis. Table 9 (in Appendix)
lists the math notations and their descriptions used in the
derivation.

First, after spoofing the 1st GPS point with a spoofing dis-
tance δa

1, the KF state equations become:

x̂a
1 = x0 +K1(r1 +δ

a
1−Hx0)

= x̂1 +K1δ
a
1

P̂1 = P0−K1HP0

K1 = P0HT (HP0HT +R1)
−1

Thus, the deviation after spoofing the first point is:

dev1 = K1δ
a
1

Second, we perform an IMU prediction. IMU values are
used in the kinematics function described by the matrix F1:

ximu,a
1 = F1x̂a

1

= F1(x̂1 +K1δ
a
1)

= ximu
1 +F1K1δ

a
1

Pimu
1 = F1P̂1FT

1 +Q

After the IMU prediction, the deviation becomes:

devimu = F1dev1

Third, a LiDAR locator update is applied. ∆lidar = ximu
1 −

zlidar
1 describes the distance between the LiDAR position and

the original non-spoofed KF state. This is because sensor
noises or LiDAR locator inaccuracies will cause LiDAR loca-
tor outputs to be misaligned with the MSF output.

x̂lidar,a
1 = ximu,a

1 +Klidar
1 (zlidar

1 −Hximu,a
1 )

= ximu
1 +devimu

+Klidar
1 (zlidar

1 −H(ximu
1 +devimu))

= x̂lidar
1 +devimu−Klidar

1 (∆lidar +devimu)

P̂lidar
1 = Pimu

1 −Klidar
1 HPimu

1

Klidar
1 = Pimu

1 HT (HPimu
1 HT +Rlidar

1 )−1

LiDAR locator output provides correction on the deviation.
After the KF update, the deviation then becomes:

devlidar = devimu−Klidar
1 (∆lidar +devimu)

Finally, we spoof the second GPS point with the spoofing
distance δa

2:

x̂a
2 = x̂lidar,a

1 +K2(r2 +δ
a
2−Hx̂lidar,a

1 )

= x̂lidar
1 +devlidar

+K2(r2 +δ
a
2−H(x̂lidar

1 +devlidar))

= x̂2 +devlidar +K2(δ
a
2−devlidar)

P̂2 = P̂lidar
1 −K2HP̂lidar

1

K2 = P̂lidar
1 HT (HP̂lidar

1 HT +R2)
−1

And the deviation after the second spoofing point will be:

dev2 = devlidar +K2(δ
a
2−devlidar)

Based on the derivation, there are 4 theoretical contributing
factors to dev2 besides the attack input δa

k :

• Initial MSF state uncertainty (P0): The larger P0 is, the
less confident the MSF algorithm has on its positioning
output, and thus more updates are taken from attack
inputs δa

k , leading to larger dev2.

• LiDAR measurement uncertainty (Rlidar
1 ): The larger

Rlidar
1 is, the less confident the LiDAR locator is on its

positioning output zlidar
1 , and thus the larger the remain-

ing deviation after LiDAR locator’s correction devlidar,
leading to larger dev2.

• Difference between LiDAR position and the original
MSF output without attack (∆lidar): The impact of ∆lidar
on dev2 has two phases. First, as ∆lidar increases, the cor-
rection from the LiDAR update increases, which causes
devlidar to be smaller and decreases dev2. Second, after
∆lidar becomes too big that makes zlidar

1 an outlier, no
correction can be applied any more and thus dev2 be-
comes larger than before. Thus, there is a non-linear
relationship between ∆lidar and dev2.

• IMU measurement (imu1): imu1 affect on dev2 in two
ways. First, imu1 is used in F1 (the IMU-based integra-
tion function in Eq. 1), which directly affects devimu and
further affects dev2. Second, F1 affects Pimu and then the
Kalman gain at LiDAR update Klidar and at the second
spoofing K2 (Eq. 2). Note that larger Klidar means larger
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Figure 7: Modeling of each factor in the synthetic trace. We
modify different parts of the sensor data in order to observe
how the factors affect the 2nd deviation dev2.
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Figure 8: Relationship between the contributing factors and
the spoofing deviation in the synthetic trace.

correction and thus smaller dev2, while larger K2 means
larger dev2. Thus, the relationship between imu1 and
dev2 depends on the design of F1 and the competition of
the impact of larger Klidar and larger K2 on dev2.

Experimental validation of derived contributing fac-
tors. To validate whether these 4 factors indeed affect the
actual BA-MSF implementation, we take a segment from the
synthetic sensor trace as shown in Fig. 7, and modify dif-
ferent parts of sensor data to model the change of the four
contributing factors. As shown, the segment consists of two
GPS spoofing points. Since no spoofing has been applied
prior to time t0, the deviation prior to t0 is zero. Unlike the
simplified MSF operation pipeline considered in the theoreti-
cal derivation, we apply the original KF prediction and update
sequences as real-world sensor traces for BA-MSF, i.e., 1 Hz
for GPS, 5 Hz for LiDAR locator, and 200 Hz for IMU [10].

For each contributing factor, we measure the deviation after
the 2nd spoofing point to understand the its relationship with
the deviation. To eliminate the influence from the GPS spoof-
ing distance, we exhaustively search for different distances for
two GPS spoofing points and use the best one in our results.
We use the median value of the GPS uncertainty in ba-local
as the uncertainty values for the GPS spoofing points, which
is the same as in §3.

Validation results. The experiment results are shown in
Fig. 8 and described below:

• For P0, there is no direct way to modify it since it is
not part of sensor data. Here we vary Rlidar before t0

to indirectly generate different values of P0. Since the
LiDAR locator outputs are aligned with the MSF state
(i.e., ∆lidar = 0) before t0, the change of Rlidar will only
affect P0. As shown in the top-left subfigure in Fig. 8,
the results validate that a larger P0 will cause a larger
deviation dev2.

• We modify Rlidar between time t0 and t1 to observe how
it affects the correction capability of LiDAR locator out-
puts on the deviation. As shown in the top-right subfigure
in Fig. 8, our results validate that Rlidar has a positive
effect on the deviation, but reaches a plateau when it is
overly large.

• The modeling of ∆lidar is straightforward: We directly set
the LiDAR locator outputs to have different distances to
the MSF state. The bottom-left subfigure in Fig. 8 shows
our results. As shown, aligned with our theoretical analy-
sis, a small ∆lidar can correct the deviation introduced by
the first GPS spoofing. However, when ∆lidar increases,
at a certain point it causes the MSF output to deviate to
the opposite direction. This is because ∆lidar provides a
large update to the velocity component in the MSF state
such that the deviation is over-corrected as time accu-
mulates. When ∆lidar becomes even larger, the deviation
starts to increase since LiDAR locator outputs become
outliers, which also conforms to our theoretical analysis.

• For imu, we modify the acceleration component in the
IMU measurements between time t0 and t1. In addition,
we align the LiDAR locator positions to the non-spoofed
MSF outputs during this period to ensure that ∆lidar = 0.
As shown in the bottom-right subfigure in Fig. 8, our
results show that imu has a positive influence on the
deviation overall, which shows that the impact of K2 is
much larger than the impact of Klidar to dev2.

Factor importance analysis. With the 4 contributing fac-
tors identified, we then use popular causality analysis meth-
ods to understand the importance of these factors on causing
the take-over effect observed in §4.1. Specifically, we per-
form the exponentiation function fitting as described in §4.1,
and label the windows with exponential base a over 1.1 as
windows with take-over effect. As shown in Fig. 3 (b), for
windows without any take-over effect, e.g., the ones for the
synthetic trace, the exponential base a is way below 1.1. With
the exponential fitting results, we identify the first point of the
exponential growth to obtain P0. For Rlidar, ∆lidar, and imu, we
use the average values from the first point of the exponential
growth to the end of the window. We use 2 statistical test-
ing methods commonly used for causality analysis [78–80]:
Pearson’s Correlation and Fisher’s Exact Test.

Analysis results. Table 3 shows the experiment results.
For the two statistical testing methods, p < 0.05 is considered
statistically significant, and r > 0.5 and or > 9 are considered
strongly correlated for Pearson’s Correlation and Fisher’s
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Table 3: Correlations between the contributing factors and
the take-over vulnerability. Results with statistically strong
correlation are highlighted in bold.

Correlation
Method

Factor Importance

P0 Rlidar ∆lidar imu

Pearson’s
Correlation 0.42 (2.0e-10) 0.44 (3.5e-11) 0.12 (8.4e-2) 0.01 (8.6e-1)

Fisher’s
Exact Test 21.09 (8.6e-6) 11.78 (5.2e-8) 5.91 (3.2e-4) 1.95 (1.1e-1)

Pearson’s correlation: r (p-value), where r is the correlation coefficient
Fisher’s exact test: or (p-value), where or is the odds ratio

Exact Test respectively [81]. As shown, only the p values
for P0 and Rlidar are statistically significant for both methods,
with their r values very close to showing strong correlations,
and their or values showing strong correlations. In contrast,
neither of the r or or values for ∆lidar and imu show strong
correlations, and for imu, the results are not even statistically
significant. This suggests that the take-over effect we observe
in our upper-bound analysis is most likely caused by relatively
large P0 and Rlidar in the corresponding attack windows.

For these two most important contributing factors, Rlidar re-
flects the lack of confidence in the LiDAR-based localization
algorithm during the attack window, and P0 reflects the lack
of confidence in the KF states at the beginning of the attack
window. This means that take-over opportunities, or vulner-
abilities, appear when the MSF is in relatively unconfident
periods. Because of this, the MSF algorithm needs to take
more updates from the GPS inputs, the relatively most confi-
dent input source in that period, which thus allows GPS inputs
to dominate KF updates and trigger the take-over effect.

Since Rlidar is the uncertainty reported by LiDAR locator, a
large Rlidar is caused by the inaccuracies of such locator algo-
rithm in practice. From the KF equations (§2.1), a large P0 is
mainly caused by larger uncertainties from the LiDAR locator
and GPS updates before the attack window, which is thus
due to algorithm inaccuracies in LiDAR locator and noises in
GPS signals. Thus, unconfident periods in MSF are mainly
created by practical factors such as algorithm inaccuracies
and sensor noises. This also explains why we cannot observe
any take-over effect in synthetic noise-free trace. These prac-
tical factors are fundamentally difficult to avoid in practice,
which is exactly why MSF is designed to compensate such
inaccuracies and noises from individual sources [7, 25–33].
However, as shown in our analysis, even for the high-end
sensors used in AVs today, these inaccuracies and noises are
unfortunately large and frequent enough for GPS spoofing to
exploit and fundamentally break MSF in practice.

5 Attack Design: FusionRipper
Although our analysis in §4 reveals that there do exist take-
over vulnerabilities for MSF in the real world, such vulner-
abilities only appear in the unconfident periods created by
dynamic and non-deterministic practical factors such as algo-
rithm inaccuracies and sensor noises, which is not observable

by the attacker in a tailgating attack vehicle (§3) and are
highly difficult, if not impossible, to directly control. Thus,
the attacker has to opportunistically capture and exploit such
vulnerable periods in the actual attack time.

Leveraging this idea, we propose a novel attack design
against MSF-based AD localization, called FusionRipper,
which consists of 2 stages as depicted in Fig. 2:

Stage 1: Vulnerability profiling. In this stage, the attacker
performs GPS spoofing and measures the feedback from the
victim AV to profile when vulnerable periods appear. In our
design, we aim for as fewer attack parameters as possible
to maximize the ease of implementation and robustness, and
thus choose to use constant spoofing for this stage, i.e., always
setting δa

k to a constant d as shown in Fig. 2. Although such
profiling method is simple, our evaluation results later in §6
show that it is able to achieve a high attack success rate that
is very close to the theoretical upper bound.

While performing constant spoofing, the attacker tracks
victim’s physical positions in real time and measures their
deviations to the center of traffic lane (described in §3). If
such deviation is as large as causing the AV to exhibit un-
safe driving behaviors, e.g., about to have unnecessary lane
straddling, the victim AV is considered as in the vulnerable
period. Our design uses the deviation that can touch the left
or right lane line on local roads (0.295 meters, detailed in
Appendix A) as the threshold to determine vulnerable peri-
ods. The intuition is that a properly designed and tested AD
system should very rarely have large position deviations that
can cause unsafe driving behaviors under normal fluctuations
of sensor inputs. For example, the errors of BA-MSF eval-
uated by Baidu Apollo AVs on real roads are within 0.054
meters [25], which is far less than 0.295 meters. Thus, when
such rare deviation appears, it is very likely caused by the
constant spoofing, and the MSF algorithm is very likely in
an unconfident period since it takes larger update from the
spoofed GPS inputs.

Stage 2: Aggressive spoofing. After the vulnerable period
is identified, the attacker can then perform aggressive spoof-
ing to trigger the take-over effect and thus quickly induce
large deviations. As shown in our security analysis in §4.1,
the deviations grow exponentially during the take-over effect,
and thus we choose exponential spoofing in the aggressive
spoofing stage. As shown in Fig. 2, as soon as the attacker
identifies a vulnerable period, she switches to use spoofing
distance d× f i, where an exponential base f is cumulatively
multiplied to previous spoofing distance at each of the spoof-
ing points, and i is the index of the aggressive spoofing inputs.

Generality. Since FusionRipper is designed to exploit the
take-over vulnerability that is general to any KF-based MSF
as discussed in our cause analysis based on the general form
of KF-based MSF (§4.2), its design is generally applicable to
any KF-based MSF algorithms. As shown in our generality
evaluation later (§6.4), FusionRipper is highly effective on
different KF-based MSF designs and implementations.
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6 Attack Evaluation
6.1 Evaluation Methodology
Experimental setup. Following the common practice among
AV companies [82, 83], we evaluate FusionRipper on real-
world sensor traces. Specifically, we use the real-world trace
ba-local used in our security analysis earlier (§4), and also
traces from KAIST Complex Urban [84], a dataset for evalu-
ating AD systems. Since ba-local is collected by the Apollo
team and is designed specifically for evaluating MSF-based
localization algorithms for Apollo, it is by default compatible
with BA-MSF with a complete positioning sensor set as well
as the HD Map for running the LiDAR locator1.

Similar to ba-local, the traces in the KAIST dataset are
also collected by high-end AV-grade positioning sensors [84].
But unfortunately, they do not provide the HD Map for run-
ning the LiDAR locator in BA-MSF. To address this, we
assume an ideal LiDAR locator which always outputs the
ground truth positions provided in the KAIST dataset, with
their measurement uncertainty set to the median value of that
in ba-local. Considering that one of the likely causes for the
take-over effect is the LiDAR locator inaccuracies, especially
the measurement uncertainty values (§4.2), this assumption
only makes the attack harder and thus the results will provide
the worst-case attack effectiveness on the KAIST traces.

Trace selection in KAIST dataset. The KAIST dataset
includes 18 local traces and 2 highway traces that are com-
patible with BA-MSF, and we select 3 local ones and both
the 2 highway ones. We truncate them to the first 5 minutes
to keep the evaluation time manageable. In the selection of
local traces, we select the ones with the smallest average MSF
state uncertainty (i.e., most confident). Table 4 shows the
average MSF state co-variance value, i.e., uncertainty, when
running BA-MSF on the 20 traces in the KAIST dataset that
(1) have the complete sensor data needed by BA-MSF, e.g.,
some KAIST traces do not have complete IMU data, and (2)
from a stationary position to provide a complete motion his-
tory, which is required for BA-MSF to have stable outputs.
Among the 18 local traces and 2 highway traces, we choose
both the eligible highway traces, and select the top 3 from the
local traces with the lowest MSF state uncertainties. Consid-
ering that state uncertainty is one of the two most important
contributing factors to the take-over effect (§4.1), the evalua-
tion results on these traces will provide the worst-case attack
effectiveness for the KAIST traces.

Evaluation metrics. To evaluate the attack effectiveness,
we apply attack parameters d and f from all possible attack
starting points, i.e., when the GPS input comes, in each trace,
since the attacker can discover the victim at any moment in
the trace and start performing the attack. As described earlier
in §5, the attacker switches to aggressive spoofing when the
lateral deviation between the spoofed MSF output and the

1Apollo released 8 sensor traces recorded with localization, but only ba-
local has both the complete sensor set and compatible format with BA-MSF.

Table 4: Average MSF co-variance, i.e., uncertainty, of the
KAIST local and highway traces. We ranked the traces based
on their MSF state co-variance (the lower the more confident),
and pick the most confident ones (in bold) in our evaluation.

Local
Trace

Avg. MSF
Co-variance Rank

Local
Trace

Avg. MSF
Co-variance Rank

ka-local08 0.0032 1 ka-local39 0.1143 10
ka-local31 0.0080 2 ka-local16 0.2254 11
ka-local07 0.0111 3 ka-local29 0.3237 12
ka-local37 0.0131 4 ka-local09 0.4070 13
ka-local35 0.0146 5 ka-local14 0.4468 14
ka-local33 0.0219 6 ka-local38 0.8904 15
ka-local36 0.0312 7 ka-local26 1.4719 16
ka-local28 0.1026 8 ka-local27 6.4191 17
ka-local30 0.1029 9 ka-local32 33.3712 18

Highway Trace Avg. MSF Co-variance Rank

ka-highway17 0.0027 1
ka-highway06 0.0028 2

non-spoofed MSF output is over 0.295 meters, which is just
about to have lane straddling on local roads.

We consider the attack as successful when the lateral devia-
tion of the MSF output is over the required deviations for the
off-road and wrong-way attacks according to Table 2. This
follows our AD control assumption (§3), which can directly
considers the amount of deviation at the MSF output level
as the amount of physical position deviations in the opposite
direction to the center line. Later in §7.2, we will concretely
evaluate this assumption using an end-to-end evaluation with
the AD control taking effect. The success rate is calculated
as the fraction of the successful attack starting points out of
all starting points. For each attack starting point, we enumer-
ate the combinations of d from 0.3 to 2.0 meters, with step
size 0.1 meters, and f from 1.1 to 2.0, with step size 0.1. We
choose these ranges because we do not find the values out of
these ranges can improve the attack effectiveness in our exper-
iments. Each d and f combination is then applied to both the
left and right side of the driving direction, since both sides are
valid for achieving off-road attack (detailed in §3.1). Since it
takes time to (1) capture a take-over vulnerability, which is
created dynamically and non-deterministically, and (2) reach
the required deviations even during take-over effects (§4.1),
we also consider minimum attack duration when calculating
success rate, i.e., how much time the attack can last when
tailgating the victim AV. Intuitively, the longer such duration
is, the higher chance she can have to hit a vulnerable period.

6.2 Attack Effectiveness
Attack success rates. Fig. 9 shows the best success rates of
FusionRipper among all the combinations of d and f for the
two attack goals. It shows both the results for individual traces
and the average result among all traces (the thick pink line).
As shown, for all traces, the average success rate is always
over 75% for both attack goals even when the minimum attack
duration is as low as 30 seconds. When the minimum attack
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Table 5: Real-world sensor traces used in our
evaluation.

Source Trace Label Road Type Duration HD Map

Apollo ba-local Local 257s Yes

KAIST
Complex

Urban

ka-local08 Local 289s

No
ka-local31 Local 1014s
ka-local07 Local 553s

ka-highway17 Highway 1186s
ka-highway06 Highway 1937s
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Figure 9: Average attack success rates of (a) off-road attack and (b) wrong-way
attack under different minimum attack duration.

Table 6: Ablation study results on ba-local trace.

Attack Config. Off-Road Wrong-Way

Succ.
Rate

Succ.
Time

Succ.
Rate

Succ.
Time

FusionRipper 98.0% 29s 97.0% 33s

Vulnerability Profiling
Stage Only 14.1% 26s 7.0% 29s

Aggressive Spoofing
Stage Only 10.1% 8s 5.0% 13s
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Figure 10: Average success rate under
different required attack deviations
when the minimum attack duration
is 2 minutes.
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Figure 11: Average success time for
reaching required deviations in off-
road and wrong-way attacks under
different minimum attack duration.

duration increases, the success rates for all traces increase
accordingly, which is expected since the attacker has higher
chance to capture a vulnerable period. In particular, when the
attack can last 2 minutes, there exists at least one combination
of d and f that can achieve over 97% success rate (98.6% on
average) for the off-road attack and over 91% success rate
(95.9% on average) for the wrong-way attack, for all traces in
our evaluation. Note that this is in fact the worst-case results
for KAIST traces as discussed in §6.1. Since a normal taxi or
truck trip is usually at least 10 minutes, it is highly likely that
an attacker can find such a 2-minute tailgating opportunity in
practice to launch the FusionRipper attack.

Among all the traces, ka-local08 and ka-highway17 shows
the lowest success rate in general, especially when the re-
quired deviation is large. As shown in Table 4, both traces
have smallest average MSF state uncertainty in their cate-
gories (i.e., local and highway). This means that their MSF
outputs have the highest confidence and thus are the most
difficult to attack as we expect in §6.1. This also confirms
that we are evaluating the worst-case attack effectiveness on
KAIST traces.

Between the two attack goals, the success rates only slightly
drop for wrong-way attack since it has a larger required devi-
ation. This means that the majority of the captured vulnerable
periods have a successful take-over effect that can be ex-
ploited to cause different required deviations. To confirm this,
we further evaluate the success rates of FusionRipper for even
larger required deviations, and find that when the minimum
attack duration is 2 minutes, FusionRipper is able to maintain
an average success rate over 91.3% even when the required
deviation is 10 meters as shown in Fig. 10.

Sensitivity to attack parameters. Table 7 lists the top 3
combinations for each trace. As shown, the attack effective-

ness of FusionRipper is sensitive to the combinations of d
and f . For example, the best d and f combinations are all
different for the 6 traces. This motivates us to design an offline
method to identify effective d and f combinations to increase
the attack practicality, which is detailed later in §8.

Ablation study. The high attack effectiveness is a result
of the combination of the two attack stages. To concretely
understand this, we conduct an ablation study on ba-local,
where we remove one of the two stages in the experiments.
For Vulnerability Profiling Stage Only, we apply the constant
spoofing distance d from each starting point. For Aggressive
Spoofing Stage Only, we directly scale the spoofing distance
using different combinations of d and f from each starting
point. For both configurations, we obtain the highest success
rates by enumerating d or f in the range specified in §6.1.

Table 6 shows the experiment results for ba-local when the
minimum attack duration is 2 minutes. As shown, both con-
figurations can only achieve at most 14% and 7% for the two
attack goals, which is far less than 98% and 97% by Fusion-
Ripper. This means that there are still some very unconfident
periods that even stage 1 or stage 2 alone can succeed, but as
shown, without the help of each other, the success rate is very
limited. This concretely demonstrates the necessity of the
current 2-stage design of FusionRipper. Note that FusionRip-
per has longer attack success time than Aggressive Spoofing
Stage Only due to the time spent on the vulnerability profiling
stage. However, since the current ∼30 seconds attack time
on average is already quite affordable for a tailgating attacker
in practice, such advantage is much less important than the
much higher success rates by FusionRipper.

Attack success time. For the attack success time, overall
the average success time and the standard deviations are very
similar under different minimum attack duration as shown
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Table 7: Top 3 attack parameters with the highest attack success rates when minimum attack duration is 2 min.

Attack Rank ba-local ka-local08 ka-local31 ka-local07 ka-highway17 ka-highway06

d f
Succ.
Rate d f

Succ.
Rate d f

Succ.
Rate d f

Succ.
Rate d f

Succ.
Rate d f

Succ.
Rate

Off-Road
Top 1 0.6 1.5 98.0% 0.7 1.1 100% 0.5 1.2 99.4% 0.3 1.1 98.9% 0.3 1.2 97.0% 1.1 1.5 98.2%
Top 2 0.6 1.6 98.0% 0.7 1.2 100% 1.0 1.3 99.4% 0.3 1.2 98.3% 0.3 1.3 97.0% 1.1 1.3 98.2%
Top 3 0.6 1.7 98.0% 0.7 1.3 100% 1.0 1.4 99.4% 0.4 1.2 98.3% 0.3 1.4 94.0% 1.3 1.3 98.2%

Wrong-Way
Top 1 0.6 1.5 97.0% 0.3 1.2 93.8% 1.0 1.3 98.3% 0.3 1.4 91.1% 0.3 1.2 97.0% 1.2 1.3 98.2%
Top 2 0.6 1.3 95.0% 0.3 1.3 93.8% 1.0 1.2 97.8% 0.3 1.5 90.6% 0.3 1.3 97.0% 1.3 1.3 98.2%
Top 3 0.6 1.4 95.0% 0.5 1.3 92.1% 1.1 1.2 97.8% 0.3 1.3 88.3% 0.3 1.4 94.0% 1.1 1.3 97.6%

in Fig. 11. When the minimum attack duration is 2 minutes,
the average success time is less than 30 seconds with a stan-
dard deviation of around 25 seconds for both off-road and
wrong-way attacks. This shows that FusionRipper can gener-
ally succeed very fast, e.g., within a minute, even when the
attacker plans to attack for over 2 minutes.

6.3 Comparison with Naive Attack Method
In this section, we compare FusionRipper with a more naive
attack method: random attack, which randomly spoofs a devi-
ation within a distance range for each GPS spoofing point.

Experimental setup. We perform experiments by apply-
ing FusionRipper and random attack on ba-local. In the ran-
dom attack, we uniformly sample the position deviation be-
tween 0 to 10 meters for each spoofing point. The experiments
are repeated for 30 trials. In each trial, the spoofing is per-
formed for each attack starting point and on both the left and
right. The higher success rate between that of the left and that
of the right is taken as the final success rate for each trial.

Results. The first row in Table 8 shows the experiment re-
sults when the minimum attack duration is 2 minutes. We find
that the random attack can barely reach any large deviation,
and as shown, its success rates are as low as 3.7% and 0.2%
on average for the two attack goals respectively, which are
much lower than those from FusionRipper (98.0% and 97%).

6.4 Generality of FusionRipper
In this section, we aim at understanding the generality of
FusionRipper by evaluating it on more KF-based MSF imple-
mentations. Ideally we hope to find other production-grade
implementations for AD systems similar to BA-MSF, but to
best of our knowledge, BA-MSF is the only publicly-available
one so far. Nevertheless, we still try our best to implement/port
and evaluate on two other popular KF-based MSF designs,
denoted as JS-MSF and ETH-MSF, which are both designed
for general robotics localization instead of for AVs.

Experimental setup. BA-MSF adopts a Linear KF, the
most popular KF design for MSF-based localization (Table 1).
Thus, we follow a popular Linear KF based MSF design
published by Joan Solà [85] and implement JS-MSF. ETH-
MSF [86] is an open-source project developed by researchers
from ETH Zürich for drones [87], which implements an Ex-
tended KF based MSF, the second popular KF design for
MSF-based localization (Table 1). It has received over 500
stars on GitHub, which is the highest among the repositories

Table 8: Attack success rates of FusionRipper and random
attack on 3 MSF implementations. The attacks are evaluated
on ba-local with 2-minute minimum attack duration.

Attacked
MSF

FusionRipper Random Attack (avg. of 30 trials)

Off-Road Wrong-Way Off-Road Wrong-Way

BA-MSF 98.0% 97.0% 3.7% 0.2%
JS-MSF 100% 100% 97.4% 92.4%

ETH-MSF 100% 100%† 95.9% 72.5%

†Achieves 100% success rate when using a smaller f (1.02).

under the search keyword “kalman filter sensor fusion”. Both
implementations use a Chi-squared test based outlier detector
and directly reject outlier measurements. We follow a com-
mon parameter tuning process [66] and reach at most 1.91 and
1.17 meters localization accuracies on ba-local for JS-MSF
and ETH-MSF respectively. Although such accuracies are far
from the centimeter-level accuracy required by AD systems,
they are common for general robotics localization [47,48,56].

Results. Table 8 shows the attack success rates of Fusion-
Ripper and random attack on ba-local for all 3 KF-based
MSF implementations. As shown, FusionRipper can gener-
ally achieve high success rates on all three MSFs, which
are 100% on both JS-MSF and ETH-MSF for both attack
goals. However, we also notice that even random attack can
also achieve over 95% success rates for the off-road attack,
and over 70% for the wrong-way attack. This suggests that
JS-MSF and ETH-MSF are both very unstable, which can
also be seen by the fact that their natural localization errors
are already 1.17 and 1.91 meters. In contrast, BA-MSF can
achieve 0.054 meters accuracy, which is likely due to addi-
tional design features such as zero-velocity update [25], and
better parameter tuning by professional AV engineers. Thus,
while our results show that FusionRipper is general for all 3
KF-based MSF implementations, we believe that the results
on BA-MSF can more representatively indicate the security
status of production-grade MSF-based AD localization today.

7 Practical Attack Considerations
Although FusionRipper already shows very high effectiveness
in §6, we haven’t considered two factors that may affect the at-
tack effectiveness in practice: (1) the variations in the spoofed
positions and their measurement uncertainty at the victim’s
GPS receiver, and (2) sensor input changes due to AD control
during the attack. In this section, we evaluate the robustness
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of FusionRipper under these two practical factors. The exper-
iments in this section are mainly performed on the ba-local
trace since it has the complete set of real-world sensor inputs
for BA-MSF and thus has the highest realism.
7.1 Robustness Against Spoofing Inaccuracies
In §6, we directly set spoofed GPS inputs rk +δa

k based on d
and f , and set their uncertainty Rk as the medium value in real-
world traces. However, in practice both can have variations
due to sensor noises. In this section, we denote the variances
to rk +δa

k as σpos, and those to Rk as σvar.
Inaccuracy sources and modeling. As specified in our

threat model (§3), we assume that the attacker can estimate
the victim AV’s real-time positions based on her own position
and the distance to the victim. Thus, there are three possible
error sources for σpos: 1) localization error σ1 in attacker’s
self-localization process, 2) distance measurement error σ2
in the measured distance between the attack vehicle and the
victim AV, and 3) GPS receiver error σ3, i.e., the difference
between the position the attacker intended to set and the actual
received position at the victim side. Assuming the attacker
is equipped with the same sensor set used in an AD system
and can run an MSF algorithm of similar quality, σ1 will be
similar to the inaccuracies of BA-MSF algorithm, which is
reported as 0.054 meters in [25]. Since LiDAR can be used
to measure the distance to the victim, σ2 is thus the distance
measurement error in the LiDAR sensor, which is 0.02 me-
ters as specified in the datasheet according to the LiDAR
model used in Apollo [88]. For σ3, we directly use the po-
sitioning error, 0.01 meters, as specified in the datasheet of
the GPS model used in Apollo [39]. Assuming that these
errors are normally distributed with a zero-mean (common
practice in robotics [89]), the combined distribution for σpos
is conforming to N(0, σ2

1 +σ2
2 +σ2

3) = N(0, 0.0582). For the
measurement uncertainty error σvar during spoofing, we mea-
sure the distribution of GPS measurement uncertainty in the
ba-local trace, and take the standard deviation σvar = 0.008.

Experimental setup. We apply these error distributions
to the FusionRipper attack in ba-local using the best attack
parameter in ba-local with 2-minute minimum attack duration.
For each GPS spoofing input, we randomly sample a position
error from N(0, σ2

pos) and the error direction from a uniform
distribution between 0 to 360 degrees, and apply them to the
spoofed input. Similarly, we randomly sample an error value
from N(0, σ2

var) and apply it to the measurement uncertainty
of each spoofing input. To further explore the impact of these
errors, we also apply 2× and 3× amounts of the normal error
(σpos and σvar), in our evaluation. We repeat the experiment
100 times for each error amount.

Results. Fig. 12 shows the attack success rates under each
error amount. As shown, under normal error amount (1×
{σpos,σvar}), the success rate is only reduced by 0.2% for the
off-road attack, and by 0.8% for the wrong-way attack. Even
when the error amount is 3× than normal, meaning that the
error can be as large as 0.174 meters, the success rate is still

no error 1 × 2 × 3 ×
Applied Error Amount ( = { pos, var})
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Figure 12: Attack success rate for different amounts of spoof-
ing errors. Experiment of each error amount is repeated 100
times.

84.3% and 74.2% on average for off-road and wrong-way
attacks respectively. This shows that FusionRipper is highly
robust to spoofing inaccuracies in practice.

7.2 End-to-End Attack Impact Evaluation
In §6, we assume the amount of deviation in MSF outputs is
the same as the amount of physical position deviations to the
center line. In this section, we concretely evaluate this assump-
tion by performing an end-to-end attack impact evaluation
with the AD control taking effect.

Evaluation methodology. In this evaluation, we adopt two
evaluation methods popularly used in AV industry [82, 90]:
trace based and simulation based. In the trace-based evalua-
tion, we still use the original real-world sensor trace ba-local,
and synthesize the sensor input changes corresponding to
the output of the control module in Apollo. Specifically, the
lateral controller in Apollo runs a linear-quadratic regulator
algorithm [91] on the lateral deviation in the MSF output,
which calculates the amount of steering that will be applied
to correct the deviation. We thus mathematically translate
such steering into physical position and heading rate changes
(detailed in Appendix B), and add them to the original LiDAR
locator position and IMU values to get the changed ones due
to AD control. The benefit of this method is that it contains
real-world sensor noises, which is the key contributor to the
take-over vulnerability (§4). However, it does not model more
complicated sensing and vehicle motion factors such as raw
LiDAR point cloud changes and tire-road frictions, which
thus may have limited synthesizing accuracy.

In the simulation-based evaluation, we directly use an AD
simulator to dynamically generate raw sensor inputs to Apollo
according to its control decisions in the real time, which has
more advanced sensor and vehicle motion modelling. How-
ever, a common limitation for AD simulators today [92, 93]
is that they do not consider generating sensor data with real-
world noises. To address this, we model the LiDAR noises
as position errors following a normal distribution with a zero
mean for each point of the raw LiDAR point cloud generated
from the simulator according to the LiDAR datasheet [88].

Experimental setup. In the trace-based evaluation, we run
Apollo version 2.5 (the latest version directly compatible
with ba-local) with the control module enabled on a GPU
server, and feed trace ba-local. We write a standalone ROS
node that feeds the spoofed GPS inputs and also performs the
LiDAR locator and IMU input changes described above. For
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FusionRipper, we use the best attack parameter in ba-local
with 2-minute minimum attack duration. We do not run the
perception module since in Apollo the perception module only
outputs detected road obstacles and the system solely relies
on the localization module to identify deviations on the road.
This is the most popular design modularization for high-level
AD systems today [7–11], which lets the localization module
to take charge of all aspects related to vehicle positioning.

In the simulation-based evaluation, we use LGSVL, a
production-grade AD simulator that can interface with Apollo
version 5.0 [93]. Since Apollo version 5.0 replaces the ROS
runtime with Cyber [10], we implement the attack logic and
noise modeling in a Cyber node instead. Different from the
trace-based evaluation, we run the simulation on the complete
Baidu Apollo AD system with all functional modules enabled,
i.e., localization, transform, perception, prediction, planning,
routing, and control [10]. We simulate two attack scenarios
with one attacking to the left of the road and another to the
right, where both have concrete safety consequences such as
hitting the road barrier or traffic sign.

Trace-based evaluation results. Our results show that
FusionRipper achieves 97.0% and 93.9% success rates for
off-road and wrong-way attacks respectively, which is only
slightly lower than those in the MSF algorithm-only analysis
(98.0% and 97.0%). Such slightly effectiveness drop may be
due to run-time randomness when running the end-to-end
Apollo system since it uses multi-threading when feeding the
sensor inputs to BA-MSF.

Simulation-based evaluation results and attack demos.
Our simulation results show that FusionRipper can success-
fully deviate the victim AV to hit the road barrier or traffic
sign even with the complete end-to-end Baidu Apollo AD
system operating. We record attack demo videos for these two
simulation scenarios, available at our project website https://
sites.google.com/view/cav-sec/fusionripper. Fig. 13 shows
a snapshot of the demos. As shown, to correct the MSF output
deviation to the right/left of the planned trajectory (i.e., lane
center), the AV in the physical world deviates to the left/right
and eventually hit the road barrier or the stop sign.

8 Offline Attack Parameter Profiling
Our results so far show that for each trace there always ex-
ist an attack parameter combination, i.e., d and f , that can
achieve high success rates (§6) with high robustness to practi-
cal factors (§7). However, in §6.2 we also observe that such
high effectiveness is sensitive to the selection of attack pa-
rameters. Thus, it is highly desired if there exists an offline
method that can efficiently identify highly effective attack
parameters before the actual attack. In this section, we thus
explore the possibility of designing such a method to further
improve the practicality of FusionRipper.

8.1 Problem Settings and Design
Problem Settings. To find the effective attack parameters
offline, we assume that the attacker can perform trials of Fu-

MSF View

Physical World View

Attack to the Left Attack to the Right

Hit Road Barrier Hit Stop Sign

Blue: GPS position

Red: LiDAR locator position

Green: MSF output

Figure 13: Snapshots of our end-to-end attack demos [94].
MSF View: input sensor positions and MSF outputs; Physical
World View: victim AV’s physical world position.

sionRipper attacks with different combinations of d and f on
AVs of the same model as that of the victim AV, i.e., having
the same sensor set, AD system, and vehicle model. This is
a realistic assumption since any AV models developed for
commercial purpose need to be mass produced for the ease of
management and reducing the development cost for the self-
driving taxi or truck services today [65, 95–97]. For example,
Waymo’s 20,000 self-driving taxis in Phoenix are deployed
with the same sensor suite on the same car model [98], and the
same applies to Hyundai’s self-driving taxis [99]. In this pro-
cess, the attack trials can be performed actively, by requesting
the self-driving taxi or truck services that use the targeted AV
model, or directly purchasing an AV of the same model.

In such profiling process, it is necessary to prevent causing
obvious safety problems both for the attacker’s own safety
and for remaining stealthy. Thus, in such offline profiling we
choose a safe profiling design, which still performs the Fu-
sionRipper attack but stops the attack right after the physical-
world deviation of the AV is over a safe profiling threshold.
This will thus let the non-spoofed GPS and other positioning
sources to drag the MSF output deviations back.

Offline profiling algorithm design. Under the problem
settings above, our profiling method is designed following
a simple strategy: performing attack trials using different
combinations of d and f until we find a combination with a
sufficiently high success rate. More specifically, the trials are
performed for a number of profiling rounds. In each round,
the attacker picks one combination of d and f and tries it for
multiple times. When picking the combinations, the attacker
follows the order from the smallest one to the largest one in the
parameter space, since larger ones can more easily make the
spoofed inputs outliers and thus directly cause attack failure.

Due to the safety requirement, the attacker follows the safe
profiling design above, and considers a d and f combination
as successful once it reaches the safe profiling threshold. Af-
ter each profiling round, the attacker can thus obtain a success
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rate for a d and f combination. Once the success rate of a com-
bination in a round is over a minimum profiling success rate,
the profiling terminates and such combination is selected for
the actual attack. If the attack parameters space is exhausted,
the combination with the highest success rate in profiling is
selected. The pseudocode of this method is in Algorithm 1.

Algorithm 1 Offline Attack Parameter Profiling
Notations:
ATTACKTRIALS(d, f ,n, t): Profile n attack trials with parameters d, f , re-
turns the number of trials that have deviations larger than t
N: Number of attack trials in each profiling round
S: Minimum profiling success rate
T : Safe profiling threshold
Output: d, f , cost
Initialize d,dbest← dmin; f , fbest← fmin; SuccRatebest,cost← 0
1: for each f ← fmin to fmax do
2: for each d← dmin to dmax do
3: SuccCount← ATTACKTRIALS(d, f ,N,T )
4: cost← cost+N
5: SuccRate← SuccCount/N
6: if SuccRate≥ S then
7: return d, f , cost
8: else
9: if SuccRate > SuccRatebest then

10: dbest← d, fbest← f
11: SuccRatebest← SuccRate
12: end if
13: end if
14: end for
15: end for
16: return dbest, fbest, cost

8.2 Experiments and Evaluation
Experimental setup. In this section, we use the 5 KAIST
traces used in §6.2 since this represents the case with attacking
the same AV model (the KAIST traces are collected using the
same vehicle on different roads [84]). We split the 5 traces
into two sets, with 4 as the profiling traces, i.e., representing
the attack trials in the offline profiling, and 1 as the evaluation
trace for evaluating the selected d and f from profiling, i.e.,
representing the actual attack on the victim AV. We evaluate
all the 5 possible splittings, and then use their average success
rate to measure the offline profiling effectiveness. We use the
same parameter space as that in §6.

Algorithm parameter choices. In the profiling algorithm,
there are two configurable parameters: minimum profiling suc-
cess rate, and safe profiling threshold. Thus, we first perform
experiments to understand how to best configure them. In
these experiments, for each d and f combination we consider
all attack starting points in the profiling traces as its corre-
sponding set of attack trials in the profiling algorithm in order
to understand general properties of different parameter values.

We first perform experiments by running the profiling algo-
rithm for different minimum profiling success rates without
considering safe profiling design. Our results show that the
average success rate of the selected d and f does not change
significantly overall. Particularly, it peaks when the minimum

profiling success rate is 50% for both attack goals and drops
after that, maybe due to the overfitting to the profiling traces.
More details are in Fig. 18 (a) in the Appendix.

Next, with 50% as the minimum profiling success rate, we
vary the safe profiling threshold, and find that reducing the
safe profiling thresholds only slightly changes the average
success rate of the selected d and f : the success rate differ-
ences between profiling threshold 0.3 and 0.9 meters are less
than 4% for both attack goals. In particular, using 0.45 meters
as the safe profiling threshold has the overall highest average
success rate for both attack goals, which are 90.3% and 84.4%
respectively. Details are in Fig. 18 (b) in the Appendix. Such
0.45 meters deviation does not cause the AV to drive off road
on both local roads and highway (Table 2). On local roads,
it will only cause very slightly lane straddling, and on the
highway, it is far from even touching the left or right lane line
(both visualized in Fig. 16 in Appendix). Thus, the attacker
can choose to perform such safe profiling on the highway, or
on the local roads with light traffic.

Evaluation results. With the algorithm parameter values
decided, we then evaluate the algorithm effectiveness and the
profiling cost with limited number of attack trials for each
combination of d and f in the profiling round. We define
profiling cost as the total number of attack trials spent in the
profiling algorithm, since in our problem setting each trial
corresponds to a self-driving trip the attacker needs to take,
e.g., from a targeted self-driving taxi service. For each attack
trial, we limit its maximum duration to 90 seconds, which
generally covers over 95% of the successful cases according
to our earlier evaluation on attack success time (§6.2).

Fig. 14 shows the average success rates of the d and f
output by the profiling algorithm and the average numbers of
90-sec profiling trips under different numbers of attack trials
in each profiling round. In each profiling round, we randomly
sample the corresponding number of attack trials from all
attack starting points in the profiling traces. As shown, the
average success rate increases as the attacker spends more tri-
als in each profiling round since with more trials, the profiled
success rate of a d and f combination in a profiling round is
statistically closer to the ground truth. Particularly, when the
number of trials in each profiling round is 40, our profiling
algorithm can find a d and f combination with over 80% av-
erage success rate for both off-road and wrong-way attacks
(84.2% and 80.7% respectively). In this case, the profiling
cost is only 42 1.5-minute trips on average, which in total is
only slightly over 1 hour. Since the attackers can actively per-
form such trials, e.g., by requesting self-driving taxi services
themselves, finishing this should take at most half a day.

9 Limitation and Defense Discussions
9.1 Limitations of Our Study
Study representativeness. As the first work to study the se-
curity of MSF-based AD localization, we choose to focus on
the most representative design, KF-based MSF, and the most
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Figure 14: Average profiling effectiveness (bar graph) and
costs (line graph) under different numbers of attack trials in
each profiling round. Each profiling is repeated for 100 times.

representative implementation we can find, BA-MSF (repre-
sentativeness discussed in §2.1). However, it is still unclear
whether other less common MSF designs (e.g., particle filter
based [59]) and outlier detection designs (e.g., expectation-
maximization based [100]) can be more secure, which can be
potential future work directions.

Attack generality. Although our results have shown the
generality of FusionRipper by showing high success rates on 3
different KF-based MSFs (§6.4), only one (BA-MSF) of them
is production-grade implementation for AD systems. Ideally
it is better to evaluate on other production-grade ones, but
very unfortunately BA-MSF is the only one that is publicly
available so far and it is unlikely for other AV companies
to publicly release their implementations in the near future.
Thus, due to the lack of information, it is unclear whether other
leading AV companies, e.g., Waymo and GM, are vulnerable
to our attack. Nevertheless, since BA-MSF is representative
both at the design and implementation levels (§2.1) and our
attack is general to KF-based MSF by design (§4.2), if other
AV companies also adopt such a representative design, at
least at design level they are also susceptible to the discovered
take-over vulnerability. Thus, as the first study, we believe
our current discovery and evaluation results can already most
generally benefit the understanding of the security property
of MSF-based AD localization today.

Attack practicality. We evaluate FusionRipper on real-
world traces and under various practical factors such as spoof-
ing inaccuracies and AD control taking effect (§7). To further
improve the attack practicality, we design an offline attack
parameter profiling method that can achieve 84.2% and 80.7%
success rates for off-road and wrong-way attacks, with the
profiling cost of at most half a day. Nevertheless, due to the
cost and legal regulation for GPS spoofing, we did not conduct
attack experiments on real-world AVs, which thus can be a
valuable future work. Note that GPS spoofing has been proven
practical on various end systems [16–23], including cars such
as Tesla cars [22] (§2.2). Moreover, in this work, we model
GPS spoofing based on attack capabilities shown in prior
work [18, 19, 23] to minimize any unrealistic assumptions.

As mentioned in §3.2, we assume the attacker owns an
AV and can leverage AD perception algorithms to track the
physical position of the victim. Although accurate position-

tracking of surrounding obstacles is a basic task for AVs, we
did not conduct physical-world experiments to confirm this,
which is thus left as a valuable future work.
9.2 Defense Discussions
In this section, we discuss the potential defense directions
against FusionRipper.

Defend against GPS spoofing. Our attack depends on
GPS spoofing, so one direct defense direction is to lever-
age existing GPS spoofing detection or prevention techniques.
Unfortunately, neither GPS spoofing detection nor preven-
tion are fully-solve problems today. On the detection side,
numerous techniques have been proposed leveraging signal
power monitoring [101–103], multi-antenna based signal ar-
rival angle detection [102,104], or crowdsourcing based cross-
validation [105]. However, they either can be circumvented
by more advanced spoofers [21,102] or are only applicable to
limited domains such as airborne GPS receivers [105]. On the
prevention side, cryptographic authentication based civilian
GPS infrastructure can fundamentally prevent direct fabrica-
tions of GPS signals [102]. However, it requires significant
modifications to the existing satellite infrastructure and GPS
receivers, and is still vulnerable to replay attacks [106]. Thus,
one interesting future work direction is to more concretely
understand how effective the latest GPS spoofing defense
techniques can be against the current or adapted versions of
FusionRipper.

Improve confidence of MSF state and LiDAR locator.
Another fundamental defense direction is to improve the posi-
tioning confidence of MSF state and LiDAR locator, the two
most important factors to the take-over vulnerability in real-
world trace (§4). Fundamentally, such lacks of confidence in
practice result from algorithm inaccuracies and sensor noises
(§4), and as shown in our analysis, even for the high-end
sensors and production-grade LiDAR locator used in AVs
today, these inaccuracies and noises are unfortunately large
and frequent enough for FusionRipper to exploit. To improve
on this, substantial technology breakthrough in sensing and
LiDAR-based localization needs to take place. Unfortunately,
it is unclear when such breakthrough can take place.

Leverage independent positioning sources (e.g.,
camera-based lane detection) as fail-safe features for
high-level AD localization. Since fundamental defense
directions above are not immediately deployable, it is highly
desired to discuss the possibility of short-term mitigation
solutions. One promising direction is to leverage independent
positioning sources to cross-check the localization results
and thus serve as fail-safe features for AD localization. For
example, since both off-road and wrong-way attacks will
cause the victim AV to deviate from the current lane, they
should be detectable by camera-based lane detection [107],
a mature technology available in many vehicle models
today [108]. However, we find that in the high-level AD
system design today, such a technology has not been
generally considered for fail-safe purposes. For example,
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the latest release of Baidu Apollo (version 5.5) uses it only
for camera calibration [109], while Autoware does not use
it at all [110]. This might be because the lane detection
output is local positioning within the current lane boundaries,
and thus cannot be directly used for comparison against
global positioning from MSF. However, the vulnerability
discovered in this paper strongly motivates the need for
considering adding such kind of fail-safe features in future
AD localization, at least for anomaly detection. Note that
more investigations are needed to understand how effective
and robust such kind of fail-safe features can be in the
defense. For example, when camera-based lane detection is
applied for anomaly detection, the precision/recall rates need
to be further explored since it needs to carefully consider (1)
AVs legitimately deviating from current lane due to routing
requirements, and (2) lane line scratches or incompleteness.
Moreover, camera-based lane detection itself is vulnerable to
physical-world attacks [111, 112].

Note that even if such fail-safe features can perform perfect
attack detection, our attack still causes denial-of-service of
the victim’s global localization function, which can render
the victim in unsafe scenarios, e.g., stopping in the middle of
highway lanes, since the victim can neither correctly reach
the destination nor safely locate the road shoulder to pull
over. Thus, a more useful defense direction is to correct the
attacked localization results. However, so far the global po-
sitioning accuracy of cameras is unsatisfying for high-level
AD localization, especially along the longitudinal direction
(forward/backward) since only the stop lines can be used as
features [32, 113]. This is why LiDAR locator is used more
predominantly in high-level AD localization (§2.1). Moreover,
such correction is yet another multi-sensor fusion problem
and thus is still fundamentally vulnerable to the take-over vul-
nerability discovered in this paper (§4). Thus, how to leverage
other independent positioning sources to effectively perform
such correction under our attack is still an open research chal-
lenge, which can be a valuable future work direction.

10 Related Work
GPS spoofing on navigation systems. Recently, Zeng et
al. [18] find that GPS spoofing can be used to stealthily de-
viate a victim car to an attacker-controlled destination. Later
Narain et al. [19] further find that such attack also exists for
a GPS/INS (Inertial Navigation System) navigation system.
Compared to our work on MSF-based localization, these prior
works target single-source localization systems without fusion
from other position sources, such as a LiDAR locator.

Theoretical work on KF security. Existing theoretical
works [73–76] from the control systems domain have studied
the security of KF under sensor spoofing. Compared to our
work, they only study single-source KFs without any sensor
fusion. Also, they focus on the theoretical aspect of the KF
and assume the attacker has full access to the KF internals,
e.g., KF state and uncertainties. In comparison, our work does

not make such assumptions and hence is much more realistic.
AV-related attacks and defenses. Various previous works

studied security problems on traditional vehicle systems [114–
116], but not AD systems. Closer to this work, prior works
discovered various sensor attack vectors on sensors related
to AD systems, such as camera, LiDAR, IMU, radar, and
ultrasonic sensors [15, 117–121]. However, none of them
considers how to leverage these attack vectors to attack AD
localization. On the defense side, recently Choi et al. [122]
and Quinonez et al. [123] propose to use control or physical
invariants to detect sensor attacks to small robotics vehicles
such as drones and ground rovers. However, it is unclear how
these methods can be effectively applied to AD systems, since
AVs operate in highly complex and dynamic road conditions
where the baseline/normal behaviors can be much harder to
accurately model or predict.

11 Conclusion
In this paper, we perform the first security study on MSF-
based localization in high-level AV settings under GPS spoof-
ing. We discover a take-over vulnerability that can fundamen-
tally defeat the MSF design principle, and design FusionRip-
per, a novel and general attack that opportunistically captures
and exploits it. Our evaluation on real-world traces shows that
FusionRipper can achieve over 97% and 91.3% success rates
in all traces for off-road and wrong-way attacks. Such high
effectiveness is also found highly robust to various practical
factors. We also design an offline method that can identify
effective attack parameters within at most half a day. We also
discuss both long-term and short-term defenses directions,
and identify that a promising mitigation is to use camera-
based lane detection as a fail-safe feature, which has not been
generally considered for such purpose today. As the first study
on AD localization security, we hope that our findings and
insights can bring immediate attention and inspire the devel-
opment of effective defenses considering the critical role of
localization for safe and correct AV driving.
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Table 9: Notations in KF and contributing factor derivation.
Notation Description

x KF state, e.g., PVA
P KF state co-variance, i.e., state uncertainty
K Kalman gain of the measurement

F State transition model;
it describes the kinematics functions used in KF prediction

H Observation model; it is an identity matrix
if the measurement and state have the same scale

Q Process noise co-variance;
usually a fixed pre-tuned matrix

z Sensor measurement
R Measurement variance, i.e., measurement uncertainty
r Victim’s physical position
δ Spoofing distance to victim’s physical position
∆ LiDAR position distance to the original MSF position

dev The deviation after each KF operation under spoofing

A Calculation of Required Deviations in At-
tack Goals and Distances to Lane Line

The required deviations under off-road and wrong-way at-
tacks are calculated based on common widths of the AV,
lane, and the road shoulder. These values differ in local and
highway settings. Fig. 15 shows the width measurements
we used in the calculation. For the AV width, we use the
width (including mirrors) of the Baidu Apollo’s reference
car, Lincoln MKZ [124]. For the lane widths and shoulder
widths, we refer to the design guidelines [125] published by
the US Department of Transportation Federal Highway Ad-
ministration. For off-road attack, we use the deviation when
the AV goes beyond the road shoulder from the center of
the lane as the required deviation, which is calculated using
L−C

2 +S = 0.895m (local) and 1.945m (highway), where L is
the lane width, C is the car width, and S is the road shoulder
width. For wrong-way attack, we define the required devia-
tion as the AV completely invades the neighbor lane, and it
is calculated with L

2 +
C
2 = 2.405m (local) and 2.855m (high-

way). We calculate the deviation of touching the lane line
using L−C

2 , which is 0.295m on local roads and 0.745m on
the highway.
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Figure 15: Common AV, traf-
fic lane, and road shoulder
widths used in this paper.

Deviation: 0.45m
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Figure 16: Visualization of the
lateral deviation 0.45 meters
on local and highway roads.
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Figure 17: Conversion from the steering wheel angle to lateral
position change.
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Figure 18: Profiling results when using different (a) minimum
profiling success rates, and (b) safe profiling thresholds.

B Convert Steering to Lateral Position and
Heading Rate Changes

Fig. 17 shows the mathematical conversion from the steering
angle to physical world lateral position change. The position
change can be calculated as δpos = vt sin( θ

φ
), where v is the

velocity, t is the cycle time of the controller, θ is the steering
angle, and φ is the steering ratio, which is a constant describ-
ing the ratio of the turning angle of the steering wheel to
that of the vehicle wheel. The steering angle can be directly
converted to heading rate change using δω = θ/φt, where δω

is the yaw (i.e., heading) rate change.
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