
Compiler{Directed Cache Assist Adaptivity �

Xiaomei Ji Dan Nicolaescu Alexander Veidenbaum

Alexandru Nicolau Rajesh Gupta

Department of Information and Computer Science

444 Computer Science, Building 302

University of California Irvine

Irvine, CA 92697{3425

fxji,dann,alexv,nicolau,rguptag@ics.uci.edu

Technical Report #00{17

Dept. of Information and Computer Science

Univ. of California at Irvine

May 2000

�This work was supported in part by the DARPA ITO under Grant DABT63-98-C-0045.

1

Abstract

The performance of a traditional cache memory hierarchy can be improved by utilizing

mechanisms such as a victim cache or a stream bu�er (cache assists). The amount of on{

chip memory for cache assist is typically limited for technological reasons. In addition, the

cache assist size is limited in order to maintain a fast access time. Performance gains from

using a stream bu�er or a victim cache, or a combination of the two, varies from program

to program as well as within a program. Therefore, given a limited amount of cache assist

memory, there is a need and a potential for \adaptivity" of the cache assists i.e., an ability

to vary their relative size within the bounds of the cache assist memory size. We propose

and study a compiler-driven adaptive cache assist organization and its e�ect on system

performance. Several adaptivity mechanisms are proposed and investigated. The results

show that a cache assist that is adaptive at loop level clearly improves the cache memory

performance, has low overhead, and can be easily implemented.

2

Contents

1 Introduction 3

2 Related Work 4

3 System Organization 6

4 Experimental Infrastructure 7

4.1 Simulator . 7

4.2 Compilation . 8

4.3 Benchmarks . 8

5 Performance Evaluation 9

5.1 The Performance of Individual Cache Assists . 11

5.2 Dynamic Combination of Cache Assist Techniques . 12

5.3 The E�ect of Cache Assist Bu�er Size . 16

5.4 Compiler Support . 16

6 Conclusions and Future Work 19

List of Figures

1 System Design . 6

2 L1 miss rate of 16KB direct-mapped, 32B line size cache 10

3 L2 miss rate of 256KB, 2-way set associative, 64B line size L2 cache 10

4 Miss reduction rate for a 1KB cache assist . 12

5 Miss rate reduction per loop (a 1KB assist, the apsi benchmark) 13

6 Miss rate reduction per loop instantiation in ijpeg benchmark 13

7 Miss rate reduction for dyna loop. 16

8 Miss rate reduction for part buf. 17

9 Miss rate reduction for dyna buf. 17

10 Dyna loop and dyna buf performance relative to half buf. 18

11 Miss rate reduction for all the con�gurations. 18

12 Dyna loop and dyna buf performance relative to half buf for a 256B cache assist. 19

2

1 Introduction

The area available for on{chip caches is limited and the size and associativity of a cache for a

given processor cannot be signi�cantly increased without causing an increase in the cycle time.

A small area dedicated to a victim cache and/or a stream bu�er [7] can increase the performance

of the memory system while it may not be large enough to double the cache size. Victim caches

eliminate con
icts and exploit temporal locality of the programs, while stream bu�ers exploit

spatial locality because they fetch data that is likely to be accessed in the near future. We call

a victim cache, a stream bu�er or a combination of the two a cache assist.

A cache assist needs to have a high degree of associativity, and it needs to have an access time

equal to that of the level of cache utilizing it, i.e. its access time is very small. This imposes

a limit on the size of the cache assist memory. In [8] it is shown that for any CMOS process

technology the cache size cannot be increased too much without causing an increase in cycle time

and access time. When both a victim cache and a stream bu�er are desirable, their relative sizes

have to be selected within the bounds of the (small) cache assist memory size.

Unfortunately, neither a victim cache nor a stream bu�er are a panacea: in some programs

a victim cache performs much better, in others a stream bu�er performs much better. In this

paper we show that a dynamic combination of the two improves the overall performance the

most. This happens across di�erent applications as well as within a single application.

We propose a simple system that allows the cache assist con�guration to vary at run time. A

set of four special instructions is used to change the functioning of the cache assist, making it

work as a stream bu�er, victim cache or a combination of the two. A compiler can insert these

instructions in the code at points it determines suitable by either static code analysis or using

pro�le{directed feedback.

While the hardware modi�cations are modest, the following questions determining the feasi-

bility of the approach need to be answered:

1. when should the cache assist con�guration be changed,

2. how often is it necessary to recon�gure,

3. what is the optimal recon�guration policy?

3

On one hand it would not be feasible to change the cache assist con�guration every few

instructions as the overhead associated with such recon�guration would make the approach

prohibitively expensive. On the other hand if we recon�gure too infrequently, e.g. once per

function call, we might miss some optimization opportunities because a function may contain a

number of loops, each of them with a distinct cache behavior.

It has been shown that the majority of dynamic instructions in a program are executed in

innermost loops. An inner loop is also likely to have reasonably stable spatial/temporal locality

characteristics. This suggests that an inner loop may be a good place to change the organization

of the cache assists and maintain the setting for the duration of such a loop. In this paper

we propose and study di�erent schemes of adapting the cache assist at loop level, trying to

determine which one has better performance. We also propose other schemes using a more static

assist memory partitioning and compare their performance with the loop{level adaptive cache

assist con�gurations.

We currently use a pro�le{based mechanism for the control of adaptation by the compiler.

Future work will study the opportunity to use compile{time analysis for making adaptivity

decisions. The size of the cache assist memory is very important from both the access time and

the e�ectiveness of adaptivity. The e�ect of varying the cache assist size on the miss rate of the

memory system is studied as well.

2 Related Work

Victim cache [7] is a mechanism that is aimed speci�cally at con
ict misses. It predicts that a

replaced line of data will be accessed again shortly and stores the replaced data in a small fully-

associative bu�er on the re�ll path of the cache. On a cache miss, the victim cache is checked to

see whether the data is present. If so, the data is copied from the victim cache to the cache.

A stream bu�er [7] is a mechanism to prefetch and store data. It consists of a FIFO memory

plus an address generator. On a cache miss, all stream bu�ers are searched in parallel to �nd

whether the data is present. On a hit, the data is copied to the cache and the stream bu�er is

re�lled from successive addresses in the lower memory hierarchy. On stream bu�er miss, a bu�er

is allocated and addresses following the miss address will be prefetched into the bu�er.

4

To the best of our knowledge there is no previous work in applying adaptivity to con�gure a

cache assist memory. However, adaptivity has been applied in various forms. Selected examples

of its use are:

Adaptive routing pioneered by ARPANET in computer networks and, more recently, applied

to multiprocessor interconnection networks [1], [3] to avoid congestion and route messages faster

to their destination.

Adaptive throttling for interconnection networks [3]. [16] shows that "optimal" limit varies and

suggests admitting messages into the network adaptively based on current network behavior.

Adaptive cache control of coherence protocol choice were proposed and investigated in the

FLASH and JUMP-1 projects [4], [11].

Adapting branch history length in branch predictors was proposed in [9] since optimal history

length was shown to vary signi�cantly among programs.

Adaptive page size has been proposed in [14] to improve the page management overhead and

it is used in to reduce the TLB and memory overhead in [12].

Adaptive adjustment of data prefetch length in hardware was shown to be advantageous [2],

while in [5] the prefetch lookahead distance was adjusted dynamically either purely in hardware

or with compiler assistance. A cache with a �xed large cache line is used in [10] in association

with a predictor to only fetch the parts of the cache line that are likely to be used.

Adaptive cache line size was shown to improve the miss rate without an appreciable increase

in bandwidth in [18], [19] and [6]. A scheme for adapting the cache line size dynamically was

proposed in [18]. A special adaptive controller is incorporated in the cache access controller to

monitor the memory access pattern of an application and change the line size to double or half

its original size at a time in order to suit the application's needs. In [18] the cache line is truly

variable, whereas [19] uses a set of four prede�ned values for the line size. A scheme that uses

two �xed sizes was proposed in [6].

A method to use compiler provided information to do software assistance for data caches was

proposed in [15]. The compiler decides through static analysis when data exhibits spatial or

temporal locality and generates code to attach a special spatial/temporal tag. The tag is used

by the hardware when deciding if cache lines replaced from the cache should be placed in a victim

cache.

5

L1

Cache
Victim

Cache

Stream

Buffer

Address CPU
Data

In

Data

Out

Write

Buffer

L2 Cache

Figure 1: System Design

3 System Organization

Figure 1 shows the components of the system being studied. It consists of a 3{level memory

hierachy plus a partitionable cache assist memory that can function as either a stream bu�er,

a victim cache or a combination of the two. The cache assist memory consists of N cache{line

sized bu�ers connected to L1 �ll path. Separate control units utilize the allocated memory as a

victim cache or as a stream bu�er. A fully associative write bu�er with a line size identical to

the L1 line size is also used.

The L1 cache is direct mapped and the hit latency is assumed to be 1 cycle. The L1 bus

transfer takes 2 cycles. L2 is a 2{way set{associative with the access latency of 15 cycles. The

main memory access latency is 100 cycles.

When the processor requests data, the L1 cached is searched. On a miss the victim cache and

the stream bu�er are searched in parallel. If both miss the request is sent to the next level of

6

memory, otherwise the cache assist supplies the data.

Associated with the cache assist area are con�guration registers. The registers contain the

size of the victim cache, the size of the stream bu�er, and hit counters for both of them. The

con�guration for the cache assist can be changed dynamically at run time using four operations:

� shrink stream bu�er(cache lines to shrink)

� shrink victim cache(cache lines to shrink)

� extend stream bu�er(cache lines to enlarge)

� extend victim cache(cache lines to enlarge).

Extending the stream bu�er marks the new entries as invalid, shrinking it does the same and

deletes any pending requests from the \issued prefetch" queue. Shrinking and extending the

victim cache sets the victim cache size register to the new value and marks the added entries as

invalid in the case of extending.

The compiler can insert these instructions in places in the program where static anlysis or

pro�le based feedback determine that changing the con�guration and relative sizes of the cache

assists will improve the performance.

4 Experimental Infrastructure

4.1 Simulator

The framework provided by the ABSS [13] simulation system is used in this study. ABSS is a

simulator that runs on SUN Sparc systems and is derived from the MINT simulator [17].

The ABSS simulator consists of 5 parts: augmentor, thread management, cycle-counting li-

braries, user-de�ned simulator of the memory system and the application program.

The augmentor program (called doctor) parses the original application assembly code, and

adds instrumentation code that sends information about the loads and stores executed by the

program to the simulator.

7

Our custommemory architecture simulator simulates a 3{level memory hierarchy plus a highly

con�gurable memory cache assist with modules for modeling a stream bu�er and a victim cache.

The sizes of the victim cache and stream bu�er are changeable at run time via commands

embedded in the simulated program.

4.2 Compilation

We have used version 2.95 of the GCC compiler collection to conduct all the experiments. The

compiler back{end was modi�ed to emit special code sequences before entering a loop, or on the

code path for exiting a loop. Given that the compiler back{end is common to the C and Fortran77

compiler we were able to use this instrumentation for compiling all the SPEC95 benchmarks.

The code sequences were used for adjusting the cache assist allocation, and for collecting

statistics and identifying the loop (source �le name and line number), and signaling to the cache

simulator that a loop is being entered or exited.

In order not to modify the behavior of the program, the code sequences leave the processor

in the same state as it was before the sequence in question has run. This is achieved by saving

and restoring all the registers that the code sequence uses, including the
ag registers. Further-

more, the loop instrumentation is done in the assembly emitting pass of the compiler (the last

compilation pass), so it does not a�ect the code generation.

All the benchmarks where compiled using the -O2 optimization
ag, the target instruction set

was SPARC V8plus.

4.3 Benchmarks

The set of benchmarks shown in Table 1 was chosen because it has a good mix of both numeric and

non{numeric programs, because they are fairly memory hierarchy intensive, and because SPEC95

is a standard set of benchmarks. All benchmark programs were simulated until completion.

For some of the experiments pro�ling was used to select an \optimal" cache assist con�guration.

Pro�ling was performed using the SPEC training input set. The pro�le information was then

used to run the benchmarks with the reference input set. We have veri�ed that such pro�ling is

accurate.

8

Table 1: Benchmarks used

Benchmark Decription Instructions Memory references

go Plays the game GO 3.20e+10 7.76e+09

ijpeg Image compression 2.70e+10 7.39e+09

perl Perl interpreter 1.42e+10 3.42e+07

apsi Calculates statistics on temperature 3.74e+10 1.20e+10

fpppp Performs multi-electron derivatives 3.18e+11 1.03e+11

swim Solves shallow water equations 3.21e+10 1.32e+10

turb3d Simulates turbulence 1.13e+11 2.86e+10

wave Solves Maxwell's equations 3.80e+10 1.20e+10

5 Performance Evaluation

To compare the relative performance of di�erent cache assist con�gurations we use two main

metrics: miss rate and execution time. For each experiment we gather the following kinds of

data in order to evaluate the cache and cache assist performance.

� L1 and L2 miss rates

� number of hits in assist bu�er

� miss rate reduction

We de�ne the following equation to determine the overall performance improvement for the

system:

miss rate reduction = (old miss rate� new miss rate)

�100:0=old miss rate(1)

We simulate a base cache hierarchy with a 16KB direct mapped L1 cache and a 256KB 2 way

set{associative L2 cache. The line size is 32 bytes for L1 and 64 bytes for L2. We will call this

the base system con�guration. Figures 2 and 3 show the L1 and L2 miss rates respectively, for

the benchmarks using the base con�guration. Only swim and wave have L1 miss rates that are

greater than 15% and, except for apsi, all of them have L2 miss rates less than 3%.

9

0

5

10

15

20

25

sw im turb3d apsi fpppp w ave go ijpeg perl

M
is

s
ra

te

Figure 2: L1 miss rate of 16KB direct-mapped, 32B line size cache

0

0.5

1

1.5

2

2.5

3

3.5

sw im turb3d apsi fpppp w ave go ijpeg perl

M
is

s
ra

te

Figure 3: L2 miss rate of 256KB, 2-way set associative, 64B line size L2 cache

10

5.1 The Performance of Individual Cache Assists

The performance of the individual cache assists is evaluated using the base system con�guration

and either a 1KB victim cache or a 1KB stream bu�er. Figure 4 shows the miss rate reduction

for each of the assists when compared to the base con�guration.

The e�ect varies from program to program. In go the stream bu�er barely has an impact

(under 5% miss rate reduction), but the victim cache reduces the miss rate by 50%. The same

is observed for perl and fpppp where the victim cache reduces the miss rate much more than the

stream bu�er. The reverse is observed in the case of turb3d where the stream bu�er reduces the

miss rate by 55%, but the victim cache only reduces it by 23%. For apsi, ijpeg and wave the

di�erence is not as pronounced.

The above results con�rm the advantage of using a cache assist, but the type of cache assist

that is most useful varies from application to application. Thus we conjecture that a system that

has a cache assist that can be recon�gured between a victim cache or a stream bu�er at run time

on a per program basis would improve performance.

The fact that memory accesses in a program very seldom follow a uniform pattern suggests

that the e�ect of cache assists also varies within a program. To evaluate the e�ect of cache assists

on di�erent portions of the code we instrument and collect performance data for all the inner

loops in a program. The inner loops' memory access behavior is indicative of the entire program

behavior since instructions executed in the inner loops often account for more than 98% of the

memory reference instructions executed by a program.

Figure 5 shows the miss rate reduction per loop for the apsi benchmark when using either a

1KB stream bu�er or a 1KB victim cache for a given loop. For some loops the victim cache

reduces the miss rate much more than the stream bu�er, whereas the opposite is true for other

loops.

Figure 6 shows the miss rate reduction compared to a normal cache hierarchy for di�erent

instantiations of the loop at line 276 from �le jidcting.c in the ijpeg benchmark when using a 1KB

victim cache or stream bu�er. The miss rate reduction varies a lot between loop instantiations,

with some instances preferring a victim cache and others preferring a stream bu�er.

The miss rate reduction when using a cache assist varies widely between di�erent loops, and

between instantiations of the same loop. We can now conclude that cache assist adaptivity is not

11

0

10

20

30

40

50

60

70

sw im turb3d apsi fpppp w ave go ijpeg perl

%
M

is
s

ra
te

re
d
u
c
tio

n

vc sb

Figure 4: Miss reduction rate for a 1KB cache assist

only desirable at the program level, but it should also be applied dynamically within a program.

5.2 Dynamic Combination of Cache Assist Techniques

So far we discussed using the cache assist memory either as a stream bu�er or as a victim cache.

Given the fact that few program exhibit pure temporal locality or spatial locality, but rather a

mix of them, one can expect that using both cache assists at the same time would have a better

performance. To take advantage of the facts presented above a program could change the cache

assist structure either initially or before entering a loop so that it is either a victim cache or a

stream bu�er, depending on what con�guration results in a lower miss rate. The question is,

given limited cache assist memory, what is the best way to partition it.

To investigate di�erent possibilities of adaptation we propose four approaches to partitioning

the total (limited) cache assist space between the victim cache and the stream bu�er. They are:

1. Use the entire cache assist memory either as a victim cache or a stream bu�er, changing

the use for each loop (the dyna loop approach). The decision to use one con�guration or

the other is taken based on which achieves a greater miss removal rate for that loop. The

miss reduction information comes from pro�ling.

In the dyna loop case the cache assist can be used either as a stream bu�er or as a victim

cache for any loop. We conjecture that splitting the cache assist and using a part of it as a

12

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

6283

1665

5263

2812

3312

1534

1592

3463

6671

5845

1982

1877

1687

1291

6381

lo
o
p

lin
e

n
u
m

b
e
r

% Miss rate reduction

v
c

s
b

F
igu

re
5:

M
iss

rate
red

u
ction

p
er

loop
(a

1K
B
assist,

th
e
a
p
si

b
en
ch
m
ark

)

0

2
0

4
0

6
0

8
0

1
0
0

1

4

7

10

13

16

19

22

25

28

31

34

37

40

43

46

49

lo
o
p

in
s
ta

n
tia

tio
n

% Miss rate reduction per loop

instantiation

vc
s
b

F
igu

re
6:

M
iss

rate
red

u
ction

p
er

loop
in
stan

tiation
in

ijp
eg

b
en
ch
m
ark

13

stream bu�er, and another as a victim cache would further improve the performance. The

following three strategies use this kind of partitioning.

2. Partition the cache assist memory between the victim cache and the stream bu�er in the

same ratio as the miss reduction rate of the victim cache and the stream bu�er for the whole

program (the part buf approach). The partition is �xed for the duration of the program.

3. The dyna buf approach partitions the cache assist memory between the victim cache or

stream bu�er per inner loop, proportionally to the miss removal rate ratio of victim cache

and stream bu�er for that loop.

4. The half buf approach uses one half of the cache assist memory as a victim cache, and the

other half as a stream bu�er for the whole program.

dyna loop and dyna buf are dynamically adapting the cache assist con�guration whereas

part buf and half buf are not adaptive approaches, they are studied for comparison.

Figure 7 shows the miss reduction rates in the dyna loop case. Pro�ling information gathered

in the experiments summarized in Fig. 5 is used to choose the cache assist as a stream bu�er or

as a victim cache for each loop. The performance improvement compared to the best of either a

stream bu�er or a victim cache for the entire program ranges from 25% to 49%. Thus adaptivity

improves performance when performed at loop level. However the miss rate got marginally worse

for fpppp (decreased from 63.54% to 62.27%). Almost all memory accesses (98%) are executed

inside one loop, and for this loop the cache assist is con�gured in the optimal way, the loss of

performance comes from the other loops in the program.

For the programs in which the stream bu�er has a very small improvement as compared to a

victim cache (go, perl) the additional miss reduction rate is minimal because any possible gain

from using a stream bu�er is minimal.

The results for part buf appear in Figure 8. With the exception of fpppp all the benchmarks

show gains when compared to just using victim cache or a stream bu�er. Fpppp's loss is deter-

mined by the fact that its most dominant loop would need a bigger victim cache than what the

part buf approach allocates. However, the degradation is again minimal, a 2% decrease in miss

rate reduction.

14

Figure 9 shows the results for the dyna buf. It improves the miss ratio by 32% for turb3d,

43% for apsi, 53% for wave, and 51% for ijpeg. All the results are better than the case of

using just a stream bu�er or a victim cache, except for fpppp (see an explanation for Fig. 7).

The improvement is minor for the benchmarks that show very little improvement from using a

stream bu�er.

Finally, the half buf approach uses one half of the assist cache memory as victim cache and the

other half as stream bu�er for the whole program. This is not a dynamic approach, but it is used

for comparison with the dyna loop and dyna buf approaches. The results are shown in Fig. 10

as relative percentage improvement over the miss rate reduction for the half buf approach using

the formula:

miss rate reduction(dyna)�miss rate reduction(half)

miss rate reduction(half)
� 100:0(2)

The half buf con�guration marginally outperforms the dyna buf con�guration for apsi and

turb3d It is signi�cantly outperformed for fpppp, go, ijpeg and perl by up to 28%.

We can correlate this result with the experiments using the cache assist just as stream bu�er

or victim cache. It shows that the dyna buf con�guration outperforms the half buf con�guration

in the cases where the victim cache performs clearly better than the stream bu�er.

The dyna loop con�guration noticeably outperformed by half buf in two cases, apsi and ijpeg,

by up to 14%. It outperforms half buf by 15 to 26% in 3 cases: fpppp, go and perl. Thus

dyna loop is not always a win.

The Figure 11 compares the miss rate reduction for all the techniques presented. Because

in the previous paragraph we have compared the �xed size, non{recon�gurable cache assist

half buf with the recon�gurable approaches we are not going to repeat that comparison here.

For fpppp the performance of using the cache assist as a victim cache is marginally better than

any adaptive approach, but this does not happen for any other benchmark. The programs that

show high miss reductions rates from using a victim cache, but very low from using a stream

bu�er (swim, go, perl) get only minimal bene�ts from any of the proposed adaptive schemes.

Dyna buf consistently outperforms dyna loop except for swim and fpppp. It also outperforms

part buf with the exception of ijpeg where the di�erence is negligible. Thus, the most dynamic

15

0

10

20

30

40

50

60

70

80

sw im turb3d apsi fpppp w ave go ijpeg perl

%
M

is
s

ra
te

re
d
u
c
tio

n

vc sb dyna_loop

Figure 7: Miss rate reduction for dyna loop.

approach, the dyna buf is the best. Adapting the cache assist con�guration is most helpful in

cases when both a victim cache and a stream bu�er individually show noticeable improvement.

5.3 The E�ect of Cache Assist Bu�er Size

The overall size of cache assist memory is an important parameter, the e�ectiveness of adaptation

may depend on it. The miss reduction rate for a 256B cache assist memory is shown in Figure 12.

Compared to a 1KB cache assist memory in Fig. 10 one can see that for the small cache assist the

dyna buf approach is a win in all but one case, while only in two cases the performance decreases

as compared to the half buf approach. Therefore, when adaptive cache assist memory space is

smaller the adaptive cache assist improves performance more than it does when the cache assist

memory is larger.

5.4 Compiler Support

We have shown that adaptivity of a cache assist can help reduce miss rates of programs. Fur-

thermore, we have shown that changing the con�guration of the cache assist at the point of

entry in an inner loop is an excellent way to reduce the miss rate. This approach is amenable to

compiler support. The compiler can determine via static analysis or via pro�ling feedback the

optimal con�guration of the cache assist for a speci�c loop, and it can insert the corresponding

16

0

10

20

30

40

50

60

70

80

sw im turb3d apsi fpppp w ave go ijpeg perl

%
M

is
s

ra
te

re
d
u
c
tio

n

vc sb part_buf

Figure 8: Miss rate reduction for part buf.

0

10

20

30

40

50

60

70

80

swim turb3d apsi fpppp wave go ijpeg perl

%
M

is
s

ra
te

re
d
u
c
tio

n

vc sb dyna_buf

Figure 9: Miss rate reduction for dyna buf.

17

-25

-15

-5

5

15

25

swim turb3d apsi fpppp wave go ijpeg perl

M
is

s
ra

te
re

d
u
c
tio

n
o
v
e
r

h
a
lf_

b
u
f

dyna_loop/half dyna_buf/half

Figure 10: Dyna loop and dyna buf performance relative to half buf.

0

10

20

30

40

50

60

70

80

sw im turb3d apsi fpppp w ave go ijpeg perl

%
M

is
s

ra
te

re
d
u
c
tio

n

vc sb dyna_loop dyna_buf half_buf part_buf

Figure 11: Miss rate reduction for all the con�gurations.

18

-25

-15

-5

5

15

25

35

45

sw im turb3d apsi fpppp w ave go ijpeg

%
M

is
s

ra
te

re
d
u
c
tio

n
o
v
e
r

h
a
lf_

b
u
f

dyna_loop/half dyna_buf/half

Figure 12: Dyna loop and dyna buf performance relative to half buf for a 256B cache assist.

instructions at the beginning of the loop. This is the approach we advocate and we are pursuing

static analysis in our compiler work. The pro�ling approach was used in this study.

6 Conclusions and Future Work

We have studied a memory con�guration consisting of a standard cache hierarchy plus a small

cache assist memory that can be used either as a stream bu�er or a victim cache. The cache assist

is recon�gurable at run time to allocate a certain fraction of memory to victim cache and/or to

stream bu�er.

We have shown that using a cache assist reduces the miss rate of the cache and that adapting

the con�guration of the cache assist reduces it even more. Several approaches have been studied

and we have concluded that an approach that recon�gures the cache assist per inner loop at run

time achieves best performance. Using a 1KB adaptive assist memory, up to 50% additional miss

rate reduction is achieved by the best of the proposed methods. Simple static assist memory

partitioning, on the other hand can su�er up to 15% loss of performance.

19

References

[1] Andrew A. Chien and Jae H. Kim. Planar-adaptive routing: Low-cost adaptive networks

for multiprocessors. In Proc. 19th Annual Symposium on Computer Architecture, pages

268{277, 1992.

[2] Fredrik Dahlgren, Michel Dubois, and Per Stendstrom. Fixed and adaptive sequential

prefething in shared memory multiprocessors. In Intl. Conference on Parallel Processing,

1993.

[3] W.J. Dally and H. Aoki. Deadlock-free adaptive routing in multicomputer networks using

virtual channels. In IEEE Transactions on Parallel and Distributed Systems, pages 466{475,

1993.

[4] Je�rey Kuskin et al. The Stanford FLASH multiprocessor. In Proc. 21st Annual Symposium

on Computer Architecture, pages 302{313, 1994.

[5] Edward H. Gornish and Alexander Veidenbaum. An integrated hardware/software data

prefething scheme for shared-memory multiprocessors. In Intl. Conference on Parallel Pro-

cessing, pages 247{254, 1994.

[6] Teresa L. Johnson and Wen mei Hwu. Run-time adaptive cache hierarchy management via

reference analysis. In Proceedings of the 24th Annual International Symposium on Computer

Architecture, 1997.

[7] Norman P. Jouppi. Improving direct-mapped cache performance by the addition of a small

fully-a ssociative cache and prefecth bu�er.

[8] Norman P. Jouppi and Steven J. E. Wilton. Tradeo�s in two-level on-chip caching. In Proc.

21st Annual Symposium on Computer Architecture, 1994.

[9] Toni Juan, Sanji Sanjeevan, and Juan J. Navarro. Dynamic history-length �tting: A third

level of adaptivity for branch prediction. In Proceedings of the 25th Annual International

Symposium on Computer Architecture, pages 155{166, 1998.

20

[10] Sanjeev Kumar and Christopher Wilkerson. Exploiting spatial locality in data caches using

spatial footprints. In Proceedings of the 25th Annual International Symposium on Computer

Architecture, pages 357{368, 1998.

[11] T. Matsumoto, K. Nishimura, T. Kudoh, K. Hiraki, H. Amano, and H. Tanaka. Distributed

shared memory architecure for JUMP-1. In Intl. Symposium on Parallel Architecures, Al-

gorithms, and Networks, pages 131{137, 1996.

[12] Ted Romer, Wayne Ohlich, Anna Karlin, and Brian Bershad. Reducing TLB and memory

overhead using on-line superpage promotion. 1996.

[13] D. Sunada, D. Glasco, and M. Flynn. ABSS v2.0: SPARC simulator. Technical Report

CSL-TR-98-755, Stanford University, 1998.

[14] Madhusudhan Talluri and Mark D. Hill. Surpassing the TLB performance of superpages

with less operating system support. 1996.

[15] O. Temam and N. Drach. Software-assistance for data caches. In Proceedings IEEE High

Performance Computer Architecture, 1995.

[16] Steve Turner and Alexander Veidenbaum. Scalability of the Cedar system. In Supercom-

puting, pages 247{254, 1994.

[17] Jack E. Veenstra and Robert J. Fowler. Mint: A front end for e�cient simulation of shared-

memory multiprocessors. In Intl. Workshop on Modeling, Analysis and Simulation of Com-

puter and Telecommunication Systems, pages 201{207, 1994.

[18] Alexander V. Veidenbaum, Weiyu Tang, Rajesh Gupta, Alexandru Nicolau, and Xiaomei

Ji. Adapting cache line size to application behavior. In Proceedings ICS'99, June 1999.

[19] Peter Van Vleet, Eric Anderson, Lindsay Brown, Jean-Loup Baer, and Anna Karlin. Pur-

suing the performance potential of dynamic cache line sizes. In Proceedings of 1999 Inter-

national Conference on Computer Design, November 1999.

21

