
Policy-Based Self-Adaptive Architectures: A Feasibility
Study in the Robotics Domain

John C. Georgas and Richard N. Taylor
Institute for Software Research
University of California, Irvine
Irvine, CA 92697-3425 USA

{jgeorgas, taylor}@ics.uci.edu

ABSTRACT
Robotics is a challenging domain which sometimes exhibits a
clear need for self-adaptive capabilities, as such functionality
offers the potential for robots to account for their unstable
and unpredictable deployment domains. This paper focuses
on a feasibility study in applying a policy- and architecture-
based approach to the development of self-adaptive robotic
systems. We describe two case studies in which we construct
self-adaptive Robocode and Mindstorms robots, report
on our development experiences, and discuss the challenges
we encountered. The paper establishes that it is feasible to
apply our approach to the robotics domain, contributes a
discussion of the architectural issues we encountered, and
further evaluates our general-purpose approach.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures—
languages, domain-specific architectures

General Terms
Design, Experimentation

1. INTRODUCTION
One of the current challenges in software engineering is

the development of self-adaptive systems, which are systems
that are able to change their behavior in response to changes
in their operation or their environment. The variety of
goals that this capability can be applied toward has given
rise to a number of sub-types within this class of systems:
self-healing or self-optimizing, for example. These are self-
adaptive systems where the adaptive behavior is targeted
toward a specific goal to the exclusion of others. In this
paper, we will use the more general term self-adaptive to
inclusively refer to the entire class of systems no matter what
the goal of the adaptation may be.

In addition to self-adaptive software, we are also interested
in robotic systems. These systems are amalgams of soft-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SEAMS’08, May 12–13, 2008, Leipzig, Germany.
Copyright 2008 ACM 978-1-60558-037-1/08/05 ...$5.00.

ware and hardware which are highly resource constrained,
commonly deployed in environments out of reach of human
operators, and commonly required to perform functions to
which there can be little interruption. Robotic systems tend
to be highly reactive in nature and depend on a great deal
of interaction with their environment.

The focus of this paper is the intersection of the robotics
domain with self-adaptive software, as we see both a driving
need for such capabilities in robotic systems as well as a
fruitful application domain for self-adaptive technologies. A
motivating example can be found in the failure of the star
tracker in the Deep Space 1 (DS1) mission [13]. Launched by
NASA in 1998, DS1 was an experimental mission intended to
evaluate a number of high-risk technologies. The most severe
of difficulties the mission faced was the complete failure
of its star tracker which was critical to its navigation. In
response, the DS1 team launched into a 4 month long effort
to use alternate instruments in place of the lost star tracker:
the effort was successful, but culminated in the replacement
of almost the entire craft’s flight software. Despite this
remarkable achievement, the fact that so much of the flight
software had to be replaced is telling: this unforeseen but
necessary adaptation was simply not well supported.

This example illustrates that the challenge of integrating
self-adaptive capabilities into robotic systems is a two-front
battle: First, the system itself must be built in such a
manner as to be conducive to adaptation by virtue of its
design and construction. Only then can adaptive behavior
be integrated into the system. For our own research
efforts, the fact that the construction of the system must
support adaptation implies that modularity is one of the
fundamental qualities which allows adaptation to take place
in a fine-grained manner, rather than adapting a system
through wholesale replacement. In addition, due to the
fact that adaptive needs are virtually impossible to fully
and correctly predict during design, we also posit that
adaptive behavior must be built in a way that is flexible
and modifiable at runtime.

Much of our previous work has been dedicated to the
development of architecture-based self-adaptive systems,
and we identify a clear parallel in the capabilities this work
provides and the needs of robotic self-adaptive systems.
More specifically, we have developed notations and tools
that support the design and development of policy- and
architecture-based self-adaptive systems that are modular
and have the ability to change adaptation policy specifica-
tions during system runtime [5]. Our goals with the work
described here in this paper are to:

105

• establish the feasibility of an integration between
our research into policy- and architecture-based self-
adaptive systems and the robotics domain;

• develop novel self-adaptive capabilities in robotic sys-
tems that did not previously exhibit them; and,

• probe into the difficulties and pitfalls of such an
integration effort.

This paper is a report of our work toward these goals and
our experiences in striving to meet them. We describe the
two case studies we performed in developing self-adaptive
robotic systems: we begin with our work in the Robocode

system – a robotic combat simulator and development
framework – and continue by discussing the construction of
an autonomous Mindstorms NXT robot (neither of these
domains previously considered – much less supported – self-
adaptive capabilities).

The key contributions of our work in the intersection
between self-adaptive architectures and robotic systems are:

• verifying the feasibility of integrating robotics and
architecture-based self-adaptive techniques;

• providing examples of novel self-adaptation capabili-
ties in our case-study domains;

• uncovering an important architectural mismatch be-
tween architecture-based adaptation and current prac-
tice in the robotics domain; and

• demonstrating that our policy language, though sim-
ple, is adequate for expressing robotic adaptations.

2. BACKGROUND AND RELATED WORK
This section begins with a discussion of representative

robotic architectures with particular emphasis on their
support for runtime change, and also discusses related
approaches to architecture-based self-adaptive systems.

2.1 Robotic Architectures
One of the first robotic control system architectures to

gain wide acceptance was the sense-plan-act architecture
(SPA) [11]. In SPA, robot control is accomplished through
the sense component which gathers information from sen-
sors, the plan component which maintains an internal world
model used to decide on the robot’s actions, and the act
component which is responsible for executing actions.

As robotics systems grew, however, it became obvious that
SPA architectures scaled poorly: Subsumption [1] was de-
veloped to address these scalability issues. This architecture
abandons world models and adopts layered compositions of
reactive components. Communication between these com-
ponents takes place through the inhibition and suppression
of inputs and outputs of lower level components by higher
level ones. While the component-based approach of this
architecture allows for improved scalability and modularity,
the supported modes of communication prove very limiting.

Most current robotic systems are heavily influenced by
three-layer (3L) architectures, first described in [3]. These
hybrid architectures separate robotic systems into three
layers and mix reactive and planning modes of operation:
The reactive layer captures behaviors that quickly react
to sensor information, the sequencing layer chains reactive
behaviors together and translates high-level directives from
the planning layer into lower-level actions; the planning layer
is responsible for deciding on long-term goals.

Despite their differences, these robotic architectures share
a commonality in their lack of support for runtime adapta-

Skill
Layer

Deliberative
Layer

Sequencing
Layer

Reactive
Layer

Skill
Component A

Reactive Connector

Action Requests

Requests

Notifications

Robot Notifications

Skill
Component B

Reactive
Component A

Reactive
Component B

Sequencing
Component A

Sequencing
Component B

Deliberative
Component A

Deliberative
Component B

...

...

Sequencing Connector

...

Deliberative Connector

...

Figure 1: An illustration of the RAS architectural

style, showing the style’s layers and event types.

tion, discussed in more detail in our paper to a workshop
attached to the International Conference on Robotics and
Automation (ICRA) [6]. These architectures simply do not
consider this concern in their design and therefore do not
exhibit the necessary qualities to be amenable to the direct
application of self-adaptive techniques – the minimally
amenable, perhaps, is the Subsumption architecture due
to its focus on independent components.

This lack of support for the architectural qualities which
promote ease of runtime change is the motivation for the
development of the RAS architectural style, also described
in [6]. The style combines insights from event-based
architectural styles such as C2 [14] and the Subsumption

and 3L robotic architectures and is aimed at supporting the
development of robotic architectures which are modular and
incrementally evolvable while fostering component reuse.
Figure 1 outlines the style, which is:

• component-based, with no shared memory;
• explicitly-layered into skill, reactive, sequencing, and

deliberative layers1 with components belonging to lay-
ers based on their complexity and state maintenance;

• event-based with communication taking place between
components of the architecture through requests and
notifications, sensor information being transmitted by
robot notifications, and actions being enacted through
action requests, and;

• connector-based, with independent connectors sepa-
rating layers and facilitating communication.

The robotic systems we build in our case studies are built
in this style, which provides the basis for the construction
of robotic systems that foster modularity and, therefore, are
more easily modifiable using architecture-based means.

2.2 Self-Adaptive Architectures
Other researchers in the software architecture community

are investigating the development of self-adaptive systems
using architectural models as the core abstraction, as our
approach does. There is great variety, however, in these
approaches, mainly with respect to the goals adaptations are

1While the RAS style uses similar layer names as 3L
architectures, there are differences between the two; the
reader is referred to [6] for further details.

106

intended to achieve and the methods through which adaptive
behavior is specified.

Some work takes a formal approach to the specification
of architectures and the artifacts governing adaptation.
The work based on Community [15], for example, models
architectural models as abstract graphs while the approach
based on the Darwin [7] architecture description language
(ADL) focuses on the self-assembly of systems according to
a formally specified set of constraints representing invariant
architectural properties. Other approaches are more focused
on providing practical tool support for developing self-
adaptive architectures. The Rainbow system [4] adopts
a style-based approach and focuses on the specification of
styles for specific domains along with style-specific adapta-
tions and constraints tailored for the domain’s needs. Our
own work is a descendant of such a tool-based approach [12],
which conceptualized architecture-based adaptation but left
many questions about how to implement adaptive behavior
unanswered.

There is also work in the intersection of robotic systems
and architecture-based approaches: Applied to sophisticated
robotic platforms, the Shage framework [9] supports the
definition of adaptive strategies managed by a controlling
infrastructure and focuses on adaptations which replace
components with alternatives providing similar services.
Kramer and Magee have also discussed self-adaptive robotic
architectures through the application of a conceptual frame-
work strongly influenced by 3L architectures and focused
on self-assembling components using a formal statement of
high-level system goals [10]. The approach described here
trades formal specifications of system behaviors for a higher
degree of flexibility and support for the runtime change of
adaptation policies without necessitating the re-generation
of adaptation plans.

3. APPROACH
Before relaying our robotic case-study experiences, this

section presents in high-level terms the approach we used in
developing these systems. As this paper is primarily focused
on the application of our approach to robotic architectures,
however, we keep this discussion minimal (earlier descrip-
tions of the ideas presented here have appeared in [5]).

The core of our policy-based approach to architectural
adaptation management (PBAAM)2 appears in Figure 2
and shows the most important software components and
documents involved (rectangles represent tools, rounded
rectangles indicate documents, and numbered arrows show
information flow and activity ordering).

Self-adaptive systems in this approach consist of three
fundamental parts: an architectural model specifying the
system’s structure, a set of adaptation policies capturing
how the structure changes, and executable units of code
corresponding to each architectural element. These three
parts are managed at runtime by elements of the PBAAM
infrastructure: the Architectural Model Manager (AMM),
the Architectural Adaptation Manager (AAM), and the
Architecture Runtime Manager (ARM) respectively. Other
elements not discussed here include support for the recording

2In earlier publications, we referred to our work as
knowledge-based architectural adaptation management
(KBAAM). While we still use some technologies from the
knowledge-base community, we feel the term policy-based is
more appropriately descriptive.

Architectural Model Manager (AMM)

Architectural Model

A model of the system's structure in terms of
executable units and their interconnections.

Implementation Runtime

Runtime system, which may be
instrumented for monitoring.

Architecture Runtime
Manager (ARM)

3

1

Monitoring
Observations

2
Adaptation
Responses

Model Change
Notifications

Architectural Adaptation Manager (AAM)

Adaptation Policies

A specification of the system's
adaptation policies.

Java Expert System
Shell (JESS)

Figure 2: A high-level view of our approach to

architecture-based self-adaptive systems.

and visualization of adaptations as they take place and for
the specification and resolution of constraints intended to
preserve core system capabilities.

3.1 Adaptation Policy Specification
One of the fundamental abstractions in our approach is

the set of adaptation policies: these policies are encapsula-
tions of the system’s reactive adaptive behavior and indicate
what actions should be taken in response to events indicating
the need for these actions. The basic building blocks of adap-
tation policies are observations and responses. Observations
encode information about a system and responses encode
system modifications. Given the architecture-based focus of
our approach, responses are limited in the kinds of actions
they can perform: they are restricted to operations which
change software architectures and, in essence, reduce to
additions and removals of architectural elements.

We specify the structure of adaptation policies using a
xADL 2.0 schema [2] which extends the core schemas of
the ADL and lays out policy structure. It is important to
note that – in core xADL fashion – this policy schema is
extensible and can be customized to fit the needs of specific
projects. One of the extensions currently under development
defines a set of constraints: restrictions on actions that are
not allowed to take place. This class of policies will act as
warden of the architectural model and prevent undesirable
modifications from taking place.

3.2 Architectural Adaptation Management
The AAM is the element responsible for the runtime

management of the adaptation policies specified using our
schema. When the self-adaptive system is first instantiated,
the AAM loads the set of policies and initiates their runtime
evaluation: as policies are added and removed from the
policy specification, the AAM is responsible for updating
the set of active policies to reflect these changes.

We chose to implement the AAM by adopting an expert
system approach to the runtime management of policies. In
a very straightforward manner, policies can be translated to
executable condition-action rules and then managed using

107

an expert system shell. More specifically, we adopt the Java
Expert System Shell (JESS) [8] for this task, which provides
us with a well-tested and efficient platform for the runtime
execution of policies.

In coordination with the ARM – an existing element of
the Archstudio framework supporting runtime evolution
predating our work – the AAM drives architectural change
by enacting modifications to the system’s architectural
model. The ARM’s primary responsibility is to ensure that
changes enacted to the architectural model are also enacted
on the runtime system itself.

3.3 Activity Flow
Referring to the activity flows indicated in Figure 2,

the adaptation process begins when observations about
the running system are collected and transmitted to the
AAM (the flow labeled 1). These observations are gathered
through independent probing elements or through self-
reporting components and encapsulate what is known about
the system. This information forms the basis for evaluating
adaptation policies managed by the AAM. Any triggered
responses are communicated to the AMM which maintains
the system’s architectural model (indicated by the activity
flow labeled 2). Finally, the ARM is notified of any
changes enacted on the architectural model (activity flow
labeled as 3) and ensures that these changes are reflected
on the executing system. This cyclic flow of information
– continually executed – provides a reactive loop for self-
adaptive behavior.

4. CASE STUDIES
This section of the paper presents our main focus: specific

details about the two feasibility case studies we performed
in integrating the self-adaptive capabilities described in the
previous section in robotic systems. For each of these, we
will discuss the systems we developed and our experiences
with them as well as call out some of the difficulties we
encountered and lessons we learned.

4.1 Robocode
Our first study was performed using the Robocode

3 sys-
tem. Initially developed as a Java teaching tool, Robocode

is now an open-source system under active development that
provides a robotic combat framework and simulator which
is used to pit robotic control systems in battle against each
other. The system is supported by an active community
of both developers and users, and supports a number of
associated tournaments and competitions.

4.1.1 Robocode Background
Robocode provides a customizable simulated battlefield

into which robots are deployed: the objective of robots is to
remain alive while destroying their competitors. Each robot
can move, use its radar to detect other robots, and use its
gun to fire at opponents. The constraint of most importance
for each robot is the amount of energy it has remaining (all
robots begin a battle with the same level of energy): Energy
is lost by being hit by bullets or colliding with other robots
or walls. Energy is also invested into firing bullets at other
robots, but a multiple of this invested energy is recovered
by successfully hitting. The goal of each robot, then, is

3http://robocode.sourceforge.net

Fire Control

Movement

Control

Collision

Detector

Turret

Control

Robot

Scanner

Reactive Connector

Environment: Robocode

Platform: PC

Wall Crawl
Collision

Recovery

Reactive

Fire

Turret

Center Wall Seek

Attacker

Memory

Deliberative Connector

Sequencing Connector

Distance

Fire

Architectural Model

Manager (AMM)

Bus Connector

Architectural Adaptation

Manager (AAM)

Bus Connector

Architecture Runtime Manager (ARM)

Environment: Java

Reactive Connector

Legend

Deployment platform

PBAAM infrastructure component

Robot component

Robocode interface

Execution environment

Robot connector

PBAAM infrastructure connector

Figure 3: The architecture of the ArchWall robot

for the Robocode simulator.

to preserve its own energy by both wisely firing as well as
avoiding collisions and enemy fire.

From a software development perspective, the Robocode

API provides builders with basic robot control capabilities:
movement and steering, control for the robot’s scanner
and weapon, and support for notifications of battlefield
events. How each robot responds to these events using
these fundamental capabilities is the challenge of Robocode

development, and the robots developed by the community
vary from the very simple to the very sophisticated. It
is important to note that in normal development for the
simulator, a robot is programmed and compiled as a single
static unit which is then executed by the battle simulator
without support or consideration for runtime adaptation.

4.1.2 Self-Adaptive Robocode
To begin exploring self-adaptation in this context, we first

developed an integration between the Robocode framework
and the PBAAM infrastructure. We constructed a special-
purpose interface that conformed to the Robocode API (in
addition to a number of modifications to the Robocode

framework itself mainly aimed at loosening class manage-
ment restrictions); this interface acts as a bridge between
the two environments. PBAAM requests for robot actions
such as movement or firing, are translated into Robocode

API calls, while notifications of battlefield events from the
simulator, such as collisions or bullet fire, are translated into
architectural events and transmitted throughout the sys-
tem’s components. Implementing this integration allowed us
to develop Robocode robots which, instead of being single
units of executable code, are component-based architectures
expressed in the xADL ADL and managed by the PBAAM
framework.

A specific example is the ArchWall robot, the archi-
tecture of which is illustrated in Figure 3. The robot is
built in the RAS style (the robot’s architecture appears
in unshaded elements, while the shaded elements are the
PBAAM managing infrastructure; the curved connection in-
dicates the bridge between PBAAM and Robocode events).
Building on the fundamental capabilities of the simulator,
ArchWall initially moves by seeking a wall and following

108

it, targeting the center of the battlefield, and firing at any
opponent robot it detects. Each behavior is captured by
an independent component. This initial set of behaviors is
sufficient for the ArchWall robot to compete in battles:
in our testing experiences, the robot tends to rank between
positions four and six in a field with ten opponents selected
from the set of sample Robocode robots which are dis-
tributed with the simulator.

The robot is additionally composed of the AMM, ARM,
and AAM components which allow us to augment the be-
havior of ArchWall with a number of adaptation policies
which modify the robot’s behavior as the conditions of the
battlefield change. One policy, for example, states (in an
abridged form for brevity):

<AdaptationPolicy id="ReplaceFiring">

<StringObservation>

(energy_report {energy < 60})

</StringObservation>

<RemoveComponentResponse>

Reactive Fire

</RemoveComponentResponse>

<AddComponentResponse>

<ComponentIdentifier>

Distance Fire

</ComponentIdentifier>

...

</AddComponentResponse>

</AdaptationPolicy>

This policy replaces the firing strategy used by ArchWall

when the energy of the robot drops below the indicated level
by replacing one component with another: Distance Fire,
which only fires at enemies that are nearby in an attempt to
maximize the chances of hitting (and, thereby recovering
the invested energy) takes the place of Reactive Fire –
Figure 3 illustrates this change with the component and links
being added indicated by dotted lines and the component
being removed by dashed lines. Additional adaptation
policies also change the way in which the robot moves
and scans for opponents as fewer enemy robots remain:
in total, the ArchWall robot contains four independent
adaptation policies which modify its behavior in different
ways. Overall, the addition of the adaptation policies
improves the performance of the robot: the adaptive version
of ArchWall tends to rank between positions two and
four, while even coming in first on some test runs. Most
importantly, however, is the fact that each adaptation policy
is completely independent of the architecture to which it is
applied and could be added, removed, or modified during
runtime as the robot continues to operate.

Developing the ArchWall robot clearly established the
feasibility of integrating architecture- and policy-based self-
adaptive software methods in robotic systems by provid-
ing novel support for developing self-adaptive Robocode

robots. While the framework is admittedly limited to sim-
ulation, from a software engineering perspective it exhibits
many of the same challenges that developing a self-adaptive
system for any robot would: coherently organizing and
relating robot behaviors, for example, and dealing with
multiple sources of input in deciding on which actions to
perform. The effort also gave us experience in dealing
with an important architectural mismatch between the
Robocode framework and the PBAAM infrastructure:

Like most robotic system frameworks, robots supported by
Robocode are developed synchronously with sequencing
of behaviors achieved by explicitly ordering instructions
in the source code of a robot. This way of building
systems conflicts with the asynchronous nature of our
approach. As this asynchronous and modular nature is
a fundamental enabler of runtime change, reconciling this
mismatch was necessary and required effort in the design and
implementation of each behavior in order to compensate.
Each component had to be constructed in a state-based way
– which is not necessary in other applications we’ve applied
our approach to – that maintains information about the
state of the interactions it is engaged in with components
to which it has dependencies.

4.2 Mindstorms NXT
We performed our second case study using the LEGO

Mindstorms NXT development kit4. Released in the sum-
mer of 2006, this is another in LEGO’s line of kits to support
easily accessible and affordable robotics development.

4.2.1 Mindstorms NXT Background
Each Mindstorms kit is comprised of Technic pieces

which are used to build the structure of robots, servo motors
with built-in rotation sensors, and a variety of sensors. The
basic commercial Mindstorms kit includes an ultrasonic
sensor, a light sensor, a sound sensor, and a touch sensor;
color, accelerometer, and compass sensors are also available.
Computer control for the sensors and motors is provided
by a NXT brick: each brick supports enough ports to
accommodate up to three motor and four sensor connections
and also supports a USB port and a Bluetooth wireless
connection. These kits are extremely affordable but resource
constrained: processing is provided by a 32-bit ARM7TDMI
microprocessor with 64KB of RAM available to it and
256KB of flash memory for non-volatile program storage.

From a software perspective, the basic platform sup-
ports development in two ways: the NXT processing
brick firmware can execute user-written programs, and the
development and compilation of these programs is supported
through the NXT-G programming environment. The NXT-
G environment supports a visual language where programs
are composed by “bricks” which support basic programming
constructs. While basic, this programming environment
is sufficient for most casual users. In the context of our
discussion on self-adaptive systems, it is important to once
more note that Mindstorms robots are developed as single
units of code with no pre-existing support for runtime
change.

4.2.2 Self-Adaptive Mindstorms
Building on the work described in the previous section,

we continued by developing an integration of our tools
with the Mindstorms platform. The initial software
development challenge was – once more – the integration
between information sources and information consumers.
The additional complication, however, was the lack of
processing power of the NXT brick and its inability to
support our existing self-adaptive architecture toolset. To
address these challenges, we adopted a tele-operation design:
the bulk of the processing is performed on a PC running
the PBAAM infrastructure, while the NXT brick is only

4http://mindstorms.lego.com/Overview/

109

Architectural Model

Manager (AMM)

Bus Connector

Architectural Adaptation

Manager (AAM)

Bus Connector

Grasper

Control

Tachometer

Navigator

Reactive Connector

Sequencing Connector

Architecture Runtime Manager (ARM)

Ultrasonic

Navigator

Platform: PC

Environment: Java

Light

Sensor

Movement

Control

Touch

Sensor

Ultrasonic

Sensor

Reactive Connector

Platform: NXT

Environment: LeJOS

Legend

Deployment platform

PBAAM infrastructure component

Robot component

Bluetooth connection

Execution environment

Robot connector

PBAAM infrastructure connector

Figure 4: The architecture of the Archie robot for

the Mindstorms platform.

responsible for executing commands sent to its actuators
and gathering sensor data over the Bluetooth connection;
this deployment can be seen in Figure 4. While limiting
the range of the robot to that of the Bluetooth connection
(roughly 10 meters), the solution was more than adequate
for us to demonstrate self-adaptive behavior in our lab. We
adopted the LeJOS icommand API (version 0.6) – a Java

implementation of an NXT Bluetooth interface – and we
replaced the default firmware of the Mindstorms platform
with the LeJOS NXJ firmware update (version 0.4)5.

The robotic platform we constructed – dubbed Archie

– is a modification of a basic three-wheeled Mindstorms

design: a picture of the robot in our lab can be seen in Figure
5. Movement is provided by two motors, each controlling one
of the side wheels while the third wheel is unpowered and can
freely rotate to any movement direction: by using opposite
directions of rotation in each of the motors, the robot is
capable of turning in place, therefore simplifying navigation.
A third motor opens and closes the grasping arm of the
robot. The robot is equipped with the following sensors: A
touch sensor which is mounted in place to detect when an
object is within grasping range, a light sensor which detects
the reflectivity of the surface the robot is on, an ultrasonic
sensor providing motion detection as well as range-finding
in the frontal arc of the robot, and a compass sensor.

Archie’s architecture is built in the RAS style and seen
in Figure 4: the robot’s architecture appears in unshaded
elements while the infrastructure architecture is shaded, and
the curved connection represents the Bluetooth interface
between the PC and NXT brick. The robot travels to a
pre-defined location in our lab, and grasps objects (in this
case, small balls) if they are there. If it finds the object at
the indicated location, it delivers it to its starting location.
Navigation is implemented by the Tachometer Navigation
component, which keeps track of the robot’s location based
on tachometer information from its motors. This compo-
nent, however, tends to fail often – mostly because the high
volume of Bluetooth communication that Archie currently
implements tends to overflow the communication buffers,
therefore losing positioning data. When this failure is
detected (in our current implementation, the component

5http://lejos.sourceforge.net/

Figure 5: A picture of the basic Archie Mindstorms

robot: a three-wheeled design with a grasping arm

and a number of mounted sensors along with the

NXT processor brick.

self-diagnoses by determining whether data conforms to
a reasonable envelope), the ReplaceNavigation adaptation
policy removes the Tachometer Navigation component (an
operation indicated in Figure 4 by having the component
and its links appear in dotted lines) and replaces it with the
Ultrasonic Navigator component (an operation indicated in
dashed lines in Figure 4). The policy is of the same type
discussed in the previous section – the omitted parts of the
policy deal with the specification of which connectors the
newly added component is connected to, and are elided for
brevity:

<AdaptationPolicy id="ReplaceNavigation">

<StringObservation>

(navigation_report {failure == true})

</StringObservation>

<RemoveComponentResponse>

Tachometer Navigator

</RemoveComponentResponse>

<AddComponentResponse>

<ComponentIdentifier>

Ultrasonic Navigator

</ComponentIdentifier>

...

</AddComponentResponse>

</AdaptationPolicy>

The new Ultrasonic Navigator component maintains no
state information – which is the reason it belongs to a lower
layer – but simply locates a wall using the robot’s ultrasonic
sensor and continues to follow the lab’s walls until it locates
the starting location which it detects using the light sensor to
measure the reflectivity of the floor (the starting location is
adjacent to a wall and is more reflective than the remainder
of the lab’s floor). Archie’s components were also designed
in the state-based way used for the Robocode platform
to account for synchronicity assumptions in the underlying
development frameworks.

As with the Robocode case study, our goal was to
establish the feasibility of applying architecture-based self-

110

adaptation techniques to a domain in which they had not
previously been demonstrated, namely autonomous mobile
robotic systems. So, while the architecture and behavior
of Archie are simple, they nevertheless demonstrate a
successful application of our tools and techniques in this
domain. And, despite the simplicity of the platform, we are
confident our feasibility claim is valid due to the number
of difficulties and challenges our Mindstorms robot shares
with more complex robotic systems, such as the:

• necessity of integrating data from multiple sensors
(sensor fusion) to determine courses of action;

• demands on timely actions in response to sensor
information so that the robot’s actions are current and
actions are not performed too late, and;

• unreliability of sensor information and communication
channels that the robot must account for in its control
system.

These are just some examples of the kinds of diffi-
culties both real-world robotic systems and the types of
Mindstorms robots – which are real, mobile, unreliable and
resource constrained platforms – we are developing face in
common, and why we feel justified in a feasibility case-study
using this platform.

5. DISCUSSION
This section explores and offers our insights on some of the

interesting issues and trade-offs we encountered in planning
and performing the previously described work.

5.1 Architectural Mismatch
One of the difficulties we faced in our feasibility case

studies was the architectural mismatch between the robotic
frameworks we were working with and the assumptions
of an architecture- and component-based approach. The
PBAAM development framework was designed and built to
support the development of component-based systems that
communicate through the exchange of asynchronous events
and have no assumptions of shared state. These design
principles are critical in enabling the high level of modularity
and decoupling that our work in developing self-adaptive
systems relies on. Robotic systems, on the other hand,
tend to be constructed with architectural assumptions about
synchronicity and strict temporal ordering of operations
in mind. Many robotic libraries, for example, define
interfaces to actuators and sensors that operate in a blocking
manner and do not return control until they have completed
execution. This allows systems to be designed with great
ease as long as they’re constructed in a monolithic manner:
it is quite easy to develop behaviors by chaining together
a sequence of operations when these operations are invoked
sequentially from a single unit of code. It is significantly
more challenging, however, to compose these behaviors
when fine-grained actions are distributed among many
independent components.

This mismatch between the fundamental design decisions
of these domains was challenging to overcome, and re-
quired care in component design to account for the lack
of synchronicity and the lack of guarantees about event
ordering. The benefit, of course, from investing in this
effort is the higher degree of modularity and enablement of
runtime adaptation that this approach to building systems
supports. The conclusion from this need for more effort,
of course, is not to dismiss the integration of architecture-

based adaptation with robotics, but to recognize when the
trade-off becomes worthwhile. Unless there is a driving need
for self-adaptive behavior – and therefore the necessity to
support a great deal of modularity and runtime evolvability
– the effort to build robotic systems in a component-
based manner (such as use of the RAS style) and to
bridge this mismatch is not worth the benefits. It is
interesting to note that a great deal of effort is currently
being invested by the robotics community toward supporting
the development of component-based robots and integrating
software engineering technologies in their construction, as
exemplified by the IEEE RAS TC-SOFT6.

5.2 Platform Selection
Our goal of examining the feasibility of developing self-

adaptive robotic architectures – rather than the develop-
ment of industrial-strength robots (work best left to roboti-
cists) – guided our selection of the Mindstorms system
for experimentation: The platform compares favorably with
other commercially available platforms and development
tool sets such as the iRobot or K-Team platforms in terms
of flexibility as well as cost. While there is a clear loss of
sturdiness compared to these pre-manufactured robots, the
Mindstorms platform provides a degree of flexibility that
other packages can’t match: a new type of physical structure
is a matter of a few hours of (fun) re-assembly. Most
important is the degree of broad availability and appeal
of the LEGO kits: the kit supports both Windows and
Macintosh platforms in a variety of programming languages,
is supported by a large and dedicated community, has sold
millions of units throughout the years, and seems to quickly
capture the imagination and time of those exposed to it. As
we are interested in both disseminating our research tools
and techniques as well as teaching self-adaptive architectures
to university students, the Mindstorms platform is an ideal
and affordable choice for such needs.

6. FUTURE WORK
There are a number of directions we plan on pursuing in

continuing our work in the intersection of robotic systems
and self-adaptive architectures. In the long term, the most
important aspects of robotic construction which must be
addressed involve examining, understanding, and improving
the scalability and reliability of these architectures. This
is both an issue of learning more about the implications of
using architecture-based techniques in the robotics domain
as well as a matter of refining our notations and tools:
we expect, for example, to refine our conceptualization
of constraint policies and use them to ensure that our
robots always maintain a core set of functions which errant
adaptations may possibly corrupt.

We also plan on further strengthening our feasibility
claims by continuing to build more sophisticated and com-
plex robotic architectures. One such avenue of development
involves the construction of mixed deployment, distributed
architectures in which the more computationally intensive
elements of a robotic architecture remain on a PC platform
and communicate through the wireless connection, but
where more efficient elements are deployed on the robot
platform itself. We hope that these hybrid architectures will
ease the difficulty of bridging the architectural mismatch we

6http://robotics.unibg.it/tcsoft/

111

discussed in the previous section, and significantly improve
the performance and stability of our robots.

7. CONCLUSION
The work presented in this paper is an exploration into

the feasibility of applying architecture-based techniques to
the robotics domain to support the development of self-
adaptive robotic systems. One of the critical challenges is
supporting the dynamic modification of adaptive behaviors
during system runtime.

Our previous work in architecture-based self-adaptive sys-
tems has been focused on supporting exactly this capability
through the use of adaptation policies that are decoupled
from the architectures they relate to; these policies are
independently managed and the tools we have developed
support their runtime modification. We therefore applied
this work to the robotics domain by performing two case
studies: The first focused on developing a self-adaptive
robot for the Robocode robotic combat simulator, while
the second involved the development of a self-adaptive
Mindstorms NXT robot.

We believe that our efforts were successful in multiple
regards. Most importantly, our case studies confirm the
feasibility of applying an architecture-based approach to self-
adaptation in the robotics domain. Furthermore, our work
also contributes an initial understanding of the difficulties
involved in transitioning our particular approach – and
others like it – to the robotics domain due to the archi-
tectural mismatch between the assumptions of architecture-
based approaches and the actual practice of robotic system
development. Finally, we continue to realize that the policy
language of our approach is adequate for specifying adaptive
behavior in a variety of settings despite its simplicity.

The field of robotics is a rich application domain for soft-
ware engineering research which provides dividends for both
communities. Robotic software development greatly benefits
from the application of software engineering research to
the challenges of the domain, and software engineering
researchers gain rigorous test settings for their work in a
domain that stresses issues such as safety, reliability, and
adaptation completeness which are more relaxed in other
settings. We plan to continue to examine the intersection
of robotic control systems and self-adaptive architectures,
particularly with the Mindstorms platform as an easily
accessible and inexpensive experimental testbed.

8. ACKNOWLEDGMENTS
The authors would like to thank Eric Dashofy for his work

developing Archstudio and André van der Hoek for his
contributions to the conceptualization of our approach. This
work sponsored in part by NSF Grants CCF-0430066 and
IIS-0205724.

9. REFERENCES
[1] R. A. Brooks. A Robust Layered Control System for a

Mobile Robot. IEEE Journal of Robotics and
Automation, 2(1):14–23, 1986.

[2] E. M. Dashofy, A. v. d. Hoek, and R. N. Taylor. A
Comprehensive Approach for the Development of
Modular Software Architecture Description
Languages. ACM Transactions on Software

Engineering and Methodology (TOSEM),
14(2):199–245, April 2005.

[3] R. J. Firby. Adaptive Execution in Complex Dynamic
Worlds. PhD thesis, Yale University, 1990.

[4] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl,
and P. Steenkiste. Rainbow: Architecture-Based Self
Adaptation with Reusable Infrastructure. IEEE
Computer, 37(10), 2004.

[5] J. C. Georgas and R. N. Taylor. Towards a
Knowledge-Based Approach to Architectural
Adaptation Management. In Proceedings of ACM
SIGSOFT Workshop on Self-Managed Systems
(WOSS 2004), Newport Beach, CA, October 2004.

[6] J. C. Georgas and R. N. Taylor. An Architectural
Style Perspective on Dynamic Robotic Architectures.
In Proceedings of the IEEE Second International
Workshop on Software Development and Integration in
Robotics (SDIR 2007), Rome, Italy, April 2007.

[7] I. Georgiadis, J. Magee, and J. Kramer.
Self-Organising Software Architectures for Distributed
Systems. In WOSS ’02: Proceedings of the First
Workshop on Self-Healing Systems, pages 33–38, New
York, NY, USA, 2002. ACM Press.

[8] E. F. Hill. Jess in Action: Java Rule-Based Systems.
Manning Publications Co., Greenwich, CT, USA,
2003.

[9] D. Kim, S. Park, Y. Jin, H. Chang, Y.-S. Park, I.-Y.
Ko, K. Lee, J. Lee, Y.-C. Park, and S. Lee. SHAGE: a
Framework for Self-Managed Robot Software. In
SEAMS ’06: Proceedings of the 2006 International
Workshop on Self-Adaptation and Self-Managing
Systems, pages 79–85, 2006.

[10] J. Kramer and J. Magee. Self-Managed Systems: An
Architectural Challenge. In Future of Software
Engineering (FOSE ’07), pages 259–268, 2007.

[11] N. J. Nilsson. Principles of Artificial Intelligence.
Tioga Publishing Company, 1980.

[12] P. Oreizy, M. M. Gorlick, R. N. Taylor, D. Heimbigner,
G. Johnson, N. Medvidovic, A. Quilici, D. S.
Rosenblum, and A. L. Wolf. An Architecture-based
Approach to Self-Adaptive Software. IEEE Intelligent
Systems, 14(3):54–62, May-June 1999.

[13] M. D. Rayman and P. Varghese. The Deep Space 1
Extended Mission. Acta Astronautica, 5(12):693–705,
2001.

[14] R. N. Taylor, N. Medvidovic, K. M. Anderson,
J. E. James Whitehead, J. E. Robbins, K. A. Nies,
P. Oreizy, and D. L. Dubrow. A Component- and
Message-Based Architectural Style for GUI Software.
IEEE Transactions on Software Engineering,
22(6):390–406, 1996.

[15] M. Wermelinger, A. Lopes, and J. L. Fiadeiro. A
Graph Based Architectural (Re)configuration
Language. In ESEC/FSE-9: Proceedings of the 8th
European Software Engineering Conference held
jointly with 9th ACM SIGSOFT International
Symposium on Foundations of Software Engineering,
pages 21–32, New York, NY, USA, 2001. ACM Press.

112

