
Exploiting Style in Architectural Design Environments

David Garlan Robert Allen

Computer Science Department
Carnegie Mellon University

Pittsburgh, PA 15213

John Ockerbloom

Abstract

As the design of software architectures emerges as a discipline
within software engineering, it will become increasingly impor-
tant to support architectural description and analysis with tools and
environments. In this paper we describe a system for developing
architectural design environments that exploit architectural styles
to guide software architects in producing specific systems. The pri-
mary contributions of this research are: (a) a generic object model
for representing architectural designs; (b) the characterization of
architectural styles as specializations of this object model; and (c) a
toolkit for creating an open architectural design environment from
a description of a specific architectural style. We use our experi-
ence in implementing these concepts to illustrate how style-oriented
architectural design raises new challenges for software support en-
vironments.

1 Introduction

A critical aspect of any complex software system is its architecture.
At an architectural level of design a system is typically described
as a composition of high-level, interacting components. Frequently
these descriptions are presented as informal box and line diagrams
depicting the gross organizational structure of a system, and they are
often described using idiomatic characterizations such as “client-
server organization,” “layered system,” or “blackboard architec-
ture.”

Architectural designs are important for at least two reasons.
First, an architectural description makes a complex system intellec-
tually tractable by characterizing it at a high level of abstraction.
In particular, the architectural design exposes the top level design
decisions and permits a designer to reason about satisfaction of
system requirements in terms of assignment of functionality to de-
sign elements. Second, architectural design allows designers to
exploit recurring patterns of system organization. As detailed later,
such patterns – or architectural styles – ease the design process
by providing routine solutions for certain classes of problems, by
supporting reuse of underlying implementations, and by permitting
specialized analyses.

While at present the practice of architectural design is largely ad
hoc, the topic is receiving increasing attention from researchers and

Proceedings of the ACM SIGSOFT ’94 Symposium on Founda-
tions of Software Engineering, December, 1994, New Orleans,
LA.

practitioners in areas such as module interface languages, domain-
specific architectures, software reuse, codification of organizational
patterns for software, architectural description languages, formal
underpinnings for architectural design, and architectural design
environments. Collectively these efforts are working to put ar-
chitectural design on a more solid basis and make principles and
techniques of architectural design more widely accessible.

As architectural design emerges as an explicit discipline within
software engineering, it will become increasingly important to sup-
port architectural description and analysis with tools and environ-
ments. Indeed, already we are beginning to see a proliferation of
environments oriented around specific architectural styles. These
environments typically provide tools to support particular archi-
tectural design paradigms and their associated development meth-
ods. Examples include architectures based on data flow [Mak92],
object-oriented design [R+91], blackboard shells [Nii86], control
systems [BV93], and reactive integration [Fro89].

Unfortunately each such environment is built as an indepen-
dent, hand-crafted effort—and at great cost. While development
efforts may exploit emerging software environment infrastructure
(persistent object bases, tool integration frameworks, user interface
toolkits, etc.), the architectural aspects are typically redesigned and
reimplemented from scratch for each new style. The cost of such
efforts can be quite high. Moreover, once built, each environment
typically stands in isolation, supporting a single architectural style
tailored to a particular product domain.

In this paper we describe an approach that helps ameliorate the
situation. Focusing on the issue of architectural style we show
how to adapt the principles and technology of generic software
development environments to provide style-specific architectural
support. Specifically, we show how to generate architectural de-
sign environments from a description of an architectural style. Like
general-purpose environment technology, this approach is not com-
mitted to a particular architectural style or development method.
But unlike general-purpose approaches, we provide specific mech-
anisms to define new architectural styles and to use those styles for
designing new systems.

In the remainder of this paper we describe a system – called
Aesop – for developing style-oriented architectural design environ-
ments. As we will show, the primary contributions of this research
are: (a) a generic object model for representing architectural de-
signs; (b) the characterization of architectural styles as specializa-
tions of this object model (through subtyping); and (c) a toolkit for
creating an open architectural design environment from a descrip-
tion of a specific architectural style.

2 Related Work

2.1 Software Development Environments

For the past decade there has been considerable research and devel-
opment in the area of automated support for software development:
tool integration frameworks [B+88, Ger89], environment genera-
tors and toolkits [RT89, vLDD+88, DGHKL84], process-oriented
support [KFP88, T+88], etc. These facilities typically provide
generic support for some aspects of software development, and can
be specialized or instantiated for a particular development environ-
ment. Inputs to the specialization process include such things as a
BNF description of a programming language, a lifecycle model, a
process model, a set of broadcast message definitions, etc.

Our work builds on this heritage (both philosophically and ma-
terially), but focuses on the specific task of architectural design.
We use the standard building blocks of software development envi-
ronments to construct style-specific environments: databases, tool
integration frameworks, structure-editor generators, user interface
frameworks, etc. However, as we describe in Section 4, we have
tailored these building blocks to the specific task of describing and
analyzing architectural designs.

Consequently, our work complements existing technology for
software development support environments, and dovetails nicely
with it. In particular, the architectural design environments pro-
duced by our system can coexist with existing software development
tools and environments.

2.2 Software Architecture

Within the emerging field of software architecture research there are
three closely related subareas. The first area is environments that
support specific architectural styles. As outlined above, we share
with those efforts the goal of supporting architectural development
and exploiting architectural styles. However, our work attempts
to reduce the cost of building such environments by providing a
common basis for implementing them – or at least certain key parts
of them. Hence, our research is attacking a more general problem.

The second area is research aimed at providing a rigorous basis
for architectural specification and design [GN91, AG92, AAG93,
PW92]. To the extent that such research clarifies the nature of archi-
tectural representation and the meaning of architectural style, our
work builds on those results. In particular, the basic model of archi-
tectural representation (Section 4.3) and the elements of style de-
scription (Section 3) emerged as a result of our own experience with
formalization of architecture. Moreover, tools that have resulted
from efforts to formalize software architecture (e.g., architectural
compatibility checkers [AG94b] and refinement tools [MQR94])
are natural candidates for tools in our style-specific environments.

The third is research on languages for architectural description.
These efforts have focused on providing general-purpose architec-
tural description languages, linguistic mechanisms for component
specification and generation, and tools to support these. Within
this general area, the two systems that are most closely related to
ours are Luckham’s Rapide System [LAK+95] and Shaw’s UniCon
System [SDK+95]. Rapide provides a general-purpose system de-
scription language (based on events and event patterns) together
with tools for executing and monitoring systems described in the
language. UniCon provides a general-purpose architectural descrip-
tion language and a tool that (currently) focuses on the problem of
making it possible to combine a wide variety of component and
connector types within a given system design.

In both cases, their focus is on the general-purpose nature of
their languages and on providing a universal platform for architec-
tural designs. In contrast, our research aims to exploit architectural

style to provide more powerful support for families of systems con-
structed within the boundaries of that style. Thus we are willing to
trade generality for power: instead of a single universal architectural
development environment we promote a lot of (possibly interoper-
ating) style-specific environments. Each such environment limits
the scope of applicability, but by the same token provides new
opportunities for design guidance, analysis, and synthesis.

3 What is Software Architecture and Architectural
Style?

While there is currently no single well-accepted definition of soft-
ware architecture it is generally recognized that an architectural
design of a system is concerned with describing its gross decom-
position into computational elements and their interactions [PW92,
GS93b, GP94]. Issues relevant to this level of design include orga-
nization of a system as a composition of components; global control
structures; protocols for communication, synchronization, and data
access; assignment of functionality to design elements; physical
distribution; scaling and performance; dimensions of evolution;
and selection among design alternatives.

It is possible to describe the architecture of a particular system
as an arbitrary composition of idiosyncratic components. However,
good designers tend to reuse a set of established architectural orga-
nizations – or architectural styles. Architectural styles fall into two
broad categories.

Idioms and patterns: This category includes global organizational
structures, such as layered systems,pipe-filter systems, client-
server organizations, blackboards, etc. It also includes lo-
calized patterns, such as model-view-controller [KP88] and
many other object-oriented patterns [Coa92, GHJV94].

Reference models: This category includes system organizations
that prescribe specific (often parameterized) configurations
of components and interactions for specific application areas.
A familiar example is the standard organization of a compiler
into lexer, parser, typer, optimizer, code generator [PW92].
Other reference architectures include communication refer-
ence models (such as the ISO OSI 7-layer model [McC91]),
some user interface frameworks [K+91], and a large variety of
domain-specific approaches in areas such as avionics [BV93]
and mobile robotics [SLF90, HR90].

More specifically, we observe that architectural styles typically
determine four kinds of properties [AAG93]:

1. They provide a vocabulary of design elements – component
and connector types such as pipes, filters, clients, servers,
parsers, databases etc.

2. They define a set of configuration rules – or topological con-
straints – that determine the permitted compositions of those
elements. For example, the rules might prohibit cycles in a
particular pipe-filter style, specify that a client-server organi-
zation must be an n-to-one relationship, or define a specific
compositional pattern such as a pipelined decomposition of
a compiler.

3. They define a semantic interpretation, whereby compositions
of design elements, suitably constrained by the configuration
rules, have well-defined meanings.

4. They define analyses that can be performed on systems built
in that style. Examples include schedulability analysis for a
style oriented toward real-time processing [Ves94] and dead-
lock detection for client-server message passing [JC94]. A

2

specific, but important, special case of analysis is code gen-
eration: many styles support application generation (e.g.,
parser generators), or enable the reuse of code for certain
shared facilities (e.g., user interface frameworks and support
for communication between distributed processes).

The use of architectural styles has a number of significant ben-
efits. First, it promotes design reuse: routine solutions with well-
understood properties can be reapplied to new problems with con-
fidence.

Second, use of architectural styles can lead to significant code
reuse: often the invariant aspects of an architectural style lend
themselves to shared implementations. For example, systems de-
scribed in a pipe-filter style can often reuse Unix operating system
primitives to implement task scheduling, synchronization, and com-
munication through pipes. Similarly, a client-server style can take
advantage of existing RPC mechanisms and stub generation capa-
bility.

Third, it is easier for others to understand a system’s organi-
zation if conventionalized structures are used. For example, even
without giving details, characterization of a system as a “client-
server” organization immediately conveys a strong image of the
kinds of pieces and how they fit together.

Fourth, use of standardized styles supports interoperability.
Examples include CORBA object-oriented architecture [Cor91],
the OSI protocol stack [McC91], and event-based tool integra-
tion [Ger89].

Fifth, as noted above, by constraining the design space, an ar-
chitectural style often permits specialized, style-specific analyses.
For example, it is possible to analyze systems built in a pipe-filter
style for schedulability, throughput, latency, and deadlock-freedom.
Such analyses might not be meaningful for an arbitrary, ad hoc ar-
chitecture – or even one constructed in a different style. In particu-
lar, some styles make it possible to generate code directly from an
architectural description.

Sixth, it is usually possible (and desirable) to provide style-
specific visualizations. This makes it possible to provide graphical
and textual renderings that match engineers’ domain-specific intu-
itions about how their designs should be depicted.

4 Automated Support for Architectural Design

Given these benefits, it is perhaps not surprising that there has been
a proliferation of architectural styles. In many cases styles are
simply used as informal conventions. In other cases – often with
more mature styles – tools and environments have been produced
to ease the developer’s task in conforming to a style and in getting
the benefits of improved analysis and code reuse.

To take two illustrative industrial examples, the HP Softbench
Encapsulator helps developers build applications that conform to
a particular Softbench event-based style [Fro89]. Applications are
integrated into a system by “wrappping” them with an interface that
permits them to interact with other tools via event broadcast. Simi-
larly, the Honeywell MetaH language and supporting development
tools provide an architectural description language for real-time,
embedded avionics applications [Ves94]. The tools check a system
description for schedulability and other properties and generate the
“glue” code that handles real-time process dispatching, communi-
cation, and resource synchronization.

While environments specialized for specific styles provide pow-
erful support for certain classes of applications, the cost of building
these environments can be quite high, since typically each style-
oriented tool or environment is built from scratch for each new
style. We believe that an effective discipline of software architec-
ture requires a way to more easily develop automated support for

Style-A

Style-B

Style-C
Aesop Fable

ABC

Figure 1: Generating Fables with Aesop

defining new styles and incorporating those definitions into envi-
ronments that can take advantage of them.

In order to do this, however, a number of foundational ques-
tions need to be answered: How should we represent architectural
descriptions? How can we describe architectural styles so that they
can be effectively exploited in an environment? How can we ac-
commodate different styles in the same environment? How can
we ensure that support for architectural development dovetails with
other software development activities? In the remainder of this
section we provide one set of answers to these questions.

4.1 Aesop

Aesop is a system for developing style-specific architectural de-
velopment environments. Each of these environments supports
(1) a palette of design element types (i.e., style-specific compo-
nents and connectors) corresponding to the vocabulary of the style;
(2) checks that compositions of design elements satisfy the topolog-
ical constraints of the style; (3) optional semantic specifications of
the elements; (4) an interface that allows external tools to analyze
and manipulate architectural descriptions; and (5) multiple style-
specific visualizations of architectural information together with a
graphical editor for manipulating them.

Building on existing software development environment tech-
nology, Aesop adopts a “generative” approach. As illustrated in
Figure 1, Aesop combines a description of a style (or set of styles)
with a shared toolkit of common facilities to produce an environ-
ment, called a Fable, specialized to that style (or styles).

To give the flavor of the approach and to illustrate how different
styles result in quite different environments, consider snapshots of
three different Fables. Figure 2 illustrates the output of Aesop
for the “null” style: that is, no style information is given. In this
case the user can create arbitrary labelled graphs of components
and connectors with the system-provided graphical editor. Both
components and connectors can be described hierarchically (i.e.,
can themselves be represented by architectural descriptions). These
descriptions are stored in a persistent object base. Additionally, the
user can invoke a text editor to associate arbitrary text with any
component and connector.

In terms of the four stylistic properties outlined in Section 3, the
design vocabulary is generic (components, connectors, etc.), the
topologies are unconstrained, there is no semantic interpretation,
and the analyses are confined to topological properties – such as
the existence of cycles and dangling connectors. The associated
tools consist of a graphical editor and a text editor for annotations.
Hence, the resulting environment provides little more than informal
box-and-line descriptions, such as one might find in any number of
CASE environments.

In contrast, Figure 3 shows a Fable for a pipe-filter style. In
this case, the style identifies (in ways to be described later) a spe-
cific vocabulary: components are filters and connectors are pipes.
Filters perform stream transformations. Pipes provide sequential
delivery of data streams between filters. Topological constraints
include the fact that pipes are directional, and that at most one
pipe can be connected to any single “port” of a filter. Filters can
be decomposed into sub-architectures, but pipes cannot. Further-
more, the environment uses the semantics of the style to provide

3

Figure 2: A “Style-less” Fable

specialized visualizations, as well as to support the development
of semantically consistent system architectures. A syntax-directed
editor may be used to describe the computation of individual filters.
Pipes are drawn as arrows to indicate the direction of data flow.
Color is used to highlight incorrectly attached pipes (not shown).
Finally, the environment provides routines to check that correctly
typed data is sent over the pipes, and a “build” tool uses the infor-
mation present in the design database to construct the “glue code”
needed to compile an executable instance of the system.

As a third example, Figure 4 illustrates an environment for an
event-based style similar to Field [Rei90] or Softbench [Ger89].1

In this environment the components are active (event-announcing)
objects, and the connectors are drawn as a kind of “software bus”
along which events are announcedand received by the components.
In this case the connector can be “opened” to expose its under-
lying representation as an event dispatcher. This sub-architecture
is described in a different style – namely, one in which RPC is
used as the main connector and the dispatcher acts as a server in a
client-server style. This example illustrates heterogeneous use of
styles within a single Fable. That is, the style used to represent the
internal structure of a component can differ from the style in which
the component appears.

With this brief overview as background, we now turn to the
technical design on which Aesop is based.

4.2 The Structure of a Fable

Aesop adopts a conventional structure for its environments: a Fa-
ble is organized as a collection of tools that share data through a
persistent object base (Figure 5). The object base runs as a separate
server process and provides typical database facilities: transactions,
concurrency control, persistence, etc. In the initial prototype the

1The style shown in this example is only partially implemented in our current
prototype.

database was built by “serverizing” OBST, a public domain, C++-
oriented database.2

Tools run as separate processes and access the object base
through an RPC interface called the “Fable Abstract Machine” (or
FAM), which defines operations for creating and manipulating ar-
chitectural objects. This interface is defined as a set of C++ object
types that are linked with tools that intend to directly manipulate
architectural data. Additionally, tools can register an interest in spe-
cific data objects, and will be notified when they change. Currently
we use Hewlett Packard’s Softbench [Ger89] for event-based tool
invocation. This same mechanism also serves to integrate external
tools. For example, in the pipe-filter environment, described above,
code is generated by announcing a message to a suitably “encap-
sulated” code generation tool. Tools such as external editors are
handled in the same way.

The user interface to a Fable is centered around a graphical editor
and database browser provided by the Aesop system. As was illus-
trated in the examples earlier (and explained in more detail later),
this tool can be customized to provide style-specific displays and
views. The current graphical editor is based on the UniDraw frame-
work of InterViews [LVC89], a C++-based GUI toolkit. While this
editor is provided as a default, it is important to note that it runs as
a separate tool, and can be easily replaced or augmented with other
interface tools. (For example, we have recently added an alternative
interface based on Tcl/Tk [Ous94].)

4.3 Representing Architectural Designs

Given a persistent object base for architectural representation, an
important question is what are the types of objects that can be
stored in the database. The answer to this question is critical, since,

2In ourmost recent version, OBST has been replacedby the Exodus[C +90] storage
manager.

4

Figure 3: A Pipe-Filter Fable

5

Figure 4: An Event-Based Fable

6

Component

Port
Connector

Role

Binding

Configuration

Figure 6: Generic Elements of Architectural Description

Persistent
Object Base

Fable Abstract Machine

Tool 1
(GUI)

Tool 2 Tool n...

Figure 5: The Structure of a Fable

in effect, it answers the deeper question: what is an architectural
design and how is it represented?

Our approach to architectural representation is based on a generic
ontology of seven entities: components, connectors, configurations,
ports, roles, representations, and bindings. (See Figure 6.)

The basic elements of architectural description are components,
connectors and configurations. Components represent the loci of
computation; connectors represent interactions between compo-
nents; and configurations define topologies of components and con-
nectors. Both components and configurations have interfaces. A
component interface is defined by a set of ports, which determine
the component’s points of interaction with its environment. Con-
nector interfaces are defined as a set of roles, which identify the
participants of the interaction.3

Because architectural descriptions can be hierarchical, there
must be a way to describe the “contents” of a component or con-
nector. We refer to such a description as a representation. For
example, Figures 3 and 4 illustrated architectural representations of
a component and a connector (respectively).

For such descriptions there must also be a way to define the
correspondence between elements of the internal configuration and
the external interface of the component or connector. A binding
defines this correspondence: each binding identifies an internal
port with an external port (or, for connectors, an internal role with
an external role).4

In the Aesop system this ontology is realized as fixed set of
abstract class definitions: each of the seven types of architectural
building block is represented as a C++ class. Operations supported
by these classes include adding and removing ports to components,

3An argument for representation of connectors as first class semantic entities is
beyond the scope of this paper, but can be found elsewhere [AG94a, Sha93]. Also, for
a more formal treatment of the architectural model see [AAG93].

4Note that bindingsare not connectors: connectorsdefine paths of interaction, while
bindings identify equivalences between two interface points. Moreover, connectors
always associate a roles with a port, while a bindingassociates a port with another port,
or a role with another role.

7

connecting a connector role to a component port, establishing a
binding between two ports or two roles, adding a new representation
to a component or connector, etc. Collectively the classes define a
Fable abstract machine interface for the null-style environment.

In many cases representation of a component or connector is
not architectural, per se. For example, a component might have
a representation that specifies its functionality, or a code module
that describes an implementation. Similarly, a connector might
have a representation that specifies its protocol [AG94b]. That
information is often best manipulated by external non-architectural
tools, such as compilers and proof checkers,and stored in an external
database (such as the file system). To accommodate such external
data, we provide a subtype of representation called external rep,
which in turn has other subtypes such as text file rep, oracle rep,
ast rep. These references are usually interpreted by the tools that
access them. External representations thus provide external data
integration for Aesop environments.

Before leaving this outline of our generic object model for ar-
chitectural representation, it is worth highlighting the aspects of our
approach that are unusual. While the view of architecture as compo-
sitions of components and connectors appears to be gaining general
acceptance, our approach has several distinctive features. First is
the treatment of connectors as first class entities: they have their
own interfaces (as a set of roles); they may be decomposedinto sub-
architectures; and they can have associated semantic descriptions. 5

This supports the conviction that a proper foundation for architec-
ture must allow the creation of new kinds of “glue” for combining
components.

Second is our treatment of representation: architectural entities
can have multiple descriptions representing alternative implemen-
tations, specifications, and views. This is unlike other approaches
(such as in UniCon or Rapide) where an architectural element has
a single implementation that defines its “truth”. In our case, truth
is in the eye of the tool that uses the architectural information to
derive other related artifacts (such as executables).

Third, our generic interface is intentionally minimal: we pro-
vide only the bare framework for architectural description, leaving
additional information to be added as stylistic elaborations. This is
unlike other efforts that attempt to provide a single universal style,
and therefore must build in many more primitive notions (such
as event patterns, particular interface specification languages, and
richer vocabularies of connectors).

4.4 De�ning Styles

The generic object model provides the foundation for representing
architecture. However, to obtain a useful environment, that frame-
work must be augmented to support richer notions of architectural
design. In Aesop this is done by specifying a style.

The model adopted for style definition is based on the principle
of subtyping: a style-specific vocabulary of design elements is
introduced by providing subtypes of the basic architectural classes
or one of their subtypes. Stylistic constraints are then supported
by the methods of these types. Additionally, a style can identify
a collection of external tools: some of these may be specifically
written to perform architectural analyses, while others are links to
external software development tools.

When proposing a subtyping discipline it is important to be
clear about the underlying semantic model. Specifically, in what
ways can subclassesalter the behavior of their superclasses through
overriding? In our system, the rule is: architectural subclasses
must respect the semantic behavior of their superclasses. The term

5Currently we use the Wright language [AG94b] to define the semantics of connec-
tors as a collection of protocols.

fam_bool pf_source::attach(fam_port p) {

if (!fam_is_subtype(p.fam_type(),PF_WRITE_TYPE))
{

return false;
}
else
{

return fam_port::attach(p);
}

}

Figure 7: Code to check source role attachment

“respect”, however, is used in a non-standard way. Rather than im-
plying behavioral equivalence (as defined, for example, by Liskov
and Wing [LW93]), we require that a subclass must provide strict
subtyping behavior for operations that succeed, but they may intro-
duce additional sources of failure.6

To see why this is useful (and necessary), consider the operation
addport, which adds a port to a component. In the generic case any
kind of port may be added to a component with the result that when
the list of ports is requested, the new port will be a member of the
result. In the case of a filter in a pipe-filter style, however, we may
want to allow a port to be added to a filter only if it is an instance
of one of the port types defined in the style – namely, an input or
output port. It is reasonable, therefore, to cause an invocation of
addport to fail if the parameter is not one of these two types. On the
other hand, if an input or output port is added, then the observable
effect should be the same as in the generic case. Figure 7 shows the
C++ code for doing this.

To provide more concrete detail on what sorts of styles can be
built and how they behave, we now provide brief descriptions of
four styles. For each style we (a) outline the design vocabulary,
(b) characterize the nature of the configuration rules, (c) explain
how semantics are encoded, and (d) describe the analyses carried
out by tools in the environment.

4.4.1 A Pipe-Filter Style

As indicated earlier, a pipe-filter style supports system organization
based on asynchronous computations connected by dataflow.

Vocabulary. Figure 8 illustrates the type hierarchy we used to
define a pipe-filter style. Filter is a subtype of component and pipe
a subtype of connector. Further, ports are now differentiated into
input and output ports, while roles are separated into sources and
sinks.

Configuration rules. The pipe-filter style constrains the kinds
of children and connections allowed in a system. Besides the con-
straints on port addition described above, pipes must take data from
ports capable of writing data, and deliver it to ports capable of read-
ing it. Hence, source roles can only attach to input ports, and sink
roles can only attach to output ports. (Figure 7 shows how this
constraint is enforced by a method of the new pf source class. Most
of the configuration rules are equally simple, although some—such
as prohibiting cycles—can be considerably more complex.)

Semantic interpretation. In the prototype pipe-filter the se-
mantics of filters is given by a simple, style-specific filter language,
as was illustrated in Figure 3. The associated tool (based on Gan-
dalf [HN86]) provides typechecking and other static analyses. The
semantics of pipes is described formally (but off-line) as in [AG94b].

6Of course, this can not be automatically enforced for C++.

8

Design_Object

Component Connector Port Role Representation Binding

External_Rep ConfigurationFilter

Stage

Pipe Input Output Source Sink

pf_configuration

Pipeline

...

Figure 8: Style Definition as Subtyping

#include "filter_header.h"
void split(in,left,right)
{
char __buf;
int __i;
/* no declarations */
/* dup and close */
in = dup(in);left = dup(left);
right = dup(right);
for (__i=0;__i<NUM_CONS;__i++) {

close(fildes[__i][0]);
close(fildes[__i][1]);

}
close(0);
close(1);
{

/* no declarations */
/*do nothing*/

}
while(1)
{

/* no declarations */

__buf = (char)((char) READ(in));
write(left,&__buf,1);
__buf = (char)((char) READ(in));
write(right,&__buf,1);

}
}

Figure 9: Generated code from the split filter definition

Analyses. In addition to the static semantic checks just outlined,
we incorporated a tool for generating code from filter descriptions.
Hence, a pipe-filter description can be used to generate a running
program, with the help of some style-specific tool and the external
Gandalf tool. A sample of the output for the split filter illustrated
in Figure 3 is shown in figure 9. Figure 10 shows the main body
of the tool for manipulating the database to generate the executable
code.

4.4.2 A Pipeline Style

A pipeline style is a simple specialization of the a pipe-filter style.
It incorporates all aspects of the the pipe-filter style except that
the filters are connected together in a linear order, with only one
path of data flow. (This corresponds to simple pipelines built in
the Unix shell.) The pipeline style is an example of stylistic sub-
specialization.

Vocabulary. The pipeline style defines a new “stage” compo-
nent as a subclass of filter. Its methods are identical, except that its
initialization routine automatically creates a single input and output
port, and the “addport” method is overridden to always fail.

Configuration rules. The configuration rules are the same as
in the parent style, with the addition that the topology is constrained
to be linear.

Semantic interpretation. The meaning of the pipes and filters
is identical to the meaning given in the parent style. In particular,
the same filter description language can be used.

Analyses. The tools of the parent style can be reused in this
style, as can the code written for the parent style’s classes. Since
instances of subtypes can be substituted for instances of their su-
pertypes, code written for more generic styles will continue to work
on their specializations. So the compiler for the pipe-filter system
will still work on pipelines. Similarly, tools developed for the null
style, such as a cycle checker, will still work on instances of any of
the styles in this section.

This example shows a number of benefits in using subtyping to
define styles. First it provides a simple way to extend the represen-
tation and behavior of building blocks for architectural descriptions.
Second, it is supported by current methodologies and tools (such as
typecheckers, debuggers, and object-oriented databases). Third, it
permits reuse of existing styles. New styles can be built by further
subclassing of existing styles. Fourth, it allows for reuse of existing
tools.

9

// Generates code for a pipe-filter system

int main(int argc,char **argv) {
fable_init_event_system(&argc,argv,BUILD_PF); // init local event system
fam_initialize(argc,argv); // init the database

arch_db = fam_arch_db::fetch(); // get the top-level DB pointer
t = arch_db.open(READ_TRANSACTION); // start read transaction on it

fam_object o = get_object_parameter(argc,argv); // get root object

if (!o.valid() || !o.type().is_type(pf_filter_type)) { // not valid filter?
cerr << argv[0] << ": invalid parameter\n"; // then stop now
t.close();
fam_terminate();
exit(1);

}

pf_filter root = pf_filter::typed(o);
pf_aggregate ag = find_pf_aggregate(root); // find root’s aggregate
// (if no aggregate, print diagnostics: code omitted)

start_main(); // write standard start of generated main()
outer_io(root); // bind outer ports to stdin/out

if (ag.valid()) {
pipe_names(ag); // write code to connect up pipes
bindings(root); // and to alias the bindings
spawn_filters(ag); // and to fork off the filters

}

finish_main(); // write standard end of generated main()

make_filter_header(num_pipes); // write header file for pipe names

t.close(); // close transaction
fam_terminate(); // terminate fam
fable_main_event_loop(); // wait for termination event
fable_finish(); // and finish
return 0;

} // main

Figure 10: Main routine to generate code for pipe-filter systems

10

4.4.3 A Real-Time Style

An important class of system organization divides computations
into tasks communicating by synchronous and asynchronous mes-
sages. Within this general category are systems that must satisfy
real-time scheduling constraints while processing their data. We
created an Aesop environment for an architectural style, developed
at the University of North Carolina, that supports the design of such
systems [Jef93].

Underlying the architectural style is a body of theory for analyz-
ing real-time systems [Jef92]. This theory allows one to determine
the (scheduling) feasibility of a system from the processing rates
of its component tasks, rates of inputs from external devices, and
shared resource loads. The theory also leads to heuristics for im-
proving the schedulability of a system that is not feasible. The style
has been applied primarily to real-time, multi-media applications.

Vocabulary. The real-time style defines three subtypes of com-
ponent: devices, which identify inputs to the system, processes,
which compute over that data, and resources, which support shared
resources such as disks, monitors, etc. Components have associ-
ated style-specific information about rates of processing and com-
putation loads. There are two new connector types, representing
synchronous and asynchronous message passing.

Configuration rules. Configuration rules include: paths through
the processing graph must originate with devices; there must be no
dangling ports or connectors; communication with resources must
be synchronous; and input devices may not have input ports.

Semantic interpretation. The semantic interpretation of a sys-
tem is determined by the underlying semantics for the connectors,
plus the code defined for the tasks. The task code is written in a styl-
ized form, which, like the pipe-filter style, provides syntactic guid-
ance for reading and writing messages to ports. Our system checks
that the types of information are consistent across the connectors,
but code generation is supported by tools outside our system.

Analyses. The new style enables two kinds of analyses. First,
it is possible to detect whether there are resource conflicts. These
conflicts arise when multiple processes try to access the same re-
source in such a way that one or more of the processes will not be
able to maintain its processing rate. The second is an analysis of
the scheduling feasibility of the system. This determines whether
a single CPU can support the specific configuration of devices,
processes, and resources. In addition to these analyses, a set of
“repair heuristics” are incorporated in a tool that advises the user
about possible ways to improve schedulability and resource usage.
These heuristics center around decreasing load by cost of shared
resources and/or reducing the rates of certain processes. Finally, a
style-specific tool allows us to translate our architectural description
into one that is readable by external tools built outside our project
for code generation and analysis. (Currently the code is targeted to
Real-Time Mach.)

4.4.4 An Event-based Style

In an event-based style, components register their interest in certain
kinds of events, and then can announce events and receive them
according to their interest.

Vocabulary. The event style defines a new “participant” com-
ponent that registers for, announces, and receives events. An “event
bus” connector is used to propagate the events between components.

Configuration Rules. In this style, configuration rules simply
state that the event bus connects only to components that announce
or receive events.

Semantic Interpretation. Components are permitted to com-
municate events between each other only if they have a common
bus to which they are connected, and the receiving component has

registered an interest in the type of event announced by the sending
component. An announced event can be received by zero or more
other components (unlike in the pipe-filter style, where written data
can only be read by one other component).

Analyses. A number of analyses are possible in event-based
styles, such as identifying the flow of communication between com-
ponents. As in the pipe-filter style, given a language for specifying
the communication behavior of participant components, a compiler
can be built to generate code for a particular event-based configu-
ration [GS93a]. (We did not do this, however, in our prototype.)

4.5 User Interface

In addition to providing a representational model for tools to cre-
ate and manipulate architectural descriptions, an environment must
also provide a way for the user to view, edit, and use these descrip-
tions. As we outlined earlier, the default interface is a graphical
editor, which is automatically provided by Aesop and which runs
as a separate tool in the environment. To produce a style-specific
environment this editor (and potentially other interface tools) must
also be specialized.

To accomplish this, each architectural class is associated with
one or more visualization classes. New subclasses introduced by
a style inherit the visualizations of their superclass, but may also
define their own visualization classes. This induces a parallel hi-
erarchy of visualization types, in which the upper portion of that
hierarchy is defined by the default visualizations for the generic
architectural types.

For example, to obtain the visualizations illustrated in Figure 3,
the pipe subclass of connector would refer to an arrow visualization
class, instead of the more generic connector line class. Visual-
ization classes can refer to external editors as well as to graphical
objects: For example, there is a visualization class in the pipe-filter
style that invokes a structure editor on filter code. The visualiza-
tion classes are written in a highly stylized fashion and would be
amenable to automatic generation, although we have not actually
built such a tool.

Style-specific user interfaces also include object classes for user-
oriented operations on the database in a particular style. These
are subclasses of generic “action” classes. For instance, the user
interface for a pipe-filter style may include actions to analyze the
throughput of a particular configuration, or to generate code for
a Unix-based implementation of the pipe-filter system. Typically
these operations are carried out by external tools.

5 Evaluation and Conclusion

Aesop was developed to investigate the hypothesis that style-specific
architectural development environments can be produced at rela-
tively low cost by specializing a generic architectural model. In
our research thus far we have concentrated on the important ini-
tial steps of identifying an appropriate generic model, developing
mechanisms for specializing the generic model to specific styles,
and providing concrete infrastructure to support architectural de-
velopment tools.

While we are only now starting to apply Aesop to industrial-
strength architectural styles, over the past two years we have exper-
imented with a number of common architectural paradigms (pipe-
filter, events, client-server, etc.), as well as an abstract architectural
style for Aesop itself. Based on our experience thus far we are
optimistic about the ability of this approach to provide useful in-
frastructure for the architectural level of design of software systems.

First, within the context of our prototypes we have found the
generic object model for architectural representation (Section 4.3)

11

to be an appropriate starting point for architectural description. It
provides a high enough level of abstraction that it can be specialized
to all architectural styles that we have yet encountered. At the
same time it is concrete enough to provide both a solid conceptual
structure and also associated automated mechanismsfor developing
new styles effectively.

Second, a subtyping model has been effective in structuring the
task of developing new styles. In particular, the extension of the
generic architectural model with new types provides a direct way
to enrich the architectural vocabulary for design, and provide new
functionality based on that design. However, as noted in Section 4.4,
it is essential that the semantics of subtyping be flexible enough to
allow subtypes to increase the failures associated with an inherited
method.

Third, the approach is able to build on existing software envi-
ronment building blocks: persistent object bases, tool integration
mechanisms, and user interface toolkits. This not only provides an
interface to other tools and environments based on similar technol-
ogy, but has simplified the effort of building Aesop itself.

More concretely, while the costs associated with developing a
style or substyle vary greatly depending on the style, typically it
takes a day or two to create a minimal environment for a style
with the complexity of, say, the real-time style illustrated earlier.
This includes defining the new design vocabulary, encoding the
constraints, and developing any new visualizations. The task of
cleanly integrating the Aesop environment with existing tools that
support style-specific analyses takes a bit longer. For the tools that
interact only loosely with the architectural design – such as source
code compilers – tool integration is little more than connecting them
to our event broadcast mechanism. The hard part is adapting the
tools that need to directly manipulate our database of objects, since
this typically requires a deeper understanding of the tool and its
implementation.

On the negative side, we discovered that there are some desired
capabilities of a style-oriented architectural design environments
that are difficult to handle with our approach to style definition and
the technology on which Aesop is based. These capabilities fall
into two categories.

The first category concerns the way in which styles are de-
scribed, and includes:

� Explicit representation of stylistic constraints. Currently,
the behavior associated with new styles – such as enforcing
stylistic constraints, or enabling new kinds of analysis and
tool support – must be encoded in the methods of the archi-
tectural types introduced by the style. These encodings tend
to obscure the invariant properties of a style, because (a) they
are bound into the imperative code of the methods, and (b)
the responsibility for enforcement is often distributed over a
number of different methods. This makes it difficult to rea-
son about a style on the basis of its Aesop definition, to tell
whether two styles have conflicting constraints, or to modify
the policies associated with constraint enforcement and tool
invocation. Approaches based on explicit rules (e.g., as in
Darwin [MR88]) or inter-object mediation (e.g., as in [SN92])
are attractive alternatives.

� Control over supertype visibility. When a new style is de-
fined, it is often the case that the types of design elements
should be restricted to just those defined by the new style.
For example, a pipe-filter style may restrict the possible port
types to be only input and output ports (and therefore not
allow creation of “generic” ports). This can be enforced as a
constraint that is checked when a port is added to a compo-
nent. But a much more natural solution would allow the style
designer to restrict the accessibility of the type hierarchy.

The second category concerns the run-time behavior of style-
oriented environments, and includes:

� Dynamic incorporationof style descriptions. In the current
system our use of C++ requires us to compile style definitions
at environmentcreation time. This precludes incorporation of
new styles during execution. However, it turns out that there
are many situations in which a more dynamic scheme would
be useful. For example, an externally-developed repository
of architectural building blocks might provide a component
whose internal representation is characterized in terms of a
new style.

� Type migration. Currently, as with most strongly typed
object-oriented systems, an object’s type is determined when
it is created. However, it would be desirable to be able to
“promote” or “demote” the type of an object at runtime. For
example, if an object created as a “filter” happens to have
a single input and output, it can be used as a “stage” (see
Section 4.4) in a pipeline. To get the benefits of pipelines,
however, we would need to changethe type of the object from
“filter” to “stage.” While such coersions can be handled on a
case-by-case basis, a more uniform mechanism, such as one
based on predicate types [Cha93], would be preferable.

These features suggest ways in which style-oriented architec-
tural design raises new challenges for software support environ-
ments. First, heterogeneity of styles is critical. Unlike software
development environments centered on a single implementation lan-
guage, architectural support must permit interoperability of many
different design “languages”.7 Second, requirements of reusability
lead to an interest in dynamic regimes for style inclusion and for
types of individual design objects. Unlike most programming envi-
ronments, we need to be able to introduce new types of objects and
change the types of existing objects during execution. Finally, in a
world of many interoperating, and independently-developed styles
it is important to have good formal mechanisms for specifying new
styles and for detecting conflicts between existing ones.

Acknowledgements

Aesop embodies many ideas from collaborative work with fellow
researchers. In particular, our work has been strongly influenced
by Daniel Jackson, Mary Shaw, and Jeannette Wing, whom we
gratefully acknowledge. We would like to thank the students and
staff who have contributed to the Aesop implementation described
in this paper: Mike Baumann, Chanakya C. Damarla, Steven Fink,
Doron Gan, Huifen Jiang, Curtis Scott, Brian Solganick, and Peter
Su. Finally, we thank the anonymous referees for their constructive
suggestions.

This research was sponsored by the National Science Founda-
tion under Grant Number CCR-9357792, by the Wright Laboratory,
Aeronautical Systems Center,Air Force Materiel Command, USAF,
and the Advanced Research Projects Agency (ARPA) under grant
number F33615-93-1-1330, and by Siemens Corporate Research.
The views and conclusions contained in this document are those of
the authors and should not be interpreted as representing the offi-
cial policies, either expressed or implied, of Wright Laboratory, the
U.S. Government, or Siemens Corporation. The U.S. Government
is authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation thereon.

7Referring to Section 3, the analogy between architectural style and language is
based on the identification of architectural vocabulary with language syntax, structural
constraints with static checks, and semantic interpretations with dynamic semantics.

12

References

[AAG93] Gregory Abowd, Robert Allen, and David Garlan.
Using style to give meaning to software architec-
ture. In Proceedingsof SIGSOFT’93: Foundationsof
Software Engineering, Software Engineering Notes
118(3), pages 9–20. ACM Press, December 1993.

[AG92] Robert Allen and David Garlan. A formal approach
to software architectures. In Jan van Leeuwen, editor,
Proceedings of IFIP’92. Elsevier Science Publishers
B.V., September 1992.

[AG94a] Robert Allen and David Garlan. Beyond defini-
tion/use: Architectural interconnection. In Pro-
ceedings of the ACM Interface Definition Language
Workshop, volume 29(8). SIGPLAN Notices, August
1994.

[AG94b] Robert Allen and David Garlan. Formalizing archi-
tectural connection. In Proceedings of the Sixteenth
International Conference on Software Engineering,
May 1994.

[B+88] G. Boudier et al. An overview of PCTE and PCTE+.
In Proc. 3rd Software Development Environments
Symposium, November 1988.

[BV93] Pam Binns and Steve Vestal. Formal real-time ar-
chitecture specification and analysis. In Tenth IEEE
Workshop on Real-Time Operating Systems and Soft-
ware, New York, NY, May 1993.

[C+90] M. Carey et al. The EXODUS extensible DBMS
project: An overview. In S. Zdonik and D. Maier,
editors, Readings in Object-Oriented Database Sys-
tems. Morgan Kaufmann, 1990.

[Cha93] Craig Chambers. Predicate classes. In Proceedings
of ECOOP ‘93, 1993.

[Coa92] Peter Coad. Object-oriented patterns. Communica-
tions of the ACM, 35(9):153–159, 1992.

[Cor91] The Common Object Request Broker: Architecture
and specification. OMG Document Number 91.12.1,
December 1991. Revision 1.1 (Draft 10).

[DGHKL84] Veronique Donzeau-Gouge, Gerard Huet, Gilles
Kahn, and Bernard Lang. Programming environ-
ments based on structured editors: The Mentor ex-
perience. In David R. Barstow, Howard E. Shrobe,
and Erik Sandewall, editors, Interactive Program-
ming Environments. McGraw-Hill Book Co., 1984.

[Fro89] Brian Fromme. HP Encapsulator: Bridging the gen-
eration gap. Technical Report SESD-89-26, Hewlett-
Packard Software Engineering Systems Division,
Fort Collins, Colorado, November 1989.

[Ger89] Colin Gerety. HP Softbench: A new generation of
software development tools. Technical Report SESD-
89-25, Hewlett-Packard Software Engineering Sys-
tems Division, Fort Collins, Colorado, November
1989.

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson,
and John Vlissides. Design Patterns: Micro-
Architectures for Reusable Object-Oriented Design.
Addison-Wesley, 1994.

[GN91] David Garlan and David Notkin. Formalizing de-
sign spaces: Implicit invocation mechanisms. In
VDM’91: Formal Software Development Methods,
pages 31–44, Noordwijkerhout, The Netherlands,
October 1991. Springer-Verlag, LNCS 551.

[GP94] David Garlan and Dewayne Perry. Software architec-
ture: Practice, potential, and pitfalls. In Proceedings
of the Sixteenth International Conference on Software
Engineering, May 1994. Panel Introduction.

[GS93a] David Garlan and Curtis Scott. Adding implicit in-
vocation to traditional programming languages. In
Proceedings of the Fifteenth International Confer-
ence on Software Engineering, Baltimore, MD, May
1993.

[GS93b] David Garlan and Mary Shaw. An introduction to
software architecture. In V.Ambriola and G.Tortora,
editors, Advances in Software Engineering and
Knowledge Engineering,Volume I, New Jersey, 1993.
World Scientific Publishing Company.

[HN86] A Nico. Habermann and David S. Notkin. Gandalf:
Software development environments. IEEE Trans-
actions on Software Engineering, SE-12(12):1117–
1127, December 1986.

[HR90] Barbara Hayes-Roth. Architectural foundations for
real-time performance in intelligent agents. The Jour-
nal of Real-Time Systems, Kluwer Academic Publish-
ers, 2:99–125, January 1990.

[JC94] G.R. Ribeiro Justo and P.R. Freire Cunha. Deadlock-
free configuration programming. In Proceedings of
the Second International Workshop on Configurable
Distributed Systems, March 1994.

[Jef92] Kevin Jeffay. Scheduling sporadic tasks with shared
resources in hard-real-time systems. In Proceed-
ings of the 13th IEEE Real-Time Systems Symposium,
pages 89–99, Phoenix, AZ, December 1992.

[Jef93] Kevin Jeffay. The real-time producer/consumer
paradigm: A paradigm for the construction of effi-
cient, predictable real-time systems. In Proceedings
of the 1993 ACM/SIGAPP Symposium on Applied
Computing, pages 796–804, Indianapolis, IN, Febru-
ary 1993. ACM Press.

[K+91] Rudolf K. Keller et al. User interface development
and software environments: The Chiron-1 System.
In Proc. 13th International Conference on Software
Engineering, 1991.

[KFP88] Gail E. Kaiser, Peter H. Feiler, and Steven S.
Popovich. Intelligent assistance for software develop-
ment and maintenance. IEEE Software, pages 40–49,
May 1988.

[KP88] G.E. Krasner and S.T. Pope. A cookbook for using
the model-view-controller user interface paradigm in
Smalltalk-80. Journal of Object Oriented Program-
ming, 1(3):26–49, August/September 1988.

[LAK+95] David C Luckham, Lary M. Augustin, John J. Ken-
ney, James Veera, Doug Bryan, and Walter Mann.
Specification and analysis of system architecture us-
ing Rapide. IEEE Transactions on Software Engi-
neering, to appear, 1995.

13

[LVC89] Mark A. Linton, John M. Vlissides, and Paul R.
Calder. Compusing user interfaces with interviews.
IEEE Computer, 22(2), February 1989.

[LW93] Barbara Liskov and JeannetteWing. A new definition
of the subtype relation. In Proceedings of ECOOP
‘93, July 1993.

[Mak92] Victor W. Mak. Connection: An inter-component
communication paradigm for configurable dis-
tributed systems. In Proceedings of the International
Workshopon ConfigurableDistributed Systems, Lon-
don, UK, March 1992.

[McC91] Gary R. McClain, editor. Open Systems Interconnec-
tion Handbook. Intertext Publications McGraw-Hill
Book Company, New York, NY, 1991.

[MQR94] Mark Moriconi, Xiaolei Qian, and R. A. Riemensh-
neider. A formal approach to correct refinement of
software architectures. Technical Report SRI-CSL-
94-05, SRI International Computer Science Labora-
tory, April 1994.

[MR88] Naftaly H. Minsky and David Rozenshtein. A soft-
ware development environment for law-governed
systems. In Proceedings of the ACM SIG-
SOFT/SIGPLAN Software Engineering Symposium
on Practical Software Development Environments,
Boston, MA, November 1988. Published as SIG-
PLAN NOTICES, 24(2).

[Nii86] H. Penny Nii. Blackboard systems Parts 1 & 2. AI
Magazine, 7 nos 3 (pp. 38-53) and 4 (pp. 62-69),
1986.

[Ous94] John K. Ousterhout. Tcl and the Tk Toolkit. Addison-
Wesley, 1994.

[PW92] Dewayne E. Perry and Alexander L. Wolf. Foun-
dations for the study of software architecture. ACM
SIGSOFT Software Engineering Notes, 17(4):40–52,
October 1992.

[R+91] James Rumbaugh et al. Object-Oriented Modeling
and Design. Prentice Hall, Englewood Cliffs, NJ,
1991.

[Rei90] S.P. Reiss. Connecting tools using message passing in
the Field Environment. IEEE Software, 7(4):57–66,
July 1990.

[RT89] Tom Reps and Tim Teitelbaum. The SynthesizerGen-
erator: A System for Contstructing Language-Based
Editors. Springer-Verlag, 1989.

[SDK+95] Mary Shaw, Robert DeLine, Daniel V. Klein,
Theodore L. Ross, David M. Young, and Gregory
Zelesnik. Abstractions for software architecture and
tools to support them. IEEE Transactions on Software
Engineering, to appear, 1995.

[Sha93] Mary Shaw. Procedure calls are the assembly lan-
guage of system interconnection: Connectors de-
serve first-class status. In Proceedings of the Work-
shop on Studies of Software Design, May 1993.

[SLF90] Reid Simmons, Long-Ji Lin, and Christopher Fedor.
Autonomous task control for mobile robots. In Pro-
ceedings of the 5th IEEE International Symposium
on Intelligent Control, Philadelphia, PA, September
1990.

[SN92] Kevin J. Sullivan and David Notkin. Reconciling en-
vironment integration and software evolution. ACM
Transactions on Software Engineering and Method-
ology, 1(3):229–268, July 1992.

[T+88] Richard N. Taylor et al. Foundations for the Ar-
cadia environment architecture. In Proceedings of
the ACM SIGSOFT/SIGPLAN Software Engineering
Symposium on Practical Software Development En-
vironments, Boston, MA, November 1988. Published
as SIGPLAN NOTICES, 24(2).

[Ves94] Steve Vestal. Mode changes in real-time architecture
description language. In Proceedings of the Second
International Workshop on Configurable Distributed
Systems, March 1994.

[vLDD+88] A. van Lamsweerrde, B. Delcourt, E. Delor, M. C.
Schayes, and R. Champagne. Generic lifecycle sup-
port in the ALMA environment. IEEE Transactions
on Software Engineering, 14(6):720–741, June 1988.

14

