JAN-10-2006 13:16 BREN ICS INFORMATICS 9498244056 F.01

Mommy, where do software
architectures come from?

Philippe Kruchten
Rational

6857 Wiltshire street
Vancouver, B.C. V6P 5H2
Canada

pkruchten@rational . com
phone: +1 (604) 231 3132
fax: +1 (604) 278 5625

Introduction

There are two central issues in software architecture: representation and creation.

* Representation: how can we describe a software architecture, specify it? What
tools, language, notation can be used to describe it? Completely ad hoc
strategies have been used by each project. Some advances have been made in
the last 3 years in that direction to make a more systematic representation and
specification. '

* Creation: what is the process to create, to produce a software architecture?
What happens in the mind of the software architect? Where do the elements
come from? Who are the architects?

In this paper we will very briefly describe the software architecture model that
we have been using for documenting, specifying a software architecture, then we
will attempt to give some hints on the process of defining a software architecture.

An Architectural Model!

Software architecture deals with the design and implementation of the high-level
structure of the software. It is the result of assembling a certain number of
architectural elements in some well-chosen forms to satisfy the major functionality
and performance requirements of the system, as well as some other, non-
functional (afunctional?) requirements such as reliability, scalability, portability,
and availability.

Software architecture = {Elements, Forms, Rationale}2

Software architecture deals with abstraction, with decomposition and
composition, with style and esthetics. To describe a software architecture, we use
a model composed of multiple views or perspectives. In order to eventually

1 This section is extracted from [KRU%4]

2 Formula due to Dewayne Perry & Alexander Wolf [PER92], extended by Barry Boehm to
in¢clude “constraints” {BOES4]

198

JAN-10-2006 13:16 BREN ICS INFORMATICS 9498244056

address large and challenging architectures, the model we propose is made up of
five main views (cf. fig. 1):

* The conceptual view, which is the object model of the design

* the dynamic view, which captures the concurrency and synchronization
aspects of the design

* the physical view, which describes the mapping of the software onto the
hardware and reflects its distributed aspect

* the static view, which describes the organization of the software in the
development environment.

The description of an architecture, the decisions made, can be organized around
these four views, and illustrated by a few selected scenarios3 which become a fifth
view. The architecture is fact partially evolved from the scenarios as we will see
below.

The design guidelines and rationale for architectural decisions are captured in
parallel with these decisions in order to maintain the integrity of the architecture
over time. The quality of the architecture is evaluated in terms of usability,
simplicity, versatility, robustness, and efficiency. It is assessed by implementing
and evaluating a succession of architectural prototypes that evolve into the final
system.

Eng-user Software management
Functionality Programmers

Conceptual View|—| Static View

@Scenarios)

Dynamic View r—s={ Physical View

Performance

T Topology
Scalability System integration
Throughput Telecommunication

Figure 1 — the “4+1" view model

3 Ivar Jacobson et al. call them “use cases” JAC92]

199

F.0Z

JAN-10-2006 13:16 BREN ICS INFORMATICS 9498244056 F.03

Architecture Sources

There are much less source of information to where architectures come from. It is
often hinted that this is a bit black magic, people having ‘architectural visions’.

Witt et al. [WIT94] give a description of a step by step method to define an
architecture, which seems to be aimed at a certain kind of software system (MIS):
they proceed with ready-made forms: client/server/ transactions, and do not
mention where new forms come from, especially when designing other kind of
software systems (embedded, real-time, command and control, software
production, etc.)

There are 3 main sources of architecture, and every software architecture I have
seen created used some combination of the three in some proportion: theft,
method and intuition.

* Theft: most elements of a software architecture are just “lifted” from other
architectures the architects happen to be familiar with:

—the previous system of the same kind,
—~—another system with overall similar characteristics,
—some architecture found in the technical literature.

If there weren’t so much theft, it would be very hard to build taxonomies of
architectures or to create architecture description languages. As the domain
matures, handbooks of software architectures will emerge out of which it will
be easier to steal.4

* Method: a systematic, conscious, maybe even documented way by which an
architecture is derived from the system’s requirements and technological
constraints, applying well-known transformations or some heuristics; this is
what Witt et al. have described. In most cases, the software architects apply
heuristics, again derived from experience, and very often those heuristics are
not completely spelled out.?

* Intuition: intuition is the ability to conceive without conscious reasoning; a
significant amount of architecture invention is just pure intuition; the eye of
the experience software architect recognizes some pattern, or finds another
point of view, or changes a way to express things, and Voila! an architectural
element of form appears, which then need to be confronted with the
requirements, the architecture already in place, etc.

The ratio between those three sources varies according to the experience of the
architects and to the degree of novelty or “unprecedentedness” of the system
they are designing.

4 Asan example of micro-architectural pattern handbook, see [GAM94]

5 Eberhardt Rechtin at USC is trying to collect software architecture heuristics, to complement the
system architecture heuristics he already documented in [REC91]

200

JAN-10-2006 13:16 BREN ICS INFORMATICS 9498244056 F.04

Method Method
Theft I Intuition Theft [ntUitiOﬂ
A classical system An unprecedented system

The contribution of the 3 sources can have different profiles; for instarnce:
* (lassical: 80% theft, 19% method, 1% intuition
* Unprecedented: 30% theft, 50% method, 20% intuition

Intuition is a great thing and source of real creativity. But however it needs to be
supported by method. The intuitions need to be carefully reviewed, integrated,
validated by experiments, prototypes. The higher the reliance on intuition, the
greater the risks. A architecture built with a profile of: 50% theft, 0% method, and
50% intuition is doomed to fail. -

Method and Process

There are 3 levels at which we can look for a method:

* the macro-process: how does the design of an architecture fits in the overall
software life-cycle; the scale is the month, the year

* the micro-process: how do architecture proceed to construct, document,
validate the architecture in a methodical fashion; the scale is the day, the
week

* the nano-process: what happens in the head of the architect at the scale of the
second or the hour.

Iterative process®

Witt et al. indicate 4 phases: sketching, organizing, specifying and optimizing,
subdivided into some 12 steps. They indicate that some backtracking may be
needed. However we think that this approach is far too linear for an ambitious
and rather novel project. Too little is known at the end of the 4 phases to validate
the architecture. We advocate a more iterative development, were the
architecture is actually prototyped, tested, measured, analyzed, and then refined
in subsequent iterations. Besides allowing to mitigate the risks associated with
the architecture, such an approach has other benefits for the project: team

6 We described this process in [KRU91].

201

JAN-10-2006 13:30 BREN ICS INFORMATICS 9498244056 F.01-01

building, training, acquaintance with the architecture, run-in of procedures and
tools, etc.

A scenario-driven approach

The most critical functionality of the system are captured in the form of scenarios
(or use cases). By critical we mean: functions that are the most important, the
raison d’étre of the system, or that have the highest frequency, or that present
some significant technical risk that must be mitigated.

Start:

* A small number of the scenarios are chosen for an iteration based on
risk and criticality. Scenarios may be synthesized to abstract a number
of requirements.

* A strawman architecture is put in place (mostly by theft). The scenarios
are then scripted in order to identify major abstractions (classes,
mechanisms, processes, subsystems).

* The architectural elements are laid out on the 4 blueprints mentioned
above: conceptual, dynamic, static, and physical.

* This architecture is then implemented, tested, measured, and some
analysis may detect some flaws.

Loop:
The next iteration can then start by:
* reassessing the risks,
* extending the palette of scenarios
* selecting a few additional scenarios
Then:
* try to script those scenarios in the preliminary architecture

* discover additional architectural elements, or sometimes significant
architectural changes.

* update the 4 blueprints
* revise the existing scenarios based on the changes

* upgrade the implementation to support the new extended set of
scenario.

s Test. Measure under load, in real target environment.

¢ Allfive b'lueprints are reviewed to detect potential for simplification,
reuse, commonality.

* Guidelines and rationale are updated.
End loop

The initial architectural prototype evolves to become the real system. Hopefully
after 2 or 3 iterations, the architecture itself become stable: no new major
abstractions are found, no new subsystems or processes, no new interfaces. The

202

TOTAL FP.O1

JAN-10-2006 13:16 BREN ICS INFORMATICS 9498244056 F.0B

rest of the story is in the realm of software design, where, by the way,
development may continue using very similar methods.

The nano-process

What happens in the mind of the architect? A certain number of intellectual
activities: abstraction, generalization, specialization, induction. There is also a
process called “heuristic jump”. The architect selects a heuristic, applies it to
jump ahead, draws some conclusions, then steps back and explore systematically
all consequences of that “jump.”

What drives which activity, or which heuristic to apply depends on the specific
problem:

* Design getting too complex: abstraction, generalization, trying to find
commonality, frying to challenge strange, unorthogonal requirements.
* Discovery of a new requirement: pattern matching, extension
» Performance issue: specialization
* Wide interface, high coupling: reorganize the groupings
* Stuck by too many constraints: ignore half of the requirements (for a while)
etc.

Who are the Architects?

The architect or group of architects collectively must have a solid experience of
software development, over the entire life-cycle, and solid domain expertise, at
roughly 50/50. The intuition mechanism works only when there is enough
material stored deep in the “bottom neurons.”

In a team, a maximum of overlap is preferable to really be able to do some
teamwork. This can be achieved by cross training: train the software people in
the domain and vice versa.

They must have a very good feel for abstraction, able to see the “big pxcture” but
able to dive into technical details as necessary. They are synthesists, more than
analysts [WEI88].

They must be great communicator (written and oral), since a large part of their
activity will be to explain the architecture to all kind of people inside and outside
the organization.

They must be able to negotiate and achieve balance and compromise between all
stakeholders: customers, management, developers, etc. as well as internally
within the team.

Architects are very curious people, and often in plenty of other fields than just
software. This allows them to have more material to steal from and more sources
of analogies and metaphors.

The architects must be dedicated to that task, and have proper authority to
enforce technical decisions. The size of the architecture team is around 5% to 12%
of the total number of developers.

203

TOTAL P.O%

JAN-10-2006 13:11 BREN ICS INFORMATICS 9498244056

In Myers-Briggs classification, there are often of the xNTy kind, and INTP are
even labeled the “Architect,” although in a large organization, a mix of
personalities does help to achieve a real team [KAT93]

Conclusion

Software architectures come from 3 sources: theft, intuition and method.
Experience and wide culture are invaluable for theft and intuition. A process, a
systematic way to approach the building of an architecture, as well as a defined
way to specify and document it is key to the third aspect. We will be some day
able to answer the question: “where are the building codes?” But we are still a bit
far from the “software architecture assembly line,” there is still many years of
long pregnancies and difficult births ahead of us.

Acknowledgements

Many thanks to Alex Bell and Drasko Sotirovski from Hughes Aircraft of Canada
for the stimulating discussions that lead to this paper, and to Grady Booch from
Rational for the impulse.

References and Other Sources of Inspiration:

GAM94 Erich Gamma, Richard Helm, Ralph Johnsson & John Vlissides, Design
Patterns—Elements of Reusable Object-Oriented Software, Addison-Wesley
(1994) 395p.

GAR93 David Garlan & Mary Shaw, “An Introduction to Software
Architecture,” Advances in Software Engineering and Knowledge
Engineering, Vol. 1, World Scientific Publishing Co. (1993)

GLA94 Robert Glass, Software Creativity, Prentice-Hall (1994) 268p.

JAC92 Ivar Jacobson, Magnus Christerson, Patrik Jonsson, Gunnar
Overgaard, Object-Oriented Software Engineering—A Use Case Driven
Approach, Addison-Wesley, Wokingham, England (1992) 528p.

JON94 Capers Jones, Assessment and Control of Software Risks, Yourdon Press,
1994, 619p. |

KAT93 Jon R. Katzenbach & Douglas K. Smith, The Wisdom of Teams, Harper
Business Press (1993) 265 p.

KRU91 Philippe Kruchten: “Un processus de dévelopment de logiciel itératif et
centré sur l'architecture”, Proceedings of the 4th International Conference
on Software Engineering, Toulouse, France, December 1991, EC2, Paris.

KRU94 Philippe Kruchten & Christopher Thompson, “An Object-Oriented,
Distributed Architecture for Large Scale Ada Systems,” Proceedings of
the TRI-Ada "94 Conference, Baltimore, November 6-11, 1994, ACM, 262-
271.

204

F.0Z

TOTAL FP.OZ

JAN-10-2006 13:13 BREN ICS INFORMATICS 9498244056 F.01-01

PER92 Dewayne E. Perry & Alexander L. Wolf, “Foundations for the Study of
Software Architecture,” ACM Software Engineering Notes, 17, 4, October
1992, p.40-52.

REC91 Eberhardt Rechtin, Systems Architecting—Creating and building complex
systems, Prentice-Hall, Englewood Cliffs, N.J. (1991) 333p.

RUB92 Kenneth Rubin & Adele Goldberg, “Object Behavior Analysis,” CACM,
35, 9 (Sept. 1992) 48-62

SHA94 Mary Shaw, R. DeLine, D. Klein, Th. Ross, D. Young, & G. Zelesnik,
“Abstractions for Software Architecture and Tools to Support Them”,
February 1994, Private communication.

WEIB8 Gerald Weinberg, Rethinking Systems Analysis & Design, Dorset House,
New York (1988)

WIT94 Bernard I. Witt, F. Terry Baker & Everett W. Merritt, Software
Architecture and Design—Principles, Models, and Methods, Van Nostrand
Reinhold, New-York (1994} 324p.

205

TOTAL P.0O1

