
 1

Safe and Protected Execution for the Morph/AMRM Reconfigurable
Processor

 Andrew A. Chien Jay Byun
 Department of Computer Science and Engineering Department of Computer Science

 University of California, San Diego University of Illinois at Urbana-Champaign
 achien@cs.ucsd.edu jaybyun@cs.uiuc.edu

December 29, 1998

Abstract

Technology scaling of CMOS processes brings relatively faster
transistors (gates) and slower interconnects (wires), making viable
the addition of reconfigurability to increase performance. In the
Morph/AMRM system, we are exploring the addition of
reconfigurable logic, deeply integrated with the processor core,
employing the reconfigurability to manage the cache, datapath,
and pipeline resources more effectively. However, integration of
reconfigurable logic introduces significant protection and safety
challenges for multiprocess execution. We analyze the protection
structures in a state of the art microprocessor core (R10000),
identifying the few critical logic blocks and demonstrating that the
majority of the logic in the processor core can be safely
reconfigured. Subsequently, we propose a protection architecture
for the Morph/AMRM reconfigurable processor which enable
nearly the full range of power of reconfigurability in the processor
core while requiring only a small number of fixed logic features
which to ensure safe, protected multiprocess execution.

1. Introduction

Trends in semiconductor technology suggest that the use of
reconfigurable logic blocks within the processor will be
desirable in the future. Projections from Semiconductor
Industry Association(SIA) for the year 2007 indicate
advanced semiconductor processes using 0.1 micron feature
sizes [1]. However, this feature size, as measured by
transistor channel length, is of decreasing importance to
logic and circuit as well as processor speed. In systems of
that era, logic density, logic speed, and processor speed will
be dominated by interconnect performance and wiring
density. For 2007, the SIA projects pitch for the finest
interconnect at 0.4-0.6 microns. Between logic blocks,
average interconnect lengths typically range from from
1,000x to 10,000x pitch -- up to 6mm of intra-chip
interconnect length. For such an interconnect, the
achievable global clock speed would be limited to
approximately 1 nanosecond. Within a few technology
generations, a crossover will occur, and the average

interconnect delay will surpass logic block delays --
projections indicate that by the year 2007, average
interconnect delay can be equivalent to five gate delays.
Once past the cross-over point, dynamic interconnect
(reconfigurable interconnect or logic) can be introduced at
modest impact even on critical timing paths[2]. In such
systems, the dynamic configurability in the processor can
be used to significant advantage [3, 4], improving
performance by factors of 10 to 100x for computational
kernels while avoiding the traditional disadvantages of
custom computing approaches such as I/O coprocessor
coupling and slower logic [5]. In these systems,
reprogrammable logic blocks will replace static
interconnects in the processor core, paving the way for a
new class of architectures which are customized to the
application, delivering more robust and higher performance.

Figure 1. Reconfigurability in the processor core and the extended
application to fixed hardware interface

Reconfigurable, or application adaptive processors allow
customization of mechanisms, bindings, and policies on a
per application basis. While current microprocessors

 2

implement a number of aggressive architectural techniques
such as speculative execution, branch prediction, block
prefetching, multi-level caching, etc. to achieve higher
execution speeds, these mechanisms and policies are tuned
for a broad suite of applications (e.g. SPEC), and thus
cannot be tightly matched to the needs of a particular
application, procedure, or even loop in an application. For
example, the cache block size and organization is chosen to
maximize performance over a suite of applications, but may
not give best performance on any particular application.
Similar constraints apply to other performance critical
aspects such as value prediction, branch prediction, and
data movement. In contrast, a processor incorporating
reconfigurability can adopt optimal policies (and in some
cases better mechanisms) for the application, enabling
increased execution efficiency. Thus, the reconfigurable
logic can used to tune the processor to better match the
application, rather than the more traditional view of
thinking of it as an add-on coprocessor. This approach is
embodied in the Morph/AMRM (Adaptive Memory
Reconfiguration Management) architecture [3, 4], and the
basic change in perspective is that the reconfigurable
hardware is an extension of the application program,
extending the application -- fixed hardware interface to
enable more efficient execution. The fixed hardware then
has a somewhat richer (and in parts lower level) interface as
shown in Figure 1. Studies of Morph/AMRM have
demonstrated that performance increases of ten to 100 times
are possible [4]. In essence, this is an extension of the
application binary interface (so-called ABI), but need not
be a nonportable extension of the application programming
interface (API) if appropriate CAD support is available.
This approach is similar to that which has recently gained
popularity in the software design community as "open
implementations" [6] in which software architects
recognize the need to open the implementation for
customization for particular application uses in order to
achieve adequate performance.

Introducing application-controlled reconfigurability in the
processor raises significant challenges for ensuring process
isolation and protection (multiprocess isolation), a critical
element of robust desktop and to an increasing degree,
embedded computing systems. Multiprocess isolation is an
essential modularity element in software systems: without
the guarantee of safely isolated and protected processes, the
system can never be robust since software faults cannot be
contained and the system cannot be safely extended. It is
essential for robust reconfigurable computing that an
application’s customization only affect its computation, not
that of other applications. For example, if application-
defined hardware were allowed to control hardware
addressing, it could allow unauthorized corruption of
operating system data or even the data of other application
processes. If an application-defined hardware were allowed

to control data prefetching, it could swamp the memory
system with spurious requests. If application-defined
hardware were allowed to control privilege mode changes,
it could compromise all traditional protection structures.

Our study examines the protection structures of traditional
processors and operating systems, and based on these
lessons, proposes a safe multiprocess execution architecture
for reconfigurable systems. We analyze in detail the
software and hardware mechanisms central to the process
protection in conventional processors and OS, specifically
studying the MIPS R10000 [7] microprocessor, an
exemplar of a system employing Unix/Risc protection
architecture. This study elucidates the key mechanisms and
architectural features for Unix style two mode protection,
and addressing based isolation. The key feature of this
protection architecture is process isolation via address
isolation and mediation. Specifically,

1. All access to hardware devices is mediated by the
operating system,
2. The operating system manages address translation to
isolate processes,
3. Application processes cannot change the address
translation information,
4. Application processes cannot substitute other translation
information,
5. All application accesses are subject to this translation,
and
6. The hardware ensures these guarantees

We subsequently describe the Morph/AMRM architecture,
outlining the dimensions of configurability and the hazards
for multiprocess protection they induce. For the
Morph/AMRM system, we then describe the protection
architecture, describing in detail how each of the key
properties of the operating system / processor protection
architecture are provided. The key elements of this
protection architecture are:

1. A hardwired control processor which controls
instruction sequence and privilege mode transitions
2. A hardwired control processor to TLB control for
address translation and TLB entry management
3. A requirement for all other configurable elements
(system chip sets, input/output devices, memory
controllers) must deal in virtual addresses, and their
accesses are checked by local TLB’s
4. Controlled access to key shared interconnects such as
the system bus are controlled by hardwired arbiters which
are not changed, system reserves highest priority to allow
preemption for these resources

This architecture enables configurability in the processor
complex because it can ensure multiprocess protection (safe

 3

configuration). We also believe it enables much of the
useful configurability in the processor complex, notably
policies for improving efficient management of resources
and even the addition of instructions, special functional
units, or even processor state. The model provided to
application programs is a private, configurable, virtual
machine which enables rich application customization.
These applications (and their customizations) are cleanly
isolated.

 The remainder of the paper is organized as follows.
Section 2 describes the basic problem of protected
execution and process isolation in computer systems.
Section 3 describes our analysis of the software and
hardware mechanisms central to the process protection in
conventional processors and operating systems. Section 4
discusses the implications of reconfigurability on process
protection and identifies the key requirement for safe
process isolation in reconfigurable processors. In Section 5,
we describe the Morph/AMRM system and a proposed
protection architecture that meets these requirements set
forth in Section 3. Section 6 discusses alternate approaches
and the limitations on configurability imposed by the
Morph/AMRM protection architecture. Sections 7
summarizes future work and the material covered in this
paper.

2. Process Isolation: the Problem

Figure 2: Multiprocess Protection based on Address Space
Isolation

To understand the challenges of multiprocess isolation, it is
instructive to first consider the possible modalities in which
multiprocess isolation can be compromised. In the simplest
mode, an application corrupts the data of another, causing it
to fail or compute incorrectly. In a more complex mode,

the application somehow locks up the machine, so no other
application state is damaged, but neither can the machine
make progress. One example of this would be jamming the
memory bus or defeating the timer interrupt which ensures
preemption. A more serious failure mode is to corrupt the
operating system’s data, which can lead to a machine crash
in which all applications have data corruption. Finally, an
application could also corrupt input/output device state,
confounding the operating system, the device (leading to
data loss or misdirection), or application data itself. In all
of these cases, the failure is the result of allowing an
application action which can affect the machine hardware
state, other application memory state, or operating system
state.

The key issue in safe multiprocess execution is to control
access to hardware resources, ensuring that these accesses
are non-interfering. In general, access to main memory, as
well as other architecturally visible state (processor data
registers, control registers), system chip registers, and
input/output device state must be controlled. Traditional
approaches partition memory access, virtualize resources
such as processor data resources with multitasking, and use
operating system calls to mediate operations which require
access to control registers, system chip sets, input/output
device state, etc. The final piece of the puzzle is that in
order to support the virtualization and multitasking,
transitions between the different entities must be carefully
controlled to prevent compromise.

3. Process Isolation in the MIPS R10000

The key issue in maintaining a safe multiprocessing
environment is ensuring process isolation, which means that
the processor and the OS must prevent independent
processes from interfering with the data and memory of
each other and of the operating system kernel. They must
also prevent a malicious process from taking over the
processor and locking up the system.

Through a detailed analysis of the R10000 architecture and
operating system, we identify the hardware mechanisms
and OS software structures that are central to process
isolation. We chose the MIPS R10000 processor as an
exemplar of a modern RISC processor which supports a
relatively simple UNIX style protection structure [8]. We
first examine how a UNIX style operating system ensures
process isolation and thereby derive the hardware
requirements it imposes. Then identify the corresponding
support in the R10000 processor. In the following
discussion, we assume that the address translation is on a
simple paging system. Most of today’s systems actually
employ multiple-paging or segmented paging but the
address translation mechanism is fundamentally the same as
a simple paging system.

 4

3.1 Operating System-based Process
Protection

3.1.1 Application and Operating System Memory
Isolation

Application and operating system memory isolation is
achieved through controlled address translation. The
physical memory of each process is isolated by having
process’s virtual address space pages map to its own
physical memory frames only. This mapping is maintained
by the operating system structure called a page table. To
protect processes from modification by other processes, the
memory-management hardware and the OS must prevent
programs from changing their own address mappings. The
UNIX kernel, for example, runs in a privileged mode
(kernel mode or system mode) in which memory mapping
may be controlled, whereas application processes run in an
unprivileged mode (user mode). The page tables, mapping
information for each process reside in the memory space of
the kernel so that they can only be modified by the OS
running in kernel mode This address translation control to
ensure isolation is achieved through the following
mechanisms in UNIX [8, 9].

1. Locating correct translation information for each process.
 The base addresses of page tables in the kernel
memory space for each process are held in a special
register provided by the hardware which is usually
called the page table base register(ptbr). This
register is set from the process control block(PCB)
on each context switch so that only the page table
for the executing process, and not the page table of
other processes, is used in the address translation.
Then the index portion of the virtual address is
added to the address pointed to by the ptbr to locate
the appropriate PTE.

2. Distinguishing valid and invalid entries in page tables.
 Locating correct page tables for each process is not
enough to ensure that the address translation for the
process is a valid one, however. Notice that the
page table created for each process can be
implemented to contain entries for every page in the
virtual address space. This compromises process
isolation because the unused entries are still in the
page table of the process. The valid-invalid bit
(sometimes called the presence bit since it also
indicates whether the page is present in memory or
not) is used to distinguish between valid and invalid
entries. When this bit is set to "valid," it indicates
that the associated page is in the process’s logical
address space and also present in memory, thus a

legal(valid) page. If the bit is set to "invalid," it
indicates that either the page is not in the process’s
logical address space or is valid but has not been
brought into memory. The trap handler will check
further with information in the PCB to determine
whether the reference was valid or invalid. The OS
sets this bit for each page accordingly. The page
table can also be implemented to contain only the
entries that are actually used by the process. This
implementation will require a special register
containing the length of the process’s page table
(usually called page-table length register (PTLR)
that can be used to check if page index portion of
the virtual address is in the range and therefore is
not accessing illegal translation information.

3. Controlling access types
 With the mechanisms described above, it is
guaranteed that the address translation is a valid one
for the executing process. Notice, however, that the
access to those physical memory frames are
unlimited; the process can read, write, and execute
them. It will be safer and more efficient if we can
control the type of access to them. For example, if
we disallow write access to the pages that contain
the code(text segment), the process cannot
mistakenly overwrite its code pages and crash.
Also, codes and static data can be shared by many
processes by controlled access to them. The
protection bit field in the PTE provides this access
control information. At the same time that the
physical address is being computed, the protection
bits can be checked to verify that no accesses that
are not granted are being made. An illegal attempt
causes a hardware trap to the operating
system(SIGBUS). These bits usually indicate
whether the process can read/write, read-only, or
execute-only. The type and the number of the
protection bits provided are dependent on the
underlying processor.

4. Managing TLB consistency.
 The translation information, namely the PTE, is
cached in the processor’s TLB as accessing the page
table incurs extra memory access. The contents of
the TLB should be maintained by the OS through
the special privileged instructions provided by the
processor. This implies that after a context switch,
although the new page table is pointed to by the
new process’s ptbr, the TLB would contain entries
that are left over from the previous processes.
Therefore, to ensure process isolation, we need to
invalidate or distinguish the entries in the TLB that
does not belong to the executing process. This can
be done by allowing the OS to flush the TLB by a

 5

special privileged instruction after a context switch
or by tagging the TLB entries with the process ID’s
and valid-invalid bits.

3.1.2 Resource Protection thru Operating System
Mediation

As pointed out in the previous section, multiprocess
isolation can also be compromised if system resources
are not isolated from processes. The OS provides
protected resource access through mediation. The most
fundamental role of the operating system is to mediate
process’s accesses to system resources. Processes are
provided with a system call interface to the operating
system kernel, and all accesses to the resources must
go through the system calls to the kernel hence
protecting the resources from illegal accesses of
processes. The operating system can enforce this
through the following features of the OS and the
hardware:

1. System trap instruction and system call handler: system
call invocation is made through special trap instructions
provided by the processor(e.g. syscall in R10000, chmk in
VAX-11) which changes the mode to kernel mode and
jumps to system call handler location predefined by the OS.
This system call handler(syscall() in UNIX) is responsible
for all system call processing in kernel, such as
saving/restoring process context, selecting appropriate
kernel function through system call dispatch vector(
sysent[] in UNIX) , transferring control back to user process
in user mode. The system call handler is one of the most
fundamental routines in the kernel and is written very
carefully to ensure safety.

2.Interrupt architecture: The interrupt architecture in the
processor and the OS guarantees correct invocation and
handling of interrupts and provides priority management
mechanisms. The interrupt handler is one of the most
fundamental and carefully-written kernel routines and is
responsible for safe mode transition, context
saving/restoring, and priority based servicing.

 For general I/O resources, the following features of the
OS and the hardware ensures protection.

3. Privileged I/O instructions: I/O address space is separate
from main memory space(e.g. x86 processors) and can only
be accessed through privilege mode instructions(e.g. inb,
outb in x86)/
4. Memory mapped I/O in protected memory space: I/O
accesses are made by memory access instructions to main
memory space, but this space can only be accessed by
kernel.

5. I/O buffers in protected memory space: Buffers for I/O
operations reside in kernel space or space private to each
process and thus protected from other processes.

 For CPU resources,

6. Preemptive time-quota based scheduling: a process must
relinquish the CPU when its time-quota expires. The
scheduler is designed carefully to avoid starvation of low-
priority processes. Timer interrupt has a very high priority,
second only to power-failure interrupt.

3.1.3 Machine State Virtualization and Safe Transitions
(context switch)

 Multiprocess isolation in a computer system can be
considered as providing to each process a private and
isolated virtual machine. The OS captures the state of each
virtual machine provided and ensures safe transitions
between virtual machine states (i.e. safe context switching).
In UNIX, the virtual machine state is captured in the
process control block (PCB), which is part of the u-area of
the process. It contains a snapshot of general-purpose,
memory context, and special registers, etc. Context
switching involves a series of low-level instructions to
switching these states and performing many hardware-
specific tasks in order to ensure safe transition to a new
virtual hardware state. These hardware-specific tasks
include flushing the data, instruction, address
translation(TLB) caches, and flushing the execution
pipeline.

 To summarize, process isolation is guaranteed by ensuring
that:
i) user process cannot change the address translation

information,
ii) each process uses the page tables of that process to

do the address translation,
iii) does not use invalid entries in the page table and

does not run out of bounds of the page tables while
translating address,

iv) only the granted access is made by checking the
access control bits

v) TLB entries are coherent by flushing or tagging
them.

vi) Accesses to system resources are protected and
mediated by the OS

vii) A clean and safe transition between each virtual
machine state is made when context switching

These can be distilled into two key elements in the
hardware which enable process isolation:
 1. Processor execution modes and kernel address space
 2. Control of address translation and TLB management

 6

3.2 Hardware Support for Process Protection

 The two key elements in the hardware to support process
protection can be further classified into a range of features
that must be provided by the hardware to enable process
protection mechanisms dictated by the OS:

Execution modes and kernel address space: The
processor should at least provide two modes of execution,
i.e. privileged execution mode and user mode, so that the
kernel data structure, special registers, and processor
control bits can only be access and altered through special
privileged instructions. The virtual address space should
contain a kernel address space that can only be accessed in
privileged execution mode. This is where the kernel data
structure resides.
Context register: Also called the Page Table Base
Register, this register identifies the current process, and is

used to select appropriate page tables for controlling
memory access.
Valid-Invalid bit, PTLR: The processor should be able to
recognize the valid-invalid bit for PTE’s which identifies
those that do not map to a valid physical address.
Optionally, process can have a Page Table Length Register
to set the bound on the page table.
Protection bits: The process should be able to recognize a
protection bit or some set of them to allow a finer level of
access control on the pages.
TLB tagging or flush mechanism: The processor should
enable the OS to distinguish the TLB entries that belong to
the executing process by having TLB entries tagged with
process ID’s or allow the OS to flush out the TLB by
supplying a special TLB-flush instruction.

 In this section, we discuss how these features are
implemented in the R10000 processor.

 Figure 3. The Protection Architecture of the MIPS R10000

 7

The R10000 processor is a typical superscalar RISC
microprocessor from the MIPS RISC family. As mentioned
before, this processor will serve as the model for our
investigation of hardware support mechanisms for process
isolation since it is a good example of a RISC processor
with rather simple mechanisms to support UNIX style
protection structures. The overall protection architecture is
shown in figure 3. From this figure, we can see that the
central parts of the architecture are the CP0 processor-
which controls execution mode switch, TLB management
and control, exception catching, and dispatching, cache
control- and the TLB, where the protection checking is
carried out. The key elements of the R10000 protection
architecture support processor modes and control of address
translation respectively. We discuss each of those in turn
below.

3.2.1 Processor Modes: the System Control Processor
(CP0)

Processor operating modes for the R10000 include Kernel
mode, Supervisor mode, and User mode. The current mode
is indicated in the through System Control Processor (CP0)
registers, and that mode can only be changed in two ways:

1. CP0 status register’s KSU field is changed explicitly by
CP0 MOVE instructions executed in kernel or
supervisor mode.

2. The processor is handling an error (the ERL bit in
status register is set) or an exception(the EXL bit in
status register is set) and is forced into kernel mode.
This mechanism is used to implement guarded
transitions such as those used by system calls.

There are only a few CP0 instructions which are MOVE
instructions to set the CP0 registers, namely the DMFC0,
DMTC0, MFC0, MTC0 instructions. If a user process
tries to execute a CP0 privileged instructions, the processor
will raise a Coprocessor 0 Unusable exception, transferring
control to an operating system installed exception handler.
This handler can implement appropriate actions to ensure
process isolation, and in a traditional Unix model would
generally hand that process a fatal UNIX SIGILL/
ILL_PRIVIN_FAULT (illegal instruction/privileged
instruction fault) signal. Thus the system isolates and
terminates applications which attempt to alter the CP0
processor state, including the processor operation mode.
The current processor operating mode also determines
access to the kernel address space (or a respective
application address space) as described in the next section.

At system is start up time, the system is in Error level(ERL
bit is set) so the processor is in the kernel mode. The cold-

reset exception handler boot straps the operating system
which then runs in kernel mode.

 3.2.2 Kernel Address Space

Figure 4. Kernel and User Address Spaces in the R10000

To enable the operating system kernel to mediate access to
all hardware resources as well as interprocess
communication, it must have access to all memory (it is not
isolated). While in kernel mode, the processor is allowed to
access all kernel segments (which would reside in kernel
segments kseg0, kseg1, kseg3); generally allowing access
to all of the system resources. Some kernel segments
(kseg0, kseg1) even bypass the TLB or the cache to
facilitate resource management.

While in user mode, the processor can only access a subset
of the memory space as determined by the address
mappings for that application process. This is typically a
subset of the address space, and is illustrated in Figure 4.
The accessible address space for a user process is
determined by the TLB entries installed (and the ranges of
address space they map) and address space identifier
(ASID) tags on the TLB entries. If an application process
attempts to reference an address not mapped by a TLB
entry, the resulting processor exception will try to find an

 8

appropriate TLB entry (based on the page tables) to insert.
If this fails, then an Address Error Exception will occur. As
with all exceptions, this is handled by an operating system
installed exception handler and generally results in a fatal
UNIX SIGSEGV(segmentation violation) signal for the
application process and its termination. These mechanisms
protect the system data from unauthorized application
access.

3.2.3 Control of Address Translation and TLB
Management

Figure 5. Page Table Entry Structure in the R10000.

Figure 6. The Address Translation Control registers in the
R10000.

 The control of address translation, namely checking
validity and access type control, which is required by the
OS to provide memory isolation is supported in R10000 by
moving the PTE to CP0 registers and then performing
corresponding checks and raising appropriate exceptions in
the CP0 control processor core. The EntryHi and EntryLo
CP0 registers are always loaded with the TLB entry that
corresponds to the virtual address or the correspoding page
table entry(if the TLB misses). The address translation, as
well as the required checking and exception raising , is
done using the contents of these registers. The EntryHi and
EntryLo CP0 registers are loaded only through TLBP,
TLBR CP0 instructions(in case of TLB hit) or generic
move to CP0 instructions(in case of TLB miss) so that these
registers cannot be altered by user processes.

 As shown in Figures 5 and 6, the TLB entry and the
correspoding EntryHi and EntryLo CP0 registers have
validity bits V and D that are recognized by the CP0 and
causes appropriate exception if they are set as not valid.
These bits are used as the invalid-valid bit and the
protection bit that were described in the section on the OS
protection scheme.

 The OS memory isolation mechanism also required a way
to maintain and locate separate page tables for each process.
The Context and XContext CP0 registers are what was
called a context or a Page Table Base Register in the
previous section. The Context CP0 register is used in 32-bit
address mode whereas the XContext CP0 register is used in
64-bit address mode. These CP0 registers point to the base
of the page tables which reside in the kernel segment so that
the page table for the executing process is located safely
and quickly after a context switch. Notice that the page
tables reside in the kernel segment kseg3(see fig.) which
means that only the OS operating in the kernel mode can
access the translation information stored in page tables.
PCBs, including the content of Context registers are also
stored in kernel segments. It still remains, though, for the
OS to keep the entries in the page table consistent.

 The R10000 provides to the OS the means to manage and
maintain consistent TLB entries. The TLB entries are not
flushed after every context switch in R10000. Instead,
R10000 allows the TLB entries loaded for different
processes to be distinguished. Support for this can be found
in the 8-bit ASID(Address Space ID) field in the TLB
entry. ASID is a unique id that is assigned to each process.
After a context switch and a new value is loaded into the
ASID field of the EntryHi register, the ASID field of each
TLB entry is compared with that of EntryHi register and
the TLB entries are enabled if they are equal or set to
global. In this way, it is guaranteed that only the pages that
belong to the executing process or the pages that are
globally shared are translated and accessed. The TLB
entries are written with the contents of the EntryHi and
EntryLo CP0 registers only through TLBP, TLBWI,
TLBWR CP0 instructions so that the user processes cannot
alter the TLB directly.

 Notice that an unused CP0 register can be used as a Page
Table Length Register to prevent accesses to other process’s
page tables. Using a PTLR will cut down the page table size
as mentioned in the previous section.

 Also, WatchHi and WatchLo registers are used to set the
boundaries of physical memory trap locations. They are
used primarily for debugging, however.

 The L1 caches in R10000 are virtually indexed and
physically tagged. It is virtually indexed in order to reduce

 9

access time to the cache by allowing finding set/reading tag
and address translation for tag to occur concurrently.
Because it is still physically tagged, accesses to the cache
cannot bypass the TLB, where most of memory protection
scheme is implemented, even though it is virtually indexed.

4. Process Isolation in Reconfigurable
Hardware

Figure 7: The canonical application-adaptive reconfigurable
architecture, where elements of reconfigurable logic can in general
be attached to all elements of interconnect, logic, and memory in
the system.

Because multiprocess decomposition is a critical element of
modularity and fault isolation in software systems,
providing a safe multiprocess execution is a critical
requirement for reconfigurable processors to achieve
widespread use. We have described the basic multiprocess
protection problem in Section 2, and outlined the possible
failure modes. In reconfigurable systems, these failure
modes are largely the same, but can occur via the actions of
both the software application program and the application-
adapted configurable hardware. We characterize
reconfigurable processors as a new class of processors with
a fraction of the silicon area dedicated to reconfigurable
logic blocks on which application-customized mechanisms
or computations can be built. This basic architecture is
characterized in Figure 7. In this basic architectural
framework, reconfigurable elements can be attached to all
elements of interconnect, logic, and memory, enabling any
conceivable augmentation of the hardwired system. This is
the most general model, and is the starting point for our
analysis of process isolation. As examples of the type of
configurability that can be achieved, major functional
blocks in these processors can also be reconnected,

replaced, or have their communication mediated. Elements
of state can be altered, arbitration protocols can be changed,
finite-state machines can be replaced and interconnect
resources can be added (or diverted) to speed (or slow)
particular data movement operations. All of these changes
can be integrated into the functional operation of the
processor (e.g. change the meaning of an instruction) as
well as its protection structure (e.g. allow a non-privileged
instruction to change a CP0 register or a range of TLB
entries). In summary, in the most general case, the
configurable hardware can be attached to any part of the
entire system, its actions can affect any part of the hardware
system. As we will see, a key aspect of a protection
architecture for reconfigurable systems is to restrict the
capabilities of the configurable hardware for unchecked
access to architecturally visible and invisible system state.

For safe protected execution in reconfigurable machines,
we need the guarantee of process isolation that the rigid
process isolation mechanisms provide while allowing a
certain degree of freedom in reconfigurability of the
hardware. Reconfigurability adds to the conventional
concerns of controlling the software <-> software
interactions of processes that share the processor, resulting
in the following range of concerns:

1. Software <-> software interactions
2. Software <-> configurable hardware interactions
3. Configurable hardware <->
 configurable hardware interactions

Figure 8. Three types of interactions can cause protection
compromises in application-adaptive configurable machines.
Arrows show problematic interactions.

 10

These cases are illustrated in Figure 8. The first case
corresponds to the traditional process protection problem.
In the second case, as the processor is context switched
amongst the application processes, the surrounding
configurable hardware may or may not be switched
synchronously. In fact in some cases, it may be clearly
advantageous for the configurable hardware to continue
execution while the corresponding application process is
context switched out. Because the configurable hardware is
properly viewed as an extension of the application process’
"virtual machine", care must be taken to ensure that
inappropriate interactions do not occur. For example, one
such reconfiguration might involve permuting data in the
memory between phases of execution in an application
program. While it might be advantageous to allow this
permutation to go on while the application is not scheduled
on the processor, process isolation dictates that the
customization of the memory controller must not affect the
functional behavior of the system for other processes (e.g.
other applications or even the kernel). Finally, the third
case involves interactions of the configurable hardware
with shared system (hardwired) resources which cause
either compromises of data or more basic aspects of the
system. For example, if application #1 reconfigures the
addressing interface from the processor to the memory bus,
and application #2 customizes the addressing interface of
the memory controller, allowing direct interaction could
cause inappropriate data access or corruption. In short, the
reconfigured logic as well as the processes must be safely
isolated to achieve a robust and extensible system.

Requirements for process isolation in a configurable
architecture extend the hardwired system requirements
outlined in Section 3, requiring coordination across
software and configurable hardware, and controlled access
in all parts of the system that configurability is allowed.
One possible range of configurable architecture classes
spans a range of flexibility and safety as below:

1. Full Configurability: All processor components fully
reconfigurable, all memory accesses checked and
translated by a hardwired TLB which enforces OS
mappings. All other elements of system configurable.

2. Aggressive Configurability with safety: All
processor components excepting privilege mode
changes and privileged operations fully reconfigurable,
all memory accesses checked and translated by a
hardwired TLB which enforces OS mappings. All
other elements of system configurable, but accesses to
registers, shared resources such as busses, and
memories all controlled via hardwired TLB access
checking.

3. Moderate Configurability with safety: All processor
components excepting privilege mode changes and
privileged operations fully reconfigurable, all memory

accesses checked and translated by a hardwired TLB
which enforces OS mappings. Other devices which
generate addresses are configurable, and have accesses
checked by a shared (or multiple) TLB’s. Configuration
of accesses to registers, shared resources such as
busses, and memories not allowed.

4. Traditional Coprocessor Configurability: Only
coprocessor devices are configurable and their accesses
to shared resources are unchecked (these could be
checked by a hardwired TLB at the I/O interface). No
address translation or shuffling in the MMU. This
approach is typically taken for FPGA-based
coprocessor configurable designs.

5. Processor Configurability with safety: All processor
components excepting privilege mode changes and
privileged operations fully reconfigurable, all memory
accesses checked and translated by a hardwired TLB
which enforces OS mappings. Other parts of the
system are not configurable.

These architectures vary widely in their capabilities for
customization to enhance application performance and the
cost of providing multiprocess isolation guarantees.
Because the issues are complex, and a detailed analysis of
even one of these architectures is a topic for an entire
technical paper, we merely point out that #1 allows the
greatest flexibility, but cannot ensure that any isolation is
guaranteed. Architecture types #2 and #3 allow what one
might consider to be a broad notion of useful
configurability, leaving only the protection core, TLB
checks, and a few key arbitration resources fixed. Within
the scope of types #2 and #3 alone, there is a wide range of
architectural space to explore. Architecture type #4 is the
traditional configurable coprocessor protection model
where the configurable hardware is viewed as an extension
of the system hardware, and dealt with by the operating
system as an input/output device. This is dangerous, as the
configurable logic can easily compromise system integrity.
At a minimum address checking (and interrupt capability)
should be controlled. Finally, architecture type #5 is the
complement of #4, providing processor side configurability
but no coprocessor configurability. This type allows
customization of data movement and computation around
the primary locus of computation, and the tight coupling
this enables makes customization significantly more
powerful than in coprocessor systems. In type #5, process
isolation is easily maintained by a hardwired TLB and
checking all processor references.

5. Process Isolation in the Morph/AMRM
Architecture

 In the Morph/AMRM reconfigurable processor [3, 4], we
propose that reconfigurable logic can be integrated into

 11

various components of the processor core to allow per
applications adoption of optimal policies and/or custom
mechanisms for data movement, memory hierarchy
management, value prediction, branch prediction, etc.
Rather than a more traditional approach of having a
reconfigurable functional unit for custom computations, we
are attaching reconfigurable logic to every component of
the processor that is needed in optimizing various
performance critical mechanisms and policies. This enables
a highly flexible architecture but also makes virtually every
part of the processor have reconfigurability.

The design of the Morph/AMRM protection architecture
follows the protection model described in Section 3 by
depending on memory addressing control and a privilege
mode structure for ensuring that control and providing a
virtual machine and system services for each process.
However, because Morph/AMRM incorporates
configurable logic deep internal to the processor core,
careful engineering of exactly what must be hardwired is
required. The Morph/AMRM architecture enables
configurability in the processor complex with safe
multiprocess protection. We also believe it enables much
of the useful configurability in the processor complex,
notably policies for improving efficient management of
resources and even the addition of instructions, special
functional units, or even processor state. The model
provided to application programs is a private, configurable,
virtual machine which enables rich application
customization. These applications (and their
customizations) are cleanly isolated.

The Morph/AMRM protection architecture is a type #3
configurable architecture (Moderate Configurability with
Safety), preserving strong process isolation guarantees.
The key idea is to have a few parts of the system be
hardwired (unchangeable) and to also limit the connectivity
to other resources (ensuring mediated access to those
resources). Together, these two approaches ensure that key
processor resources can be protected and recovered.

The basic model uses a context switching mechanism which
synchronously switches processor state and all of the
process’ configurable hardware throughout the system
simultaneously. Thus, Morph/AMRM eliminates concerns
of software<->configurable hardware and configurable
hardware<->configurable hardware interactions for
unrelated programs. This leaves the main issues of
ensuring secure context switching and strict address
isolation.

The first two hardware features ensure virtualized execution
and secure process switching. The latter five mechanisms
enable process isolation.

1. Hardwired CP0 core:
 The control processor is central in providing mechanisms
such as privileged/user mode transitions and exception and
interrupt delivering and handling for OS mediation, which
are required to guarantee process isolation. The control
processor core cannot be reconfigured in our design.

2. Hardwired instruction pipeline:
 Controls and the structure of the execution pipeline is
fixed. For instruction sequencing. However, Customizable
functional unit provided for custom instruction.

3. Hardwired CP0 to the TLB control for address translation
and TLB entry management:
 As pointed out in section 3, controlling/checking address
translation in the TLB and TLB entry management is
another central hardware requirement for process isolation.
We have hardwired the TLB and the control from CP0 to
TLB to guarantee correct isolation.

4. The remainder of the datapath, processor, and caches can
all be configurable and connected in arbitrary ways for
maximum flexibility.

5. TLB controlled accesses for other configurable elements
accessing system bus:
 Components such as system chip sets, I/O controllers,
memory controllers that accesses the system bus(for
memory or other memory-mapped items) can be fully
configurable as long as they generate virtual addresses
which is then checked by hardwired local TLBs.

6. Hardwired arbiters for controlling accesses to key shared
resources:
 Access to key shared interconnects such as the system bus
are controlled by hardwired arbiters which are not changed,
system reserves highest priority to allow preemption for
these resources, configurable hardware can be redundant
interconnects to these to accelerate, but cannot compromise
the arbitration of these key resources

7. Multiplexing/bypassing reconfigurable blocks to isolate
reconfigured logic blocks of different processes:

This is intentionally a simple model that provides most of
the power of configurability and incurs a rather significant
overhead of process isolation. The model provided to
application programs is a private, configurable, virtual
machine which enables rich application customization.
These applications (and their customizations) are cleanly
isolated. The schematic diagram of the protection
architecture with the considerations listed above is given in
Figure 9.

As mentioned earlier, our design starts out by restricting the

 12

configurability and extend to handle the additional
complications that the configurable logic imposes. It should
be more obvious from the diagram which components are
configurable or not(shaded boxes in the diagram). The
reconfigurable logic blocks are isolated, with multiplexers
to control the inputs and outputs to each block. Controls to
these multiplexers come from the control processor CP0,
which maintains a table of the owner processes of each
reconfigured block. A CP0 register indicates which
reconfigurable blocks are to be used for the current process.
If the entries in reconfigured block owner table for these
blocks match the current process ID (different from process
ID in OS. ASID used in TLB can be used here.),
corresponding reconfigured block will be selected and
activated. If a block is to be used by the current process but

does not match the process ID (i.e. not configured for this
process), an exception is raised and new configuration is
swapped in. Notice that each reconfigurable logic block is
divided into 2 banks, so that two different configurations of
that block for two different processes can be switched
without having to swap in the new configuration at each
context switch. A more radical approach could even
"suspend" the clock for this logic/memory to completely
disable when the owner process is inactive it in order to
ensure that no interference from unscheduled process’
reconfigured logic. System chip set, I/O controller,
memory controllers generate virtual addresses and have
them checked and translated by a shared or local hardwired
TLB, which also has hardwired control from CP0.

Figure 9. Morph/AMRM Protection Architecture.Rounded stipe box denotes reconfigurable logic block. Shaded box denotes fixed logic.

 13

6. Discussion and Related Work

 The last decade has seen a proliferation of reconfigurable
computing machines based on programmable logic blocks.
In this section, we present some of these efforts and discuss
the multiprocess protection issues in these alternate
approaches in comparison with the Morph/AMRM
architecture. We also discuss the limitations of our current
Morph/AMRM protection architecture proposal.

 FPGA processors, or processors built entirely out of
FPGAs account for the majority of reconfigurable
computing machines that have been proposed [10, 11, 12].
Like ASIC hardware, these processors perform special
computations that are specific to the task that systems with
these processors are to carry out. They achieve their speed-
up by exploiting fine-grained parallelism and fast static
communication. A specific computation is programmed
spatially rather than temporally in sequence of instructions
so that the computations can also be completed in a single
cycle for a speed-up in computation. The difference
between ASIC design and FPGA processors is that FPGA
processors can have a few contexts so that these processors
can carry out different operations in different stages of the
task. Also, unlike the rigid ASIC designs, they can also re-
tune themselves for better performance in response to the
data that they are computing. Since most of these could not
work as a stand-alone processor or only implemented as an
experimental testbed, it is inappropriate to discuss
multiprocess protection issues for these processors. There is
no clear model for managing memory or external devices
for these processors, which suggests that it will be difficult
to, if not impossible, to design a stand-alone FPGA
processor supporting safe multiprocess environment.
Therefore, their use is usually limited to specific process
engine used in domain-specific embedded systems.

 While impressive performances have been reported for
FPGA-based processors [10, 11, 12], these machines also
have other shortcomings that make them less than ideal for
general-purpose computing. First, there is no instruction
sequence. Second, because of their limited I/O,
configuration time is long compared to computation times.
Third, many standard functions like multiplication and
floating-point operations are much slower in FPGA
configurations than in dedicated hardwired logic. To
overcome these shortcomings, architectures that couple a
general-purpose control processor with FPGA co-
processors have been proposed [13]. FPGA is placed as a
slave computational unit on the same die as the processor
and is used to speed up what it can, while the main
processor controls the whole execution and takes care of
other computations. Only some regular portions in the
program such as loops and subroutines that can be

programmed in reconfigurable logic and obtain speed-up
are carried out in the reconfigurable part. This falls in the
architecture type #4 as classified in section 4. The FPGA
co-processor has its own memory interface and control
logic, so it compromises multiprocess safety unless the
system is extended so that the access is controlled by
hardwired (local) TLB, which in turn is controlled through
a hardwired control processor core. In Morph/AMRM,
other configurable devices which generate addresses (e.g.
system chip sets, input/output devices, memory controllers)
must generate virtual address and is checked by local TLBs
with fixed control from the control processor. Maintaining
cache coherency is another problem to be solved for
reconfigurable architectures of this kind.

 Reconfigurable processors with dynamic instruction sets
[14] try to extend the application-specific computation
capability of a general processor with a computational unit
implemented in reconfigurable logic. Again, these efforts
have not explicitly addressed multiprocess protection. The
overall architecture of the processor and the instruction
execution cycle is similar to a general purpose processor
but they have an extensible instruction set that can carry out
custom instructions as needed. The advantage of these
architectures is reduced configuration time because only a
partial reconfiguration of the reconfigurable block is needed
for a new instruction. As with other proposed works, this
architecture is yet implemented only as an experimental
testbed to demonstrate potential performance gain and thus
lacks details in mechanisms to support real multiprocess
environment. The existence of global controller in charge of
interface to memory, registers, and processor status suggest
that this architecture could be extended to provides
protection guarantee of type #3 architecture. But the
configurability is simply limited to providing configurable
functional unit(implementing custom instructions) whereas
in Morph/AMRM, configurability extends to other
processor and system components to improve utilization of
performance critical resources while providing each process
with a private, configurable virtual machine by ensuring
isolation and lock-up freedom. The reconfigurable logic
blocks in the core enables customization of hardware
granularity, memory system management, and bindings
between resources, which is driven by the application.

 The proposed Morph/AMRM protection architecture
provides isolated, customizable virtual machine to each
process, and pays a price in limiting configurability. While
new instructions can be added, the parts of the instruction
decoder and control that access the privilege control parts
of the system must be hardwired. This still allows execution
pipeline configurability and a wide range of optimizations,
should they be performance sensible. The Morph/AMRM
architecture also requires that all memory accesses be
checked by hardwired TLBs and that there be no other

 14

address translation or shuffling beyond that. This restriction
precludes adaptations that dynamically remap memory
addresses at the translation level to implement
scatter/gather technique and to increase the reach of TLBs
[15]. However, such adaptations are not inherently safe,
and depend on the values put into the translation tables. As
such, they cannot be proven correct as a system attribute,
but must depend on software to enforce some restrictions
on use to ensure correctness and multiprocess isolation.
Our Morph/AMRM architecture can be extended to include
such a notion.

 We have not completed the actual design and
implementation of a prototype processor yet, but we are
aware of the possibility that adding extra switches and
muxes to isolate and context-switch customized logics that
are spread about in the processor may incur considerable
overhead in terms of clock rate, silicon area, and design
complexity.

7. Summary and Future Work

 Introducing application-controlled reconfigurability in the
processor raises significant challenges in ensuring process
isolation and protection (i.e. multiprocess isolations), a
critical element of robust computing systems. In this paper,
we have analyzed the implications of hardware
reconfigurability on a multi-process environment and
proposed architectural requirements for safe and protected
execution for reconfigurable processors classified according
to the protection guarantees and the level of
reconfigurability they provide. Our study began by
examining the protection structures of traditional processors
and operating systems, identifying the key mechanisms of
this protection architecture that is based on process isolation
via address space isolation and mediation. This served as
the starting point of our analysis and design of the
protection architecture for reconfigurable processors.

 Based on observations made through the analysis and
classification, we have presented an architectural design
incorporating a protection architecture that is best suited for
our MORPH/AMRM reconfigurable processor. The key
elements of this protection architecture were: 1. hardwired
control processor for privilege mode transitions and
instruction sequencing , 2. hardwired control to TLB for
address translation and TLB entry management, 3. All other
reconfigurable elements that generate addresses must deal
in virtual address, and their accesses checked by
local/shared TLBs, 4. Controlled access to key shared
interconnects are controlled by hardwired arbiters. With
these features, the OS and hardware mechanisms required
for process process protection are well preserved and
protected accesses are strictly checked and controlled by

these mechanisms, while allowing all other components to
be reconfigurable for better flexibility. This architectural
design will thus provide most of the power of
configurability and at the same time provide to each process
a private, configurable, virtual machine which enables rich
per-application basis adaptation. We plan to carry out
simulations to verify our design and refine it in parallel with
the development of our prototype evaluation board of the
MORPH/AMRM processor. The simulations that we are
planning on will be capable of revealing realistic OS –
processor interaction, and is likely to be based on
SimOS[16].

 Making reconfigurable processors multiprocess-safe isn’t
the only requirement for a robust reconfigurable system,
however. Dynamically validating and correcting the
reconfigured logic is needed to find hardware faults and
possibly to contain them. In the near future, we will study
the issues concerning online validation/hardware fault
containment and give a complete solution to building a
reliable and robust reconfigurable system.

Acknowledgements
 We would like to express our gratitude to Prof. Rajesh Gupta,
Prof. Alex Nicolau, Dr. Alexander Veidenbaum, Louis Giannini,
Ali Dasdan, Ben Zhang, and Martin Schulz for their comments
and contributions. The Morph/AMRM project is supported by
DARPA/ITO under contract number DABT63-98-C-0045 and by
NSF Award number ASC-96-34947.

References
[1] Semiconductor Industry Association. National
Technology Roadmap for Semiconductors(NTRS), 1997.

[2] Satapathy, R., Gupta, R. Analysis of Technology
Trends: Making a Case for Architectural Adaptation in
Custom Data-paths, 1997.

[3] Chien, A. and Gupta, R. MORPH: A system
Architecture for Robust High Performance Using
Customization. In Proceedings of the Sixth Symposium on
the Frontiers of Massively Parallel Computation(Frontiers
’96)(Oct. 1996), pp. 336-345.

[4] Zhang, X., Dasdan, A., Schulz, M., Gupta, R., and
Chien, A. Architectural Adaptation for Application-Specific
Locality Optimization. In Proceedings of the International
Conference on Computer Design (Oct. 1997)

[5] DeHon, A. Reconfigurable Architectures for General-
Purpose Computing, Ph.D. thesis, Massachusetts Institute
of Technology, 1996

 15

[6] Kiczles, G., et Al. Open Implementation Design
Guidelines. In Proceedings of the 19th International
Conference on Software Engineering, 1997.

[7] MIPS technologies, Inc. MIPS R10000 Microprocessor
User’s Manual, 1996.

[8] Bach, M., The Design of the UNIX Operating System,
Prentice-Hall, Englewood Cliffs, NJ, 1986.

[9] Leffler, S., McKusick, M., Karels, M., Quarterman, J.
The Design and Implementation of the 4.3BSD UNIX
Operating System, Addison-Wesley, Reading, MA, 1989.

[10] Gokhale, M., Holmes, W., Kosper, A., Lucas, S.,
Minnich, R., Sweely, D., and Lopresti, D. Building and
Using a Highly Programmable Logic Array. IEEE
Computer, 24(1):pp. 81-89, Jan. 1991.

[11] Arnold, J., Buell, D., and Davis, E., Splash 2. In
Proceedings of the 4th Annual ACM Symposium on Parallel
Algorithms and Architectures, pp. 316-324, June 1992.

[12] Vuillemin, J., Bertin, P., Roncin, D., Shand, M.,
Touati, H., and Boucard, P. Programmable Active
Memories: Reconfigurable Systems Come of Age. IEEE
Transactions on VLSI Systems, 4(1):pp.56-69, Mar. 1996.

[13] Hauser, J. and Wawrzynek, J. Garp: A MIPS Processor
with a Reconfigurable Coprocessor. In Proceedings of the
IEEE Symposium on FPGAs for Custom Computing
Machines, 1997.

[14] Wirthlin, J. and Hutchings, B. DISC: The dynamic
instruction set computer. In Field Programmable Gate
Arrays (FPGAs) for Fast Board Development and
Reconfigurable Computing, John Schewel, Editor, Proc.
SPIE 2607, pp. 92-103 (1995).

[15]. J. Carter, W. Hsieh, L. Stoller, M. Swanson, L. Zhang,
E. Brunvand, A. Davis, Chen-Chi Kuo, R. Kuramkote, M.
Parker, L. Schaelicke, and T. Tateyama. Impulse: Building
a Smarter Memory Controller. To appear in the
Proceedings of IEEE Fifth International Symposium on
High Performance Computer Architecture (HPCA-5)

[16] Mendel Rosenblum, Stephen A. Herrod, Emmett
Witchel, and Anoop Gupta. Complete Computer
Simulation: The SimOS Approach. In IEEE Parallel and
Distributed Technology, Fall 1995.

