
Domain Ontologies in Software Engineering:

Use of Protégé with the EON Architecture

Mark A. Musen

Section on Medical Informatics
Stanford University School of Medicine

Stanford, California 94305-5479
U.S.A.

Domain ontologies are formal descriptions of the classes of
concepts and the relationships among those concepts that
describe an application area. The Protégé software-engineering
methodology provides a clear division between domain
ontologies and domain-independent problem-solvers that, when
mapped to domain ontologies, can solve application tasks. The
Protégé approach allows domain ontologies to inform the total
software-engineering process, and for ontologies to be shared
among a variety of problem-solving components. We illustrate
the approach by describing the development of EON, a set of
middleware components that automate various aspects of
protocol-directed therapy. Our work illustrates the organizing
effect that domain ontologies can have on the software-
development process. Ontologies, like all formal
representations, have limitations in their ability to capture the
semantics of application areas. Nevertheless, the capability of
ontologies to encode clinical distinctions not usually captured by
controlled medical terminologies provides significant advantages
for developers and maintainers of clinical software applications.

1 Vocabularies, Ontologies, and
Software Engineering

Work in medical informatics entails the creation of software.
Although many fundamental contributions in medical
informatics are not dependent on computer-based artifacts (e.g.,
the development of the International Classification of Diseases
in no way required the availability of computers), it now is
nearly impossible to discuss information management in health
care without bringing up the role of information technology.
Researchers in medical informatics write computer programs as
the primary means of testing theories and of delivering results.
Indeed, the evaluation of the performance of specific pieces of

software may be the only proxy available for evaluating certain
theories. There consequently are compelling reasons for all
members of the medical-informatics community to be concerned
with questions of software engineering (Blum, 1991).

 Work in medical informatics entails the communication of
information. Perhaps the most important information involves
descriptions of patients—including patients’ problems, clinical
findings, and treatments. The pressing need to develop
repeatable ways of specifying patient descriptions has led to the
proliferation of a variety of controlled medical terminologies
over the past century. The landscape of medicine is now
routinely represented in terms of the International Classification
of Diseases (ICD), the Systematized Nomenclature of Human
and Veterinary Medicine (SNOMED), Current Procedural
Terminology (CPT), and so on. Each one of these
terminologies makes different clinical distinctions and is biased
by the particular purposes envisioned by that vocabulary’s
creators and maintainers (Feinstein, 1988). Indeed, one of the
primary challenges for current research in medical informatics is
to make sense out of these competing schemes for representing
clinical information, and to develop more unified approaches to
the representation of patient descriptions.

 Workers in medical informatics often view controlled
terminologies as self-contained lexicons that are independent
from specific software artifacts or information technologies.
Controlled terminologies are consequently described as
circumscribed compilations of codes and terms that seemingly
have had an isolated existence. Standard vocabularies such as
ICD, for example, had been maintained for decades before their
developers had any notion of incorporating them into software
systems. Now, however, it is the apparent precision,
compactness, and scope of these controlled terminologies that

make it only natural to rely on such representations for many
computer-based clinical applications. The desire to build
computer-based medical-record systems and other complex
software systems for health care now make it essential to
examine how controlled terminologies function as structures
within computer programs. Thus, we must clarify the role of
standard vocabularies in the engineering of clinical software
applications.

 In recent years, as workers in medical informatics have become
increasingly concerned with the development and use of
controlled terminologies to capture complex patient descriptions,
workers in computer science have sought new ways to manage
the inherent complexity of large software systems. The practice
and theory of software engineering has been evolving, with
increasing emphasis on component-based architectures that allow
for modularization, encapsulation, and distribution of units of
program code (Orfali et al., 1966). One particularly significant
trend has been the growing recognition of the importance of the
models of application areas that are embedded within computer
programs, and of the value of making those models more
explicit, editable, and maintainable (Sutcliffe et al., 1996).
These models of application areas are called domain models. For
programs such as word processors, the domain model is one of
textual documents, of the components of such documents, and of
the changes that users may wish to make to documents. All the
tasks that a word-processing program can perform must be
expressed in terms of this domain model; it is impossible for the
user to express a desire to modify some portion of a document
unless that portion can be represented in terms of the underlying
domain model.

 For programs such as computer-based patient-record systems,
the domain model is one of patients, of their medical problems,
and of the interventions that health-care workers may make in
the management of patients. There is nothing that the user of a
computer-based medical-record system can say about a patient
that is not in some way a component of the domain model. The
creation of precise, well-scoped domain models for clinical
information systems is of central importance in medical
informatics, and should benefit from software-engineering
principles that make the models (and the controlled
terminologies from which those models are built) both explicit
and manipulable. Although there are several object-oriented
analysis approaches that allow software engineers to define
comprehensive domain models when software systems are first
designed (e.g., Booch, 1994), the models do not usually become
permanent constituents of the resulting systems. Moreover,
once the computer systems are finally implemented, system
maintainers cannot modify the models without worrying about
how their changes might affect existing program code that may
make assumptions about the initial model formulations.

 For more than a decade, our laboratory has been developing a
software-engineering methodology known as Protégé (Musen et
al., 1995a) that assists software developers in creating and
maintaining explicit domain models, and in incorporating those
models directly into program code. Protégé allows system
builders to construct software systems from modular
components, including (1) reusable frameworks for assembling
domain models and (2) reusable domain-independent problem-
solving methods that implement procedural strategies for solving
tasks (Eriksson et al., 1995).

 Protégé allows reuse of frameworks for building domain
models through its support for declarative domain ontologies.
An ontology enumerates the concepts that are relevant in an
application area, providing a universe of discourse. An ontology
defines classes of concepts and relationships among those
classes. Typically, however, an ontology does not include
information about instances of any given class (Guarino and
Giaretta, 1995). Thus, an ontology for a computer-based
patient-record system might declare that patients are treated by
physicians, but the ontology would not specify the identities of
particular patients or physicians. In many ways, an ontology
can be viewed as the equivalent of a schema in database terms.
Whereas controlled terminologies such as ICD provide an
enumeration of instances of clinical descriptors—with only
implicit representation of an organizing framework for the
classes of those descriptors—ontologies emphasize the
organizing framework, at the expense of being exhaustive about
listing possible instances of the classes of concepts. Although
the philosophical distinctions can be a bit enigmatic, for the
purposes of this paper, when we combine a domain ontology
with an enumeration of the instances intended by that ontology
for a particular application, the resulting set of classes and
instances is what we call a domain model.

 In the Protégé methodology, we provide a clear separation
between a developer’s specification of a domain ontology, her
declaration of instances of the classes defined by the domain
ontology, and her mapping of the domain-specific information to
a particular problem-solving method (Eriksson et al., 1995).
This distinct division between the target system’s domain model
and the system’s procedural, problem-solving method is
reflective of trends in the engineering of both knowledge-based
systems and conventional software (1) to clarify a program’s
domain model and (2) to allow developers to edit and adapt that
model. In the Protégé approach, when developers edit the
ontology that provides the framework for specification of the
complete domain model, they automatically allow generation of
a domain-specific, interactive knowledge-acquisition tool that
permits users easily to enter the relevant instances of the
concepts defined by the ontology (Eriksson et al., 1994). The
edited domain ontology also becomes available to the application
system that Protégé is used to construct—shaping the
interactions of end users with the resultant computer program.

Tzolkin database mediator

RÉSUMÉ
temporal-

abstraction
system

Patient
database

Therapy-
planning

component

Eligibility-
determination

component

Protocol
knowledge base

Domain
ontology

Clinica l
information
system

Chronus
temporal
database

query system

Figure 1: The EON architecure. EON comprises a number of problem-solving components (e.g., programs that plan protocol-based
therapy and that determine whether a patient potentially is eligible for protocols) that share a common knowledge base of protocol
descriptions. The protocol domain ontolology, created with the Protégé system, defines the format of the protocol knowledge base. The
same ontology also defines the schema for the Tzolkin database mediator, a system that channels the flow of patient data between the
problem-solving components and an archival relational database. The entire architecture is embedded within a clinical information system
that can use the domain ontology to fashion its user interface.

 In this paper, we discuss how we have used Protégé to build a
computer-based patient-record system that assists providers in the
application of clinical practice guidelines and protocols. We
show how the approach allows (1) principled construction of a
domain ontology, (2) instantiation of that ontology with domain
facts, and (3) generation of an application program that
developers can easily maintain and modify over time. We
emphasize the relationship between standard, controlled
terminologies and the domain ontologies that form the
foundation of building application systems using Protégé. Our
work demonstrates the use of explicit domain ontologies in
shaping all aspects of the software process, and suggests how the
incorporation of those ontologies directly into the resulting
software systems can lead to enhanced development and to
improved system maintenance.

2 The EON Architecture for Protocol-Based
Care

 We will ground our discussion in an example: the use of the
EON architecture to automate protocol-based care. Although the
Protégé methodology (Musen et al., 1995; Eriksson et al., 1995)
and the use of Protégé to construct decision-support systems
based on the EON architecture (Tu et al., 1995; Musen et al.,

1996) have been presented previously, it is helpful to review
here how our group has used Protégé to create a family of
application systems that provide assistance with protocol-based
patient care. In the example that follows, we emphasize the role
of the domain ontology both in driving the software-engineering
process and in providing a structure for the data on which the
ultimate application program operates.*

 EON is an application system that comprises a number of
modular components (Figure 1). The architecture is intended to
be embedded within a clinical information system, processing
clinical data to offer decision support concerning various aspects
of protocol-based care. The architecture contains three classes of
components:

 EON contains problem-solving modules that perform the
computations necessary to automate specific tasks associated
with guideline-directed therapy. One such module takes as input
a standard clinical protocol description and relevant patient data,
and generates as output a situation-specific treatment plan for the

* Previous descriptions of Protégé that have appeared in the literature have
depicted a version of the system that runs under the NeXTSTEP operating
system; the version of Protégé depicted in this paper runs under Windows NT
and Windows 95. At the same time, the particular components of the EON
architecture have evolved significantly since the most recent published
description of EON (Musen et al., 1996).

current patient encounter (Tu and Musen, 1996). Another
module takes as input a standard protocol description and relevant
clinical data, and generates as output the qualitative likelihood
that a patient is eligible for the given protocol (Tu et al., 1993).
The EON architecture is extensible, so that other problem-
solving modules easily can be added. For example, although we
have not constructed such a module, the architecture readily
would support incorporation of a component that might review
provider decision making retrospectively and determine episodes
of therapy that may have been noncompliant with specific
guidelines.

 EON contains a database mediator that provides the conduit
between the problem-solving modules and the clinical data stored
in an archival database. This mediator, known as Tzolkin (Das
et al., 1994), itself has two components: (1) the Chronus
temporal data query system (Das and Musen, 1994) and (2) the
RÉSUMÉ temporal-abstraction system (Shahar and Musen,
1996). When a problem-solving module, such as the therapy-
planning component (shown in the upper left of Figure 1)
wishes to resolve a question such as “Was there a past episode of
moderate anemia that lasted for more than two weeks?”, the
problem-solving module passes the query to Tzolkin. Tzolkin
(1) determines that anemia is not a primitive datum stored in the
archival patient database, but rather is an abstraction of
hemoglobin, values of which are indeed stored in the database,
(2) uses Chronus to query the patient database for the
hemoglobin values, and (3) uses the RÉSUMÉ abstraction
system to determine whether there are sequences of low
hemoglobin values that constitute intervals of moderate
anemia. Because all the temporal database management and all
data abstraction operations are performed transparently by the
Tzolkin mediator, none of the problem-solving modules in EON
needs to duplicate these basic functionalities.

 EON contains a declarative knowledge base of protocol
specifications, defining the sequences of interventions required by
the each protocol or guideline, and the criteria that define whether
patients are eligible for that protocol. These guideline
specifications are essential run-time inputs to the problem-
solving components that reason about protocol-directed patient
care.

3 The Domain Ontology in EON

All the software components in the EON architecture benefit
directly from a shared, computer-based representation of the
domain ontology that defines the form of all the data on which
elements of the system may operate. There are no data
interchanged among any of the EON components that do not
emanate explicitly from the data definitions contained in the
ontology. The domain ontology defines a precise and consistent

data model for all modules in the EON architecture. If
developers should modify that ontology, then the changes will
affect every component that accesses the corresponding data.
Figure 2 shows a portion of the domain ontology for EON
represented in the Protégé Ontology Editor. The ontology
comprises two different elements:

 The guideline ontology consists of a set of class
definitions that describe concepts related to clinical protocols.
This ontology indicates that guidelines have a set of authors, a
set of clinical contexts in which the guidelines apply, and a set
of eligibility criteria. A guideline has an intention (i.e., a
purpose), and a sequence of steps that dictate the clinical actions
that serve to achieve that intention.

 The medical-specialty ontology defines the particular
clinical interventions that are typical for a given area of
medicine, and the types of patient findings that are most
commonly reported in a given medical discipline. By making
the medical-specialty ontology an explicit component, we
acknowledge that different classes of health-care providers tend to
make different classes of observations about their patients and
perform different kinds of patient-care activities. Oncologists,
for example, may be particularly concerned with tumor histology
and cytotoxic chemotherapy; physicians who care for people
with AIDS, on the other hand, pay extreme attention to T-cell
subsets and to the dosing of antiretroviral drugs. By editing the
medical-specialty ontology, developers can tailor the data
processed by EON to reflect the distinct requirements of
particular clinical disciplines.

 The guideline ontology is generic, and independent of any
medical specialty. To create a version of EON that is suitable
for a particular medical specialty, the developer first must create
an ontology that defines the concepts relevant for that specialty.
The developer then must integrate the new medical-specialty
ontology into the guideline ontology by defining subclass
relationships that denote how the generic notions of (1) clinical
findings, (2) patient problems, and (3) medical interventions in
the guideline ontology relate to the detailed classes of concepts
defined in the medical-specialty ontology. To date, our group
has demonstrated this approach by constructing ontologies for
protocol-based care in AIDS and breast cancer (Musen et al.,
1996). Whereas our AIDS ontology includes medical
interventions such as the administration of drug regimens and the
scheduling of follow-up visits, the breast-cancer ontology adds
several additional classes of interventions, such as surgery,
radiotherapy, and home visits. The distinctions made by each
ontology reflect elements that medical specialists with whom we
have collaborated have found important for their respective
practices.

Figure 2: The domain ontology for guideline-based care in the Protégé Ontology Editor. The panel in the upper left of the screen
shows the hierarchy of classes in the ontology. The user has selected the class guideline, which, as we see in the panel in the upper
right, contains an attribute called steps. The user has invoked the slot editor for this attribute, which appears at the lower left of the
screen. The information in the slot editor indicates that the steps of a guideline are denoted by instances of more specialized classes in the
ontology, such as instances of action_step, condition_step, and so on.

3.1 Knowledge Acquisition
The Protégé system uses a domain ontology to generate
automatically a custom-tailored tool that developers use to enter
the instances of the concepts entailed by the ontology (Eriksson
et al., 1994). This knowledge-acquisition tool allows system
builders to complete the specification of a domain model by
adding to the ontology specific propositional statements that
instantiate that ontology for a given application area. Thus, the
EON guideline ontology, when merged with a medical-specialty
ontology for breast-cancer therapy, is used by Protégé to create a
knowledge-acquisition tool that allows developers to describe
instances of breast-cancer guidelines (Figure 3). When
comparing the knowledge-acquisition tool with the domain
ontology in Figure 2, we can see how the classes in the
ontology define expectations for the instances to be acquired by
the knowledge-acquisition tool. The data type and expected

cardinality of each attribute of each class in the ontology
determines the corresponding graphical widgets that appear in the
knowledge-acquisition tool and that are used to acquire the
instance information. Thus, guidelines have an attribute called
name that has a data type of string and a cardinality of single (see
Figure 2); the knowledge-acquisition tool accordingly acquires
the name of the guideline using a single text box (see Figure 3).
Guidelines also have an attribute called steps whose data type
consists of instances of other classes (namely, action_step,
condition_step, synchronization_step, and branch_step) and
whose cardinality is multiple; the knowledge-acquisition tool
acquires the steps of a guideline using a graph, where the nodes
in the graph may be multiple instances of the different allowed
classes. The automated generation of the knowledge-acquisition
tool for entry of breast-cancer guidelines is driven directly from
the domain ontology. The resulting tool uses the ontology to

Figure 3: A knowledge-acquisition tool for entry of breast-cancer protocol specifications. This tool is generated automatically from an
ontology that combines the generic guideline ontology (see Figure 2) and an ontology that defines the classes of clinical findings,
problems, and interventions associated with the care breast-cancer patients. Protégé constructed this particular window from the guideline
class of the ontology. The protocol depicted in the figure specifies the knowledge required to carry out a clinical trial that compares the
effects of conventional adjuvant chemotherapy with those of high-dose chemotherapy followed by bone-marrow transplantation.

provide a framework for communicating with its user, where the
semantics of each entry into the knowledge-acquisition tool are
determined by the class definitions in the domain ontology.

3.2 Problem Solving
The electronic knowledge base that instantiates the domain
ontology (the domain model), which is generated from a user’s
entries into the knowledge-acquisition tool (e.g., the description
of Protocol EST2190 in Figure 3), becomes a shared component
of the EON problem solving system (Figure 1). All the
problem-solving modules in EON (i.e., the therapy planner, the
eligibility-determination component, and any other module that
may be developed in the future) use this common representation

of protocol knowledge to perform their particular reasoning
functions.

 The problem-solving modules are able to access the protocol
knowledge base appropriately because system builders relate the
input–output requirements of each problem solver to the classes
and attributes in the domain ontology that provide the structure
for the protocol knowledge base. Thus, the developer declares
that the plans processed by the therapy planner correspond to
guidelines in the domain ontology. For every datum processed
by a problem solver, the developer must specify the appropriate
mapping to the domain ontology in an explicit mapping relation
(Gennari et al., 1994).

 The Protégé approach is quite different from that taken in
traditional object-oriented programming, where both the domain
knowledge (slots of objects and the values associated with
particular slots) and the problem solvers (methods associated
with specific objects) are bundled together. In traditional object-
oriented programming, program execution is controlled by
sending messages from one object to another, where each object
encapsulates both data and the methods that operate on those data
(Booch, 1994). In the Protégé approach, however, domain
models (data) are kept completely separate from the problem-
solving methods (programs) that may be applied to those
models; the problem-solving methods are first-class entities that
have formal parameters that must be mapped to the appropriate
referents in the domain knowledge. The separation of problem-
solving methods from the domain knowledge on which those
methods operate is essential for component reuse. The
architecture allows the same domain knowledge to be used by
different problem-solving methods, possibly to solve completely
different tasks (e.g., the tasks of planning therapy and of
determining eligibility for protocols). Alternatively, developers
can reuse a given problem-solving method with new domain
knowledge to solve the same task in a new domain (e.g., to
perform therapy planning either for AIDS or for breast cancer).

 The use of a shared, explicit domain model simplifies the
system maintenance task considerably. If developers should need
to update a protocol knowledge base, then no reprogramming of
the problem-solving modules is ever necessary. The developers
need only to substitute the new knowledge base for the old one.
If the domain ontology that structures the knowledge base should
change, then programmers may need to define new mapping
relations, however. Once those new mappings are defined, then
all new knowledge bases that are created using the revised
ontology are readily incorporated into the architecture.

 EON’s separation of the knowledge base from the problem
solvers that operate on it is reminiscent of the situation in first-
generation expert systems in which developers made a distinction
between the knowledge base (typically a collection of rules or
frames) and the inference engine that would operate on that
knowledge base (Waterman et al., 1983). In first generation
expert systems, however, the knowledge base did not consist of
an explicit domain model that could serve as input to a variety of
problem solvers. Instead, the knowledge base was always a set
of representations that were dependent on one specific inference
engine (e.g., the production-rule interpreter in a system such as
EMYCIN). In first-generation expert systems, the knowledge
base could be used to solve only one specific task. In EON,
however, each task related to protocol-based care is addressed by a
different problem-solving component that accesses the common
protocol domain model. A problem-solver such as the therapy-
planning component is a software module that operates on a
model of clinical protocols—not an inference engine that
operates on arbitrary rules or frames. All protocol models on

which the EON problem solvers may operate are direct
extensions of the corresponding domain ontology created using
Protégé.

3.3 Data Definition and Manipulation
Just as all the problem solvers in EON share a common static
knowledge base of protocol descriptions, all the problem solvers
share a common gateway to the patient data needed for real-time
decision support. In the current version on EON, all problem-
solving components use the Tzolkin database mediator (see
Figure 1) as the common access path both to primary patient
data (e.g., laboratory-test results, patient findings) and to
abstractions of those data (e.g., intervals of possible drug
toxicity or of disease progression). Tzolkin contains two
modules: (1) the Chronus temporal data query system and (2) the
RÉSUMÉ temporal-abstraction system. Both Tzolkin modules
access the same domain ontology used by the other components
of the EON architecture (see Figure 1).

3.3.1 Chronus

Chronus (Das and Musen, 1994) serves as both a preprocessor
and a postprocessor to the data query and manipulation system of
a standard relational database. The system adds to every relation
in the database that describes patient-specific data an explicit start
time and end time. Chronus implements a temporal relational
algebra that confers special status to the time stamps, ensuring
that any set of data-manipulation operations on a time-stamped
relation returns a new relation with appropriate start and end
times.

 Chronus uses the domain ontology to establish a schema for
all the patient-specific data that will be stored in an external
relational database. The medical-specialty portion of the domain
ontology informs Chronus of the classes of clinical
observations, patient problems, and therapeutic interventions
that health-care providers will want to record in their computer-
based patient record and that the EON problem solvers will need
when executing their decision-support tasks. Chronus does not
need to access the domain ontology dynamically during run time;
Chronus examines the ontology only when the patient database
is created initially. The classes of concepts defined in the
domain ontology serve as input to a module that generates
appropriate statements in the data-definition language of the
relational database that Chronus accesses.

3.3.2 RÉSUMÉ

Often, problem solvers will issue queries that request
information that is not stored directly in the database, but rather
that represents an abstraction of primitive data. Tzolkin handles
such queries transparently, invoking the RÉSUMÉ system
automatically whenever a query requires an abstraction to be
made.

Figure 4: A Java-based clinical interface for EON. Although EON is designed to be embedded within a variety of clinical information
systems, we have experimented with the EON components in our laboratory using a user interface accessible via the World-Wide Web.
The portion of the interface represented here allows clinicians to enter and revise a patient’s current drug presciptions. The domain
ontology (see Figure 5) includes a taxonomy of drugs, a portion of which is represented in the left-hand side of the clinical-interface
display.

 As described in detail elsewhere (Shahar, in press), the
RÉSUMÉ system requires specific, well defined knowledge
about the primary data that it abstracts, and, in turn, about the
resulting abstractions—which RÉSUMÉ can use to generate
further abstractions. For each class of data or abstraction,
RÉSUMÉ needs to know certain temporal-semantic properties.
For example, these properties include whether two contiguous
temporal intervals that describe the same kind of event (e.g., two
episodes of anemia or two episodes of seizures) may be described
as one longer interval. (The episodes of anemia may be
combined into a longer interval, but the episodes of seizures
should be viewed separately.) Other properties include whether
subintervals of the event necessarily hold true (e.g., anemia
during a given interval implies anemia during any portion of that
interval, whereas labile hypertension during an interval does not
imply labile hypertension during every subinterval), and
mathematical functions that define the probability that, when
equal measurements of some clinical parameter are made at two

points separated in time, the parameter’s value is the same
throughout the intervening interval. All these properties of
clinical parameters are defined declaratively in a parameter
ontology, where each semantic property is represented explicitly
as a specific attribute of each class. Although this parameter
ontology was represented as a separate entity in the original
version of RÉSUMÉ (Shahar and Musen, 1996), the Tzolkin
mediator uses an enhanced version of RÉSUMÉ that accesses the
necessary temporal-semantic knowledge directly from the domain
ontology that informs the operation of all the other EON
components.

 The medical-specialty portion of the EON ontology includes
the enumeration of laboratory tests, clinical signs and
symptoms, and therapeutic interventions that may be applied to
individual patients who may be the subjects of the clinical
protocols about which the EON components can reason. Unlike
a controlled medical terminology, which merely will list
individual vocabulary elements (and, often, their associated

codes), the EON domain ontology provides a rich structure that
defines the semantic properties of each element as required by the
RÉSUMÉ temporal-abstraction system. The additional semantic
information about the elements of the ontology can be accessed
by all the problem-solving elements of EON. Thus, although
probabilistic information regarding the expected persistence of
data values is included in the domain ontology specifically for
the benefit of the RÉSUMÉ system, such descriptors can be used
by other components—for example, the clinical information
system that embeds the EON architecture, which may need to
make decisions regarding the display of data values that have a
temporal dimension.

3.4 Clinical Information System
The EON architecture comprises a set of CORBA-compliant
modules that we have designed to be embedded within a variety
of clinical information systems. An earlier version of EON
(Musen et al., 1996), for example, was implemented within the
T-HELPER system for protocol-based care of patients with AIDS
(Musen et al., 1992). In our current work, we have created a
Java-based clinical-information-system interface that replicates
much of the functionality of the T-HELPER interface, but which
is accessible in a distributed manner via the World-Wide Web
(Figure 4).

Because the domain ontology is stored in a declarative manner
that makes it easily accessible, any information system that
embeds the EON components can also retrieve concept
descriptions from the ontology. Many distinctions made by the
medical-specialty portion of the ontology are relevant to the
clinical information system. For example, the taxonomy of
drugs that is relevant to the given medical specialty can be used
by the clinical information system to guide the user’s entry of
prescriptions. The categorization of drugs that appears in the
clinical user interface in Figure 4 is thus directly informed by the
portion of the domain ontology shown in Figure 5. The same
domain ontology is used by the problem-solving components
(e.g., by the eligibility-determination module, when it uses the
domain ontology to determine the individual drugs that may
belong to a given class to decide whether a patient’s current drug
treatment excludes him from a particular protocol). Other
elements of the medical-specialty portion of the ontology that
may be beneficial to the clinical user interface include the classes
of patient signs and symptoms that may be used to guide entry
of clinician progress notes (Musen et al., 1995b), and the classes
of laboratory tests that may be used both for order entry and
results reporting. Thus, the shared ontology, which is essential
for execution of the various decision-support modules in EON,
also can be useful in fashioning the user interface accessed by
health-care workers who may rely on EON’s decision making
elements for rendering protocol-based care.

Figure 5: The drug taxonomy from the AIDS medical-
specialty ontology. Every medical-speciality component of an
EON domain ontology includes a specialty-specific classification
of commonly prescribed drugs. This component of the domain
ontololgy not only is available to the decision-support modules
in EON, but also can inform the clinical user interface (see
Figure 4).

4 Discussion

Our laboratory developed the Protégé methodology primarily as a
general approach for the construction of knowledge-based
systems. The use of explicit, reusable and sharable ontologies,
domain models, and problem-solving components has broad
applicability in general software engineering, however. Our work
demonstrates that, once developers fashion an ontology that
captures the basic concepts and relationships among concepts in
a given application area, that ontology can guide the execution
of large numbers of general software components that contribute
to a final system. In the case of EON, for example, we have
seen that the original domain ontology defines the semantics of

the knowledge-acquisition tool that allows developers to enter
individual protocol descriptions (i.e., the instantiated domain
models that provide static inputs to the EON components at run
time). Furthermore, the domain ontology defines the database
schema used by the Chronus component of the Tzolkin
mediator, as well as the properties of the clinical parameters
processed by the RÉSUMÉ component. Although EON has
been designed as a collection of CORBA-compliant middleware
components, any clinical information system that embeds EON
also can take advantage of the domain ontology, as demonstrated
by our Java-based EON front end (see Figure 4). Thus, all the
components of the EON system interoperate with a single,
shared representation of the static knowledge that defines the
application area.

4.1 Ontologies and Software Engineering
The reuse of the domain ontology throughout the EON system
has important advantages. The most apparent benefit is the ease
of system maintenance that results from having only a single
locus of information that developers must update when the
application area evolves. In a given medical discipline for which
EON might be used to assist protocol-based care, system
maintainers can respond to the advent of new classes of
laboratory tests, clinical interventions, or patient descriptions
simply by updating the domain ontology (see Figure 2), and
then allowing the changes to propagate throughout the system
components. This pattern of maintenance clearly is much
simpler than requiring developers to examine every module in a
large system for possible references to the modified domain
knowledge and to reprogram each component as necessary.

 Each problem-solving component in the EON system has a
clearly identified source for the domain knowledge that the
component operates on—namely, the protocol knowledge base.
The task that each component performs is defined independently
of the entries either in the protocol domain knowledge bases or
in the domain ontology. The relationships among all the EON
components are well delineated, and debugging of the overall
system is correspondingly enhanced. Indeed, assuming that the
reusable problem-solving components such as the therapy
planner and the eligibility-determination system are fully tested
and reliable, when run-time errors occur, it is easy to trace the
failure either to a faulty proposition in the protocol domain
knowledge base, or to a misconceptualization in the domain
ontology.

 Given that the EON components may operate in a variety of
clinical application areas, and that application areas themselves
evolve over time, there may be several sets of domain ontologies
(and, correspondingly, a large number of different protocol
domain models derived from those ontologies) with which the
EON components may need to interact in a particular
installation. Despite potential problems in version
management, all domain ontologies and protocol models can be

stored in a compartmentalized fashion, separate from the
problem-solving components that operate on them. As a
consequence of this modularization, the principal requirement at
run time simply is to assure that the relevant ontology and
protocol domain models are being used to inform the other EON
components. Our research group, like several other teams of
investigators (Gruber, 1993; van Heijst et al., 1995), continues
to explore new approaches for archiving, indexing, and retrieving
appropriate selections from on-line libraries of domain
ontologies.

 Investigators in the area of software engineering increasingly
emphasize the importance of making ontologies and domain
models explicit when building computer programs (Sutcliffe, et
al., 1996; Regoczei and Plantinga, 1987; Hayes-Roth, 1994).
For example, the Domain-Specific Software Architectures
(DSSA) program recently supported by the United States
Defense Advanced Research Projects Agency has had as its
centerpiece the notion of building software artifacts by first
defining an appropriate domain ontology and domain model
(Hayes-Roth, 1994). The DSSA philosophy is that software
engineers should construct an explicit, semiformal domain
description as one of the first steps in designing a system. The
domain model (which primarily defines concepts and
relationships, and which thus is more like an ontology) provides
an exhaustive catalogue of the domain concepts about which the
software will need to be concerned. In the DSSA approach, the
domain model (ontology) is an external source of documentation
to which developers can refer when implementing their code. As
new pieces of program code are written, the programmers can
refer to the domain model to ensure that their software’s
references to elements in the application area are internally
consistent, and that no new domain concepts get written into the
software without first documenting those concepts in the domain
model.

 The Protégé approach takes the DSSA methodology one step
further, by asking software engineers to represent the domain
ontology in a machine-readable format. The list of concepts and
relationships is available not only to provide system
documentation, but also to inform the knowledge-acquisition
system, the database system, and the problem solvers that
operate on the domain knowledge in a direct and transparent
fashion. Of course, a consequence of this additional
functionality is that developers must represent the domain
ontology in a restricted, formal language.

 The Protégé Ontology Editor enforces considerable structure on
the way in which developers define domain concepts. We
believe that this degree of rigidity is quite justified, given the
benefits that result from the availability of domain ontologies
and domain models in machine-processable form. Other recent
methodologies for development of knowledge-based systems,
such as commonKADS (Schreiber et al., 1994) and GAMES II

(van Heijst et al., 1995) have adopted similar views on the role
of machine-readable domain ontologies in the system-
development process.

 The language for expressing ontologies in Protégé is a frame-
based representation system in which classes have slots of
defined cardinality and data type. Slots may have data types such
as integer, float, string, or Boolean, or may take on values that
represent instances of other classes in the ontology (e.g., when
class called prescription has a slot called drug-prescribed that
takes on as values instances of another class called drug). When
the data type of a slot is instance, the ontology-definition
language allows the developer to set explicit constraints on the
classes whose instances are allowed as values for that slot.
When the data type of a slot is string, the language allows the
user optionally to specify a grammar that restricts the kinds of
strings that may be used as values for that slot. Some ontology-
definition systems such as Ontolingua (Gruber, 1993) allow
developers to enter arbitrary logical expressions (axioms) to
place further constraints on slot values (e.g., an axiom such as a
prescription may not specify intravenous administration of a
drug if the form of the drug is tablet). Protégé currently does not
have the facility to support general axioms, specifically because
Protégé has no way of enforcing such arbitrary constraints (e.g.,
by preventing a user from entering a prescription for oral
administration of an injectable drug). In Ontolingua, such
axioms provide the developer with documentation of semantic
relationships, but are not enforced by the computer system. We
believe that axioms should provide more than documentation,
however, and that knowledge-acquisition tools should be able to
use such axioms to check for semantic inconsistencies in the
information that users enter. We currently are investigating the
possibility of incorporating into our ontology-representation
system a constraint language that is more restrictive than the one
available in Ontolingua (which assumes full first-order logic), so
that constraints on elements of the ontology can be verified by
the computer in a tractable manner. The sanctioning rules in
GRAIL (Rector et al., 1993) constitute one such restricted
constraint language, although constraints in GRAIL are tied to
the semantics of particular kinds of medical concepts. For our
Protégé work, we are seeking a constraint language that can put
restrictions on the classes and instances of an arbitrary ontology,
but that will not require the use of complex theorem proving to
evaluate expressions.

4.2 Maintaining the Semantics
The Protégé methodology requires developers to construct
domain ontologies as organizing frameworks for their software-
development activities. Our approach does not prescribe a means
for developers to build those ontologies in the first place. We
view ontology development fundamentally as a creative,
modeling activity, and recognize that the distinctions that
developers will make about a given application area typically are
ad hoc and motivated by the kinds of tasks that the developers

envision information technology will address (Musen, 1992).
For example, our empirical experience when creating an
ontology of clinical concepts for a computer-based progress-note
system confirms that a physician can construe patient-specific
descriptors in highly idiosyncratic ways, based on how the
physician might foresee using those descriptors in practice
(Musen et al., 1995b). The result is that there is no canonical
model for how ontologies for any particular application area
should be defined. The ontological distinctions that system
builders make necessarily reflect the distinctions that they
anticipate end users will need to make in their work.

 Computers are vehicles for communication. When developers
construct a domain ontology, they are defining the basis of
communication between the developers and the computer
system’s end users. Winograd and Flores (1986) refer to the
terms that constitute such an ontology as a systematic domain, a
collection of symbols with precise, agreed-upon semantics shared
by all people who may interact with the computer—developers,
end users, and maintainers. In this sense, the terms that form
the basis for Protégé’s domain ontologies constitute systematic
domains. The ontologies add to the terms of these systematic
domains explicit representations of some of the salient semantic
relationships among concepts, including taxonomic and
partonomic relationships, and constraints on cardinality and data
type. Ultimately, however, the semantics of the concepts
themselves (e.g., “What is a prescription?”, “What is a drug?”)
are not declared in the ontology, but are part of the assumed
background knowledge that allows both developers and users to
interpret the contents of the ontology in the first place. Even
when an ontology includes axioms about the necessary and
sufficient conditions required to classify each concept (e.g., as in
a description logic; Campbell et al., 1996), the symbols used to
define those conditions typically lack explicit semantics
themselves, and ultimately it is the shared background of the
developers and users that allows these individuals to interpret the
full meaning of each concept in the ontology.

 This reliance on shared background to interpret the meanings of
terms in a systematic domain is not an arcane issue: This
phenomenon is reflected in every interaction that every user may
have with every computer system. As Norman (1986) cogently
describes, the developer of a computer system has a mental
model of what she wants to communicate to the end user who
interacts with the finished piece of software. (In the case of
EON, the developers have a mental model of how the different
problem solvers will assist with aspects of protocol-based care.)
End users of the software perceive the behavior of the computer,
and from that behavior infer their own mental model of what it
is that the original software developer intended to communicate.
For example, the end user of a clinical information system
containing the EON components may be informed that certain
patients are potentially eligible for a given protocol. Because
the term potentially eligible has a precise meaning defined in

terms of specific logical operations on protocol eligibility
criteria and patient data, the end user must develop his own
©1mental model of what potentially eligible means in the
context of interacting with the system that contains EON. In
general, for end users to be fully effective in interacting with the
computer, they must be able to develop mental models of
protocol-eligibility determination that match the mental models
of those developers (1) who created the ontology of protocol-
eligibility terms and (2) who encoded descriptions of the
eligibility criteria of specific protocol in terms of that ontology.

 All interactions with the decision-support elements of the EON
system require end users to develop mental models of the
meanings of the terms used to communicate protocol-specific
advice. These meanings are the same as those ascribed to the
concepts in the domain ontologies that guide the whole software-
engineering process. Whereas a domain ontology developed
using Protégé serves the important functions of cataloging the
relevant domain concepts and of defining a subset of
relationships among those concepts, much of that ontology’s
semantics unfortunately must remain implicit in the mental
model of the developer. It is the developer’s common
background with his user community, however, that allows the
users to apprehend those implicit semantics by observing the
computer’s behavior and thus constructing their own mental
models of the developer’s intentions.

 The notion that so much of an ontology’s semantics can be
underspecified seems at odds with the formal representation
systems used in Protégé and other approaches to construct
domain ontologies in the first place. Clearly, there is an
assumption that, by representing the ontology in logic,
developers can assure well-specified semantics. Unfortunately,
however, no representation system can overcome these semantic
difficulties. There is an allure when using systems such as
Ontolingua to enhance the representation of ontologies by
specifying multiple axioms for each class to define logical
relationships that are not captured directly in the frame hierarchy.
Even if it were possible to specify semantic relationships
completely, however, those declarative semantics become undone
when the domain ontology is interpreted by a problem-solving
method, such as EON’s therapy planner or eligibility-
determination module. Because problem-solving methods are
procedural components, they apply operational semantics to the
data structures that they process—disregarding any declarative
specifications that the methods otherwise cannot interpret.

4.3 Ontologies and Terminologies
Standard controlled terminologies such as the ICD lack the
explicit structure and declarative relationships found in the
ontologies processed by Protégé. Controlled terminologies may
specify hierarchical relationships among terms, but they do not
attempt to define concepts in terms of attributes and other
relationships. Some workers are attempting to impose

additional structure on controlled terminologies by various
means. The Medical Entities Dictionary (MED; Cimino et al.,
1994), for example, makes explicit the hierarchical relationships
that exist in a number of standard terminologies in use at
Columbia-Presbyterian Medical Center. Current work in the
Kaiser-Permanente Medical Group attempts to add additional
distinctions to an expanded version of SNOMED using
description logic (Campbell et al., 1996). These efforts improve
on the underlying controlled terminologies significantly by
clarifying relationships among concepts and by facilitating both
manual and semi-automated maintenance over time. They also
provide a common database that applications programs at a given
site can query to identify appropriate elements of the
terminologies. In the EON architecture (see Figure 1), all
components have access to the domain ontology precisely for the
purpose of making these kinds of queries.

 There is a difference in the philosophy of our work, however,
and that of these other investigators. When system builders
create a central database of clinical concepts that can be queried
by application programs built independently of that database, the
application programs may make a host of assumptions about the
clinical domain that are independent from the terminology stored
in the database. Although it is advantageous to separate out
from these programs as much of the domain-specific
terminology as possible, the programs still must make many
domain-specific assumptions. A results-reporting system that
uses the Medical Entities Dictionary to provide standard names
for laboratory tests, for example, may still have buried within it
a model of clinical specimens (involving concepts such as time
of collection, time of accession, normal ranges, and so on) that
exists only in program code and that is not immediately
inspectable or editable; an order-entry system that uses a central
database of controlled terms for clinical interventions still may
make many assumptions about the practice patterns of health-
care workers that are inaccessible to direct inspection. Our goal
in the EON project is to maximize the knowledge about the
entire clinical enterprise represented within our domain
ontologies, so that there is a central, declarative representation of
all the domain knowledge that any software module in the
system might want to access. We seek not only an explicit
enumeration of terms or clinical concepts, but also a shared
resource that defines a comprehensive model of the clinical
enterprise—allowing us to automate clinical tasks by using
generic “shell” programs that access this shared resource to
obtain essentially all their domain-specific knowledge.

 Our approach requires us to use controlled terminologies such
as SNOMED as building blocks for our domain ontologies. To
create an ontology for a particular area of medicine, we would
not necessarily want to import all the concepts used in a given
controlled terminology, but rather we would attempt to select a
subset of terms relevant for the domain at hand. We thus vie w
controlled terminologies—and computer-based terminology

servers such as the GALEN (Rector et al., 1993) and the MED
(Cimino et al., 1994)—not only as resources to be used
primarily by application programs, but also as essential inputs
to help software engineers in the construction of the more
comprehensive domain ontologies needed to build component-
based systems such as EON.

 As demonstrated by the EON architecture, separation of the
domain knowledge from the problem solvers leads to a new kind
of software engineering. Software engineers consolidate their
domain modeling as a separate development activity, and map
generic, reusable problem-solving components to their domain
models in explicit ways. We already have evidence that the use
of domain ontologies to generate domain-specific knowledge-
acquisition tools facilitates domain modeling; our expectation is
that the Protégé methodology will have measurable affects on
system maintenance as well. Our component-based approach to
software engineering also is readily supported by emerging
standards for distributed object systems, such as CORBA.

 The current Protégé Ontology Editor does not offer the
developer very much support for merging several ontologies
together, or for incorporating into ontologies concepts that
might be derived from some vocabulary server. Future work in
our group will concentrate on principled ways to bring two or
more ontologies together, and to import into our ontologies lists
of concepts derived from standardized sources. Our ultimate goal
is to develop the technology necessary to manage libraries of
ontologies that might be downloaded from distributed servers on
the Internet, and to aid software engineers in adapting those
ontologies to the requirements of the applications that ultimately
they wish to develop.

Acknowledgments

This work has been supported in part by grants LM05708 and
LM05304 from the National Library of Medicine, by a grant
from the National Action Plan on Breast Cancer, and by contract
N66001-94-D-6052 supported by the Defense Advanced Research
Projects Agency. Dr. Musen is the recipient of National Science
Foundation Young Investigator Award IRI-9257578. Samson
Tu, John Gennari, and Aneel Advani participated in many
valuable discussions on issues of vocabulary and ontology in
Protégé and EON. Ray Fergerson and Zaki Hasan have provided
superb programming support for the Protégé and EON projects,
respectively.

References

Blum, B.I. (1991). The software process for medical applica-
tions. In: Timmers, T. and Blum, B.I (eds). Software En-
gineering in Medical Informatics. pp. 3–26. Amsterdam:
North-Holland.

Booch, G. (1994). Object-Oriented Analysis and Design with
Applications. Second edition. Reading, MA: Addison–
Wesley.

Campbell, K.E., Cohn, S.P., Chute, C.G., Rennels, G.D., and
Shortliffe, E.H. (1996). Gálapagos: Computer-based support
for evolution of a convergent medical terminology. In: Pro-
ceedings of the AMIA Fall Symposium. American Medical
Informatics Association. Washington, DC, October, pp.
269–273.

Cimino, J.J., Clayton, P.D., Hripcsak, G., and Johnson, S.B.
(1994). Knowledge-based approaches to the maintenance of a
large controlled medical terminology. Journal of the
American Medical Informatics Association 1:35–50.

Clancey, W.J. (1983). The epistemology of a rule-based expert
system: A framework for explanation. Artificial Intelligence
20:215–251.

Das, A.K., Shahar, Y., Tu, S.W., and Musen, M.A. (1994). A
temporal-abstraction mediator for protocol-based decision-
support systems. Proceedings of the Eighteenth Annual
Symposium on Computer Applications in Medical Care,
Washington, DC, November, pp. 320–324.

Das, A.K. and Musen, M.A. (1994). A temporal query system
for protocol-directed decision support. Methods of
Information in Medicine, 33:358–370.

Eriksson, H., Puerta, A.R., and Musen, M.A. (1994). Genera-
tion of knowledge-acquisition tools from domain ontologies.
International Journal of Human–Computer Studies, 41:425–
453.

Eriksson, H., Shahar, Y., Tu, S.W., Puerta, A.R., and Musen,
M.A. (1995). Task modeling with reusable problem-solving
methods. Artificial Intelligence 79:293–326.

Feinstein, A.R. (1988). ICD, POR, and DRG. Unsolved sci-
entific problems in the nosology of clinical medicine. Ar-
chives of Internal Medicine 148:2269–2274.

Gennari, J.H., Tu, S.W., Rothenfluh, T.E., and Musen, M.A.
(1994). Mapping domains to methods in support of reuse.
International Journal of Human–Computer Studies, 41:399–
424.

Gruber, T.R. (1993). A translation approach to portable ontol-
ogy specifications. Knowledge Acquisition, 5, 199-220.

Guarino, N., and Giaretta, P. (1995). Ontologies and knowledge
bases: Toward a terminological clarification. In N.J.I. Mars
(ed.), Towards Very Large Knowledge Bases, IOS Press, pp.
25-32.

Hayes-Roth, F. (1994). Architecture-based acquisition and de-
velopment of software: Guidelines and recommendations
from the ARPA Domain-Specific Software Architecture
(DSSA) program. Technical report. Teknowledge Federal
Systems, Palo Alto, CA.

Musen, M.A. (1992). Dimensions of knowledge sharing and
reuse. Computers and Biomedical Research 25:435–467.

Musen, M.A., Carlson, C.W., Fagan, L.M., Deresinski, S.C.,
and Shortliffe, E.H. (1992). T-HELPER: Automated support
for community-based clinical research. In: Proceedings of the
Sixteenth Annual Symposium on Computer Applications in
Medical Care, pp. 719–723, Baltimore, MD.

Musen, M.A., Gennari, J.H., Eriksson, H., Tu, S.W., and
Puerta, A.R. (1995a). PROTÉGÉ-II: Computer support for
development of intelligent systems from libraries of
components. In: Proceedings of MEDINFO ’95, Eighth
World Congress on Medical Informatics, pp. 766–770, Van-
couver BC.

Musen, M.A., Wieckert, K.E., Miller, E.T., Campbell, K.E.,
and Fagan, LM. (1995b) Development of a controlled medi-
cal terminology: Knowledge acquisition and knowledge rep-
resentation. Methods of Information in Medicine 34:85–95.

Musen, M.A., Tu, S.W., Das, A.K., and Shahar, Y. (1996).
EON: A component-based approach to automation of pro-
tocol-directed therapy. Journal of the American Medical In-
formatics Association 3:367–388.

Norman, D.A. (1986). Cognitive engineering. In: Norman,
D.A. and Draper, S.W. User Centered System Design: New
Perspectives on Human–Computer Interaction. pp. 31–61.
Hillsdale, NJ: Lawrence Erlbaum Associates.

Orfali, R., Harkey, D., and Edwards, J. (1996). The Essential
Distributed Objects Survival Guide. New York: John Wiley
& Sons.

Rector, A.L., Nowlan, W.A., and Glowinski, A. (1993). Goals
for concept representation in the GALEN project. In: Pro-
ceedings of the Seventeenth Annual Symposium on Com-

puter Applications in Medical Care, pp. 414–418, Wash-
ington D.C.: McGraw-Hill.

Regoczei, S., and Plantinga, E.P.O. (1987). Creating the do-
main of discourse: Ontology and inventory. International
Journal of Man-Machine Studies 27:235–250.

Schreiber, A.T., Wielinga, B., Akkermans, J.M., van de Velde,
W., and de Hoog, R. (1994). CommonKADS: A compre-
hensive methodology for KBS development. IEEE Expert
9:28–37.

Shahar, Y. and Musen, M.A. (1996). Knowledge-based tempo-
ral abstraction in clinical domains. Artificial Intelligence in
Medicine, 8:267–298.

Shahar, Y. (in press). Knowledge-based temporal abstraction.
Artificial Intelligence.

Sutcliffe, A.G., Benyon, B., and van Assche, F. (eds) (1996).
Domain Knowledge for Interactive System Design, Pro-
ceedings of the IFIP TC8/WG8.2 Conference on Domain
Knowledge in Interactive System Design, Switzerland, May
1996. London: Chapman and Hall.

Tu, S.W., Eriksson, H., Gennari, J.H., Shahar, Y., and Musen,
M.A. (1995). Ontology-based configuration of problem-
solving methods and generation of knowledge-acquisition
tools: Application of PROTÉGÉ-II to protocol-based deci-
sion support. Artificial Intelligence in Medicine. 1995;
7:257–289.

Tu, S.W. and Musen, M.A. (1996). The EON model of inter-
vention protocols and guidelines. Proceedings of the AMIA
Fall Symposium. American Medical Informatics Associa-
tion. Washington, DC, October, pp. 587–591.

Tu, S.W., Kemper, C.A., Lane, N.M., Carlson, R.W., and
Musen, M.A. (1993). A methodology for determining pa-
tients’ eligibility for clinical trials. Methods of Information
in Medicine 32:317–325.

van Heijst, G., Falasconi, A., Abu-Hanna, G., Schreiber, G.,
and Stefanelli, M. (1995). A case study in ontology library
construction. Artificial Intelligence in Medicine 7:227–255.

Waterman, D.A., Hayes-Roth, F., and Lenat, D.B. (eds). (1983).
Building Expert Systems. Reading, MA: Addison–Wesley.

Winograd, T., and Flores, F. (1986). Understanding Computers
and Cognition: A New Foundation for Design. Reading
MA: Addison–Wesley.

