
Modeling Product Line Architectures through Change Sets and Relationships

Scott A. Hendrickson and André van der Hoek
Department of Informatics

University of California, Irvine
Irvine, CA 92697-3440 U.S.A.
{shendric, andre}@ics.uci.edu

Abstract

The essence of any modeling approach for product
line architectures lies in its ability to express variabil-
ity. Existing approaches do so by explicitly specifying
variation points inside the architectural specification
of the entire product line, usually with optional and
alternative elements of some form. This, however,
leads to a sizable mismatch between conceptual vari-
ability (i.e., the features through which architects logi-
cally view and interpret differences in product archi-
tectures) and actual variability (i.e., the modeling con-
structs through which the logical differences must be
expressed). We contribute a new product line architec-
ture modeling approach that unites the two. Our ap-
proach uses change sets to group related architectural
differences and relationships to govern which change
set combinations are valid when composed into a par-
ticular product architecture. The result lifts modeling
of variability out of modeling architectural structure,
consolidates related variation points, and explicitly
and separately manages their compatibilities.

1. Introduction

The use of product lines as a principled form of
software reuse has significantly increased over the past
decade [6, 7, 22, 27]. This paper is concerned with how
to define and evolve a product line and the individual
products that constitute it. While a few exceptions exist
[5, 15], the predominant way of doing so is through a
product line architecture (PLA): an abstraction in
which the high-level structure of the product line is
defined in terms of architectural elements that are
(eventually) mapped onto the source code that imple-
ments the product line [6].

A key aspect of any PLA is that it must capture the
variabilities that exist in the product line. To date, a
variety of different modeling languages have been pro-
posed for capturing PLAs [2, 23, 32, 34]. Common to
all of these modeling languages is that they capture a

PLA as a single, monolithic architecture containing
variation points to differentiate among products. These
variation points, architectural elements themselves,
take on several forms. Koala uses switches [23], Mé-
nage allows optional, variant, and optional variant ele-
ments [11], and COVAMOF utilizes optionals, alterna-
tives, optional variants, variants, and values [32]. In all
of these cases, the result is what could be considered a
configurable architectural specification: by making
appropriate choices to resolve the variation points, a
single product architecture describing a single product
is selected from the PLA [30].

While insertion of variation points in an architec-
tural description can adequately model PLA variation,
it also exhibits a sizable mismatch between conceptual
and actual variability. For instance, consider an op-
tional feature, which is conceptually described as in-
volving one or more components and links that are
included or excluded in unison. However, a traditional
approach models each component and link separately
as a variation point in and of itself, each governed by
its own redundant (often Boolean) clause to determine
inclusion or exclusion. Thus, the way in which an ar-
chitect logically views and interprets a PLA, i.e., in
terms of the features that determine differences among
individual products, does not match the modeling con-
structs available to express those differences.

The problem of redundancy is compounded and
transformed into an intricate problem of relationship
management when additional kinds of variabilities are
introduced (e.g., variants, optional variants, alterna-
tives), and especially when those variabilities interact
(e.g., selection of one variant requires inclusion of an-
other). Keeping track of which individual variation
points belong together quickly becomes a nightmare of
repetitive, brittle, and non-intuitive expressions.

The solution presented in this paper alleviates these
difficulties by bringing together conceptual and actual
variability. Specifically, we contribute a new modeling
approach that uses change sets to group related archi-
tectural differences and relationships to constrain

which combinations of change sets are valid when
composed into a particular product architecture.

A change set consolidates related variation points
into a single conceptual variation. Instead of embed-
ding variation points directly in the architecture, our
approach promotes change sets to be first-class entities
consisting of sets of closely-related additions, remov-
als, and (property) changes performed on the architec-
tural description. Doing so eliminates the need for
variation points entirely. Furthermore, change sets are
independently manipulatable, making them the primary
representation mechanism and focus for architects.

Relationships ensure that only desired product archi-
tectures are constructed. They allow an architect to (1)
explicitly set the rules according to which change sets
may be combined, and to (2) form the basis for the
modeling of variants, includes, excludes, and other
kinds of concepts common to PLA modeling [34]. Note
that relationships are specified at the same level as
change sets, thereby removing the redundancy existent
in previous approaches and separating out each indi-
vidual relationship into its own entity that can be inde-
pendently manipulated and managed.

Overall, our approach turns the existing approach of
“architecture first, variability second” into one of “ar-
chitecture first, variability first.” Both an architecture
and its variability are equally important and must be
equally available to the architect. Matching the model-
ing facilities with conceptual thinking is a critical first
step in realizing this equality. We believe the results
presented in this paper demonstrate that our approach
successfully achieves this first step.

2. Background

The work presented in this paper relies on concepts
from the areas of software architecture, which includes
product line architecture, and configuration manage-
ment. We introduce these concepts here.

2.1 Software Architecture

The field of software architecture provides high-
level abstractions for representing the structure, behav-
ior, and key properties of a software system. Software
architectures involve descriptions of the elements from
which systems are built, interactions among those ele-
ments, patterns that guide their composition, and con-
straints on these patterns [26].

Architecture description languages (ADLs) [20] aid
architecture-based development by providing formal
notations for describing software systems. Examples of
ADLs include C2SADEL [19], Darwin [18], Rapide
[17], UniCon [31], and Wright [1]. Some are supported

by an architecture design environment through which
an architect can graphically design and manipulate ar-
chitectures, e.g., ArchStudio [12] or AcmeStudio [33].

Whereas a “regular” software architecture only de-
fines the structure of a single software system, a prod-
uct line architecture (PLA) defines the architectural
structure for a set of closely-related products [6]. As
such, a PLA serves a dual role. First, it must support
understanding and manipulating the commonalities and
variabilities that exist among individual product archi-
tectures constituting the PLA. Second, it must support
identification of one or more individual product archi-
tectures from the PLA, for instance to deploy one or
more individual products to a client.

A number of ADLs support the specification of
product line architectures, including xADL 2.0 [9],
Koala [23], and GenVoca [3]. These ADLs typically
distinguish core elements from variation points, the
latter specifying places in the PLA where differences
exist among specific product architectures. Most ex-
press these differences in some form of configuration
or constraint language and promote commonly-used
rules to first-class language constructs. For instance,
xADL 2.0 uses Boolean expressions and Koala has a
language construct for switches that routes connections
to one of several alternative interfaces.

2.2 Configuration Management

The discipline of configuration management (CM)
has been primarily concerned with capturing the evolu-
tion of a software system at the source code level [10].
For this, it has extensive and detailed mechanisms and
procedures for storing multiple versions of code and
allowing multiple developers parallel access to that
code [8]. Automated conflict detection and merge rou-
tines help in reconciling overlapping changes that may
arise as a result of parallel development [21].

Of interest to this paper are the concepts of exten-
sional and intensional versioning [8]. In extensional
versioning, the configuration management system fo-
cuses on managing versions of artifacts that result after
making changes. Typically, a version graph is used to
relate different versions of an artifact; developers re-
trieve a particular version, modify it, and then add the
new version to the graph when complete.

In contrast, intensional versioning makes changes a
first class entity, inverting the relationship between
versions and changes [8]. Instead of ensuring that each
version is uniquely stored and accessible, intensional
versioning stores each change as a change set (a
“delta”) independently from the other changes. So,
instead of requesting a version of an artifact, develop-
ers retrieve an artifact by requesting a series of change

sets from which a “version” is constructed. Similarly,
after modification of this “version,” the delta between
this new and the original version is stored as an indi-
vidually-identifiable change set. This has the advantage
that new incarnations of an artifact can be composed by
mixing and matching different change sets.

3. Motivating Example

To understand the problems with current PLA mod-
eling approaches, we introduce a motivating example: a
hypothetical software system implementing an audio
player available in a Free, Trial, and Pro version. As
shown in Table 1, each version differs in the set of
components that constitute its software architecture.
Each architecture is shown using boxes for compo-
nents, small boxes with directional arrows for inter-
faces, and lines connecting interfaces for connections.

Figure 1 shows a representation of the audio player
as a traditional PLA. The notation is as follows: core
elements belonging to all product architectures are
shown as solid boxes or lines, optional elements as
dashed boxes or lines, and variant elements as large
boxes containing the variants. Additionally, but not
shown, each variation point is annotated with a Boo-
lean guard that specifies how to construct desired
products. For example, the CD Reader component
(part of a variant component) has a guard that reads:

ProductType == 'free' || ProductType == 'trial'
indicating that this particular variant is included in both
the Free and Trial versions of the player.

Modeling product variation as individual variation
points in a PLA reveals the first difficulty: high-level
conceptual desires must be expressed in terms of mul-
tiple, low-level variation points. In our example, we

conceptually desire “a Free product that plays only
CD’s” and “a Trial product with a purchase reminder
that plays both CD’s and MP3’s.” However, these must
actually be expressed disjointly, using many individual
variation points. For example, modeling the MP3 vari-
ability involves the MP3 Variant, its two optional inter-
faces, links, and an optional Sound Source interface.

Additionally, each low-level variation point must be
governed by its own constraint expression to determine
which parts of the PLA are included in which products.
These are highly redundant since, as just discussed,
multiple variation points may be required to express a
single feature. Thus, the second difficulty: constraint
expressions are redundantly spread throughout the
architecture. While these expressions can sometimes
be updated automatically [11], consider what happens
when creating the new Basic version of the player
shown in Figure 2. This version is similar to the Pro
version, except that it includes the CD Reader from the
Free version. When expressing this new product, the
architect must tediously check, and potentially update,
each and every constraint expression. Here, capturing
the Basic product would involve updating the CD
Reader, MP3 Encoder / Decoder, and Sound Source
components, their interfaces, and links.

The third issue is that constraint expressions imply
relationships, hiding dependencies among features.
This can be seen with the additional interface on the
Sound Source component, as highlighted in Figure 2. It
was previously only present in the Pro version of the
product. However, it is not the version of the product
that determines its inclusion, but the presence of the
CD Reader / Writer or MP3 Encoder / Decoder. Cur-
rent techniques only allow one to model this interface
as optional, hiding the dependency in the constraint
and, thus, losing the relationship.

4. Approach

Our work was sparked by the observation that exist-
ing approaches to modeling product line architectures
are predominantly extensional in nature. However, as
the example in Section 3 shows, conceptual differences
in product features and their interrelationships are not

Table 1. Different audio player versions.
Product Architecture

Free

Trial

Pro

Sound
Source Player Purchase

Reminder

MP3
Decoder /
Encoder

MP3
Decoder

MP3 Variant

CD
Reader /

Writer

CD
Reader

CD Variant

Figure 1. Audio player product line architecture.

easily expressed in the available modeling constructs.
The first key insight to our solution is that an inten-

sional approach based on change sets provides a natu-
ral mapping from conceptual intent and understanding
to actual realization. The second key insight is that
“straight” change sets, as they are applied in the con-
figuration management field, are not sufficient: explicit
and detailed management of change set relationships
must complement their use. Below, we detail these two
insights and outline our solution in the context of the
motivational example.

4.1 Change Sets

The traditional model of intensional versioning as
used in the field of configuration management distin-
guishes baselines from change sets. A baseline is a be-
ginning, formed by a configuration of artifacts that
represents a stable state of the software being managed.
Change sets represent independent increments from the
baseline, such as a bug fix or a new feature addition.
Each change set is captured as a “diff,” detailing the
exact lines of code added, removed, or changed with
respect to the baseline [8]. A particular version of the
software is then constructed by merging a desired set of
change sets to the baseline.

The advantages of this approach are twofold:
1. Because each change set encapsulates a logically-

related set of changes, it provides developers with a
natural model of interacting with the configuration
management system. No longer must they mentally
map desired conceptual features onto specific arti-
fact versions; they can request features by name.

2. Because each change set is built from the baseline
and stored independently from other change sets, it
is possible to combine change sets in new ways.
This is the key to intensional versioning: combining
different change sets produces different results.

These are the exact advantages that we would like to
achieve with respect to PLAs. However, there is one
major disadvantage to using intensional versioning:
3. Because each change set is independent, change

sets may exhibit conflicting changes, which pro-
duce invalid or incomplete results when combined.
For instance, one change set may remove a line of
code that another happens to modify.

We discuss how we address this disadvantage using the
concept of relationships and a specialized merge proc-
ess in the next sections. Here, we describe the founda-
tion of modeling PLAs using intensional versioning.

We first modify the code-centric concepts of base-
lines and change sets to capture architectural concepts.
This is done by making architectural elements the con-
stituents of change set additions and removals. Second,
we increase a change set’s independence by abandon-
ing the concept of a (required) baseline, instead always
starting out with an empty (virtual) baseline. This al-
lows an architect to use change sets in new contexts
without requiring a core (baseline) architecture as a
starting point. Of course, an architect may still use a
change set as a baseline if desired, for example, to cap-
ture elements common to all products. Finally, we al-
low a change set to be modified at any time. Because
PLA design is not linear, it must be possible to update
all change sets at all times, so features stay coherent.
This differs from change sets in the configuration man-
agement world. Those change sets only capture the
evolution of a baseline over time and are not intended
to be modified once they are created. While malleable
change sets may introduce more conflicts during the
design process, we address this issue with relationships
and a specialized merge process to be described later.

To illustrate the use of change sets in our approach,
consider the example presented in the previous section,
but now restated using change sets. The approach is
flexible enough that variability can be captured at many
levels of granularity. Exactly how is up to the architect
and their preferences. For instance, a very fine-grained
approach could be used where each component, inter-
face, and link is separately modeled as optional, each
represented by its own change set.

Alternatively, a very coarse-grained approach could
differentiate entire products. Suppose we begin with
the Basic audio player as a first (baseline) change set.
To turn the Basic player into the Trial version requires
a change set that: (1) adds the Purchase Reminder
component, its link and interfaces, (2) removes the
MP3 Encoder / Decoder, replacing it with the MP3
Decoder component, and (3) removes the now defunct
link to, and interface on, Sound Source. Similarly, an-
other change set could capture the changes that morph
the Basic player into the Free version, and still another
would morph the Basic player into the Pro version.

These two approaches, fine-grained change sets and
product-oriented change sets, technically work, but
perhaps do not have as many benefits from an archi-
tect’s point of view as others. A better approach is to
map features onto change sets. This is demonstrated by
the change sets listed in Table 2, where each change set

Figure 2. New Basic audio player version.

adds a particular feature to the audio player. In each of
these change sets, an annotation with a “+” means that
it adds that particular element and an annotation with
an “×” means that it removes that particular element.
Elements without any annotations are there for the sole
benefit of the reader, placing the changes within con-
text. For example, the CD Writer change set removes
the CD Reader component with its link, and adds the
CD Reader / Writer component with its links.

Note that these feature-oriented change sets have an
implicit hierarchical arrangement. The Record Support
change set, which only adds a single outgoing interface
to the Sound Source component, prepares this compo-
nent for use by other components that record audio
streams (in addition to playing them). This was sepa-
rated out from the MP3 Encoder and CD Writer change
sets, which both rely on its presence. The other change
sets depend only on the Baseline change set. We will
see in the next section that these implicit hierarchical
arrangements can be conveniently and explicitly mod-
eled using relationships.

Our approach does not differentiate between com-
mon elements and variable elements. Instead, our ap-
proach uses changes sets to capture both concepts. One

advantage to this approach is that common elements
themselves may be modified by later change sets. For
instance, the Baseline change set captures elements
initially thought to be common to all product architec-
tures, while the CD Writer change set removes the CD
Reader component. This allows new variability or up-
dated common functionality to be introduced without
the need to go back and modify all other product vari-
ants. Moreover, it also supports modeling product
populations [24], which involve entirely different
products to which similar changes are applied.

Finally, we note that change sets explicitly address
the first issue presented by our motivating example.
They consolidate related changes into a single concep-
tual variation, uniting concepts with the actual model-
ing constructs, therefore allowing an architect to think
in terms of features rather than variation points. Of
course, the architect is the one who ultimately decides
the exact breakdown of a PLA into change sets; they
may prefer alternative breakdowns than by feature. Our
approach still supports them fully in doing so.

4.2 Relationships

Capturing product lines using an intensional ap-
proach introduces new challenges during composition.
Invalid products may be composed out of change sets
that contain conflicting or dependent changes. We use
relationships to enable an architect to express and rea-
son about such dependencies, to support an architect in
creating only desired product architectures.

One type of relationship, structural dependencies,
operate at the level of the architecture structure, and
arise when elements introduced by one change set de-
pend on elements introduced by another. For instance,
the MP3 Encoder change set structurally depends on
the Record Support change set because it adds a link
that connects to an interface introduced by the Record
Support change set. By the same reasoning, one change
set can conflict with another if elements it introduces
depend on elements the other removes.

While structural dependencies are of a syntactic na-
ture, a PLA also involves modeling semantic relation-
ships. One such type, compatibilities, dictates which
change sets are and are not compatible with one an-
other, based on conceptual design knowledge of the
architect. For instance, our example has a trial version
of the product without record support, but with a nag-
ging purchase reminder. The intent is that users will try
the product and decide to purchase the full version for
the extra feature (or to remove the nag screen). Conse-
quently, the Record Support and Purchase Reminder
change sets are mutually exclusive: both change sets
should never be included at the same time.

Table 2. Audio player PLA change sets.
Change Set Architectural Changes

Baseline

Record
Support

CD Writer

MP3
Decoder

MP3
Encoder

Purchase
Reminder

Another semantic relationship, composition, is used
to group change sets into higher-level concepts, such as
a subsystem or entire products. For instance, it would
be useful to record that the Trial version of the audio
player is composed of the Baseline, MP3 Decoder, and
Purchase Reminder change sets. We can do so by de-
fining a Trial change set and a corresponding (compo-
sition) relationship stating that when including the Trial
change set, the Baseline, MP3 Decoder, and Purchase
Reminder change sets must also be included. Composi-
tion relationships may also refer to other change sets,
which represent compositions themselves, allowing
their hierarchical composition. It is also possible to
establish relationships among composition relation-
ships to model high-level conceptual compatibilities.

Structural dependencies, compatibilities, and com-
positions are expressed using the following constructs:
1. and relationships state that if all change sets a, b,

and c are included, then d must also be included;
2. or relationships state that if any change set a, b, or

c is included, then d must also be included; and
3. variant relationships state that from a set of change

sets a, b, and c, only a certain minimum and maxi-
mum number may be included at the same time.

The first two relationships can designate the inclusion
of multiple change sets (e.g., if a, b, and c are included,
then d, e, and f must also be included), can have ne-
gated “source” change sets (e.g., if a and b are included
and c is not included, then d must be included), and can
have negated “destination” change sets (e.g., if a or b
are included then d must not be included). They may
also be specified without “destination” change sets, in
which case the and relationship is interpreted as a dis-
junction (e.g., a, b, and c must always be included) and
the or relationship as a conjunction (e.g., a, b, or c
must always be included). The variant relationship may
contain an arbitrary number of change sets, and may
limit the number of change sets selected concurrently to
one (making a group of change sets mutually exclusive,
creating a switch [23]) or multiple (creating what CO-
VAMOF terms an alternative [32]).

As with change sets, different ways exist to choose
and organize relationships. This is influenced by the
choice of change sets, but also by personal preferences
of the architect. For instance, we previously discussed
modeling the Record Support and Purchase Reminder
change sets as mutually exclusive. However, it would
be as valid to create a relationship stating that including
the Free or Trial change sets may requires excluding
the Record Support change set. This is a matter of
taste, and usually evolves as the PLA evolves.

Finally, we note that relationships, combined with
change sets, address the remaining issues presented by

our motivating example. First, redundancy is avoided
because relationships refer to change sets rather than
individual architectural elements. Also, a relationship
only needs to be modeled once, after which any valid
product architectures must satisfy it. Second, because
relationships are modeled explicitly, conceptual inter-
dependencies among change sets are no longer hidden.

4.3 Merging

Relationships aid an architect in composing only
valid collections of change sets. However, since we are
capturing PLA concepts and allow an architect to “go
back” and modify a change set at any time, it is possi-
ble to produce circular (or cyclic) dependencies, which
requires a special merge algorithm, compared to tradi-
tional configuration management approaches.

If we used a sequenced merging algorithm with cir-
cular and cyclic structural dependencies, two problems
arise. The first we refer to as “ghost additions,” and
occurs when a link from the first change set relies on
the presence of an interface from the second change set
and, vice versa, a link from the second change set relies
on the presence of an interface from the first change
set. Regardless of which change set is applied first, a
necessary element will not be there. The second prob-
lem is “ghost removals:” if two change sets each re-
move an element established by the other, one of those
removed items is bound to erroneously reappear.

To address these two problems, we use a special
merge algorithm. First, we apply all additions of all
change sets, in the order of components first, interfaces
next, and links last. Then we perform all of the remov-
als, in the order of links first, interfaces next, and com-
ponents last. The result is that all necessary elements
are always there, avoiding ghost additions, and
elements that are intended to be removed are always
removed, avoiding ghost removals. The benefit of this
approach is that cyclic change sets are applied pre-
dictably and consistently.

Note, this advocates an automatable approach with
no human intervention. We can see some situations,
though, in which an architect may want to have a
slightly different behavior or even want to exhibit man-
ual control. Other merge algorithms and implementa-
tions can be envisioned accordingly and inserted into
our EASEL environment (see Section 5).

5. EASEL

To demonstrate our approach, we have implemented
it in EASEL, a new product line architecture modeling
environment. As illustrated in Figure 3, EASEL is par-
titioned into two separate areas: a drawing canvas for

specifying PLAs and a variability spreadsheet for man-
aging change sets and relationships.

If none of the special features of EASEL are used,
the drawing canvas of EASEL operates similarly to
ArchStudio [12] or AcmeStudio [33], allowing an ar-
chitect to define single architectures. But, the drawing
canvas has additional behaviors that bring it into the
realm of PLA modeling by implementing the concepts
discussed in Section 4. First, it is actually a “layered
canvas,” with each layer representing a change set. The
visible architecture, then, is constructed from the
change sets selected by the first column of the variabil-
ity spreadsheet. For example, the architecture shown in
Figure 3 is a result of the Pro, Baseline, Record Sup-
port, CD Writer, and MP3 Encoder change sets.

To realize our approach, EASEL stores change sets,
relationships, and the resulting architecture internally
using XML. Thus, changes can be consistently re-
corded and reapplied using the XML element ID’s and
property names, which are globally unique and remain
constant. It would be difficult to use textual diffs for
this purpose, since they use adjacent lines of text to
determine where a change is to be applied, and these
can potentially be modified by other change sets. Still,
and even with the specialized merging process, con-
flicts may occur when change sets modify the exact
same element in an incompatible way, i.e., two change
sets that each rename a component, but to a different
name. In such cases, the order in which change sets are
listed is used to resolve the conflict.

The second additional behavior is that each of the
elements on the drawing canvas may be annotated to
explicitly illustrate what specific changes are recorded.
In Figure 3, the CD Writer change set is selected as
such (see second column of the variability spread-

sheet), annotating the CD Reader / Writer component,
its interfaces, and its links with a “+” to show that these
elements are added, and the CD Reader component, its
interface, and its link with an “×” to show that these
elements are removed. Elements that are not a part of
the final result, but that are changed by a selected
change set, are drawn using lighter, transparent colors.
Selecting multiple change sets results in annotations
that would result from logically combining them.

The third and final additional behavior lies in how
an architect populates the contents of change set. In
EASEL, modifications are incorporated into the change
set currently selected for editing. In Figure 3, any addi-
tion or removal made by an architect at this time would
be incorporated into the Baseline change set, as high-
lighted. This allows an architect to revisit and update a
change set as easily as creating a new one.

The variability spreadsheet shown on the right hand
side of Figure 3 provides an architect with a graphical
representation through which they manage relation-
ships. Rows represent change sets and the columns
relationships. The following symbols are used:
• A circle is a source of an or relationship (e.g., A in

“if A or B are included, then C must be also”).
• A square is a source of an and relationship (e.g., A

in “if A and B are included, then C must be also”).
• A slash superimposed over a circle or square repre-

sents a source negation (e.g., B in “if A is included
and B is not included, then C must be included”).

• A plus is a change set implied by a relationship (e.g.,
C in “if A is included, then C must be included”).

• An X is a change set excluded by a relationship (e.g.,
C in “if A is included, then C must be excluded”).

Figure 3. EASEL. Relationships are Labeled R1 to R9 for Reference.

• A diamond represents a variant in a variant relation-
ship. The minimum and maximum number of vari-
ants that may be selected concurrently is viewable
and editable using context menus.

Returning to the example in Figure 3, the way to read
some of the relationships, then, is as follows:
R2. The Trial change set is logically composed of the

MP3 Decoder and Purchase Reminder change sets
(i.e., if the Trial change set is included, then the
MP3 Decoder and Purchase Reminder change sets
must also be included).

R5. The MP3 Decoder and MP3 Encoder change sets
are variants of each other; only one can be in-
cluded at a time.

R6. If either the Free or Trial change set is included,
then the Record Support change set should not be.

Note that the composition relationship for the Trial
product architecture (R2) appears to be incomplete; it
is missing the Baseline change set. This, however, is
covered by R9, which states that the Baseline change
set must be included when any of the specified change
sets below it are included; it therefore does not have to
be repeated for the Trial feature composition.

Finally, EASEL automatically detects structural de-
pendencies and conflicts between change sets, which
are added to the variability spreadsheet with a darker
background. These act as critics [29], and disappear
when no longer applicable. Additionally, EASEL does
not prevent an architect from combining change sets
that violate relationships. However, it does inform them
of violated relationships by highlighting them.

6. Evaluation

We evaluated our approach in three ways. First, we
compared the compactness of models produced using
our environment, EASEL, with those produced by a
representative of traditional, extensional environments,
Ménage [11]. We then discuss the expressiveness of
our approach. Finally, we comment on its usability by
making four typical changes to a PLA, as performed
using both approaches.

To compare model compactness, we modeled three
PLAs in both EASEL and Ménage: (1) the motivating
example in Section 3, (2) the entertainment system
used to evaluate Ménage [11], and (3) an actual system,
ArchStudio [12]. Table 3 presents these results, show-
ing that our approach resulted in more compact, and
significantly less complex, PLAs. Specifically, the ex-
cessive number of Boolean guards were replaced with
fewer change sets and relationships. This is exactly
what we hoped for, giving PLA designers a representa-
tion that is significantly less burdensome to maintain.

Our approach must be adequately expressive, able
to model intensionally all PLAs that can be modeled
extensionally using variation points. Fortunately, the
field of configuration management has already shown a
general equivalence in expressiveness of extensional
and intentional approaches [8].

It should also be possible to express any PLA that is
modeled in a feature model or through a propositional
formula. In response, we observe that these can both be
rewritten in conjunctive normal form (CNF) and there-
fore captured in EASEL as a series of or relationships.
Of course, the and relationship and variant relation-
ship of EASEL enable much more compact expres-
sions, just as the mandatory, optional, and alternative
relationships of feature models and the various analo-
gous operators of propositional formulas.

Finally, we believe that it is in the usability of our
approach that its greatest benefits are seen. A full study
is ultimately necessary to make this claim. However,
we are encouraged by the initial evidence gained from
modeling the three PLAs using both approaches. First,
the modeling of entire systems results in compact nota-
tions. But second, we informally found that our ap-
proach was easier to use for changing PLAs as well.
This was confirmed when we performed four typical
changes, which included: (1) creating a new product
architecture out of existing features, (2) adding a new
optional feature, (3) adding this feature to some prod-
ucts, and (4) updating this feature for a few of the
products. Though subjective and personal, combined
with the advantages of compactness, explicitness, and
equal expressiveness, we believe that we have suffi-
ciently shown EASEL to be a new and promising alter-
native for PLA modeling.

7. Related Work

Our work is related to several different efforts.
AHEAD, an example of feature-oriented programming

Table 3. Modeling compactness.

 Change
Sets Relationships Traditional

C
om

po
si

tio
ns

Fe
at

ur
es

C
om

po
si

tio
ns

C
om

pa
tib

ili
tie

s

S
tru

ct
ur

al

P
ro

du
ct

 D
ef

in
iti

on
s

B
oo

le
an

 G
ua

rd
s

V
ar

ia
bl

es

Example in
Section 3 4 6 4 3 2 4 26 3

Entertainment
System 0 19 0 4 5 0 114 18

ArchStudio 1 17 1 2 1 1 175 15

[28], uses a compositional expression language that can
be generically mapped onto rules that govern the un-
derlying composition process [4]. AHEAD has been
applied to the domain of product line architectures.
However, AHEAD is only “additive” and prohibits
element deletion, which is essential to our approach.

Likewise, our work is related to multi-dimensional
separation of concerns [35]. Change sets are close to
modules, and change set selection with our merge algo-
rithm, is close to a hypermodule. However, most re-
search in this area has focused on the source code level
(e.g., Hyper/J [25]) and only on adding functionality.

Aspect-oriented programming [14] is also related to
our work. By their very nature, change sets are close to
aspects in their compositional capabilities; in fact, one
could probably support the other and vice versa. How-
ever, compared to aspects, our work has taken the ge-
neric change set idea, modified it to support PLAs, and
built enhanced support through detailed relationships.

COVAMOF [32] provides perhaps the best support
for modeling variability in the extensional approach. It
certainly has the most comprehensive set of language
concepts with which an architect can model PLAs. Be-
cause our approach elevates variability to a level equal
to architecture, all COVAMOF language concepts can
be subsumed by just two concepts, change sets and
relationships. Other extensional approaches to model-
ing PLAs [2, 23, 32, 34], including our own previous
work on Ménage [11], are similarly subsumed.

Finally, the field of feature engineering has worked
on modeling features and their relationships for a num-
ber of years [5, 13]. These models usually stay at the
conceptual level, although some exceptions exist in
which attempts are made to map the conceptual fea-
tures to concrete implementations [36]. Of most inter-
est here is the work by Lago and Van Vliet, who built
an extensive mapping from conceptual features to ar-
chitectural components [16]. We believe our work
complements their work by, for the first time, providing
a PLA approach that reduces the complexity of such
mappings. In providing a modeling mechanism in
which features and variability can be naturally ex-
pressed, the mapping becomes one-to-one.

8. Conclusions

This paper contributes a new approach to modeling
product line architectures that leverages change sets
and relationships to bring together conceptual variabil-
ity and the actual modeling of this variability. By
adopting an intensional modeling approach, variability
is placed at the same level of importance as architec-
ture and the resulting modeling concepts of change sets

and relationships support architects in modeling their
PLA in a much more concise and natural sense. As
implemented in EASEL, the approach supports the
modeling of overall PLAs and the composition of indi-
vidual product architectures out of these PLAs. It par-
ticularly enables exploration of different compositions
by informing the user of whether these compositions
adhere to the rules of the relationships.

Our future work involves several different strands.
First, we wish to enhance the usability of EASEL. For
instance, it should be easy to split or combine change
sets, or move elements from one change set to another.
Second, we recognize that for a large PLA, the set of
relationships can grow large; it is incumbent to address
this problem. We will explore filters that display only
relevant relationships and attempt to group and summa-
rize them. Third, we wish to enhance EASEL’s auto-
matic analysis of structural relationships to deduce
“unless” change sets, which resolve structural conflicts.
For instance, if one change set adds a link to an inter-
face removed by another change set, it structurally con-
flicts with that change set unless a third change set is
included that removes the offending link. Automati-
cally finding this change set among the existing change
sets would help users develop consistent product archi-
tectures. Fourth, at a more conceptual level, we wish to
explore how our approach integrates with substructure
(i.e., hierarchical composition of components and con-
nectors), strong typing (which would cut across change
sets), and versioning (both at the level of the entire
PLA and individual types). Finally, we wish to fully
evaluate the usability of EASEL. These are non-trivial
cognitive implications of an approach like this that we
ignored to first accomplish our basic goal of represent-
ing PLAs as change sets and relationships.

9. Acknowledgements

Effort partially funded by the National Science
Foundation under grant number CCR-0093489, DUE-
0536203, and IIS-0205724.

10. References

[1] Allen, R. and Garlan, D. A Formal Basis for Architec-
tural Connection. ACM Transactions on Software Engi-
neering and Methodology. 6(3), p. 213-249, Jul., 1997.

[2] Asikainen, T., Soininen, T., et al. A Koala-Based Ap-
proach for Modelling and Deploying Configurable
Software Product Families. 5th International Workshop
on Product-Family Engineering. p. 225-249, Siena, It-
aly, Nov. 4-6, 2003.

[3] Batory, D. and Geraci, B.J. Composition Validation and
Subjectivity in GenVoca Generators. IEEE Transactions
on Software Engineering. 23(2), p. 67-82, Feb., 1997.

[4] Batory, D. Feature Models, Grammars, and Proposi-
tional Formulas. 9th International Software Product
Line Conference. p. 7-20, Rennes, France, Sept., 2005.

[5] Beuche, D., Papajewski, H., et al. Variability Manage-
ment with Feature Models. 1st Workshop on Software
Variability Management. p. 72-83, Groningen, The
Netherlands, Feb. 13-14, 2003.

[6] Bosch, J. Design and Use of Software Architectures:
Adopting and Evolving a Product-Line Approach.
Addison-Wesley Professional: Reading, USA, 2000.

[7] Clements, P. and Northrop, L. Software Product Lines:
Practices and Patterns. Addison-Wesley: New York,
NY, 2002.

[8] Conradi, R. and Westfechtel, B. Version Models for
Software Configuration Management. ACM Computing
Surveys. 30(2), p. 232-282, Jun., 1998.

[9] Dashofy, E., van der Hoek, A., et al. A Comprehensive
Approach for the Development of Modular Software
Architecture Description Languages. ACM Transactions
on Software Engineering and Methodology. 14(2), p.
199-245, Apr., 2005.

[10] Estublier, J., Leblang, D.B., et al. Impact of the Re-
search Community on the Field of Software Configura-
tion Management. ACM Transactions on Software En-
gineering Methodology. 14(4), p. 383-430, Oct., 2005.

[11] Garg, A., Critchlow, M., et al. An Environment for
Managing Evolving Product Line Architectures. IEEE
International Conference on Software Maintenance. p.
358-367, Amsterdam, The Netherlands, Sept., 2003.

[12] Institute for Software Research. ArchStudio, An Archi-
tecture-based Development Environment.
http://www.isr.uci.edu/projects/archstudio/, UC, Irvine.

[13] Kang, K.C., Cohen, S.G., et al. Feature-Oriented Do-
main Analysis (FODA) Feasibility Study. Software En-
gineering Institute, Technical Report CMU/SEI-90-TR-
21, Nov., 1990.

[14] Kiczales, G., Lamping, J., et al. Aspect-Oriented Pro-
gramming. 11th European Conference on Object-
Oriented Programming. p. 220-242, Jyväskylä, Finland,
Jun. 9-13, 1997.

[15] Krueger, C.W. Variation Management for Software
Production Lines. 2nd International Software Product
Line Conference. p. 37-48, San Diego, USA, Aug. 19-
22, 2002.

[16] Lago, P., Niemelä, E., et al. Tool Support for Traceable
Product Evolution. 8th European Conference on Soft-
ware Maintenance and Reengineering. p. 261-269,
Tampere, Finland, Mar. 24-26, 2004.

[17] Luckham, D.C. and Vera, J. An Event-Based Architec-
ture Definition Language. IEEE Transactions on Soft-
ware Engineering. 21(9), p. 717-734, Sept., 1995.

[18] Magee, J. and Kramer, J. Dynamic Structure in Software
Architectures. 4th International Symposium on the
Foundations of Software Engineering. p. 3-14. San
Francisco, USA, Oct. 16-18, 1996.

[19] Medvidovic, N., Rosenblum, D.S., et al. A Language
and Environment for Architecture-Based Software De-
velopment and Evolution. 21st International Confer-
ence on Software Engineering. p. 44-53. Los Angeles,
USA, May 16-22, 1999.

[20] Medvidovic, N. and Taylor, R.N. A Classification and
Comparison Framework for Software Architecture De-
scription Languages. IEEE Transactions on Software
Engineering. 26(1), p. 70-93, Jan., 2000.

[21] Mens, T. A State-of-the-Art Survey on Software Merg-
ing. IEEE Transactions on Software Engineering.
28(5), p. 449-462, May, 2002.

[22] Northrop, L. Reuse That Pays: ICSE Keynote Presenta-
tion. 23rd International Conference on Software Engi-
neering. p. 667, Toronto, Canada, May 12-19, 2001.

[23] Ommering, R.v., Linden, F.v.d., et al. The Koala Com-
ponent Model for Consumer Electronics Software. IEEE
Computer. 33(3), p. 78-85, Mar., 2000.

[24] Ommering, R.v. Building Product Populations with
Software Components. 24th International Conference
on Software Engineering. p. 255-265, Orlando, USA,
May 19-25, 2002.

[25] Ossher, H. and Tarr, P. Hyper/J™: Multi-Dimensional
Separation of Concerns for Java™. 23rd International
Conference on Software Engineering. p. 729-730, To-
ronto, Canada, May 12-19, 2001.

[26] Perry, D.E. and Wolf, A.L. Foundations for the Study of
Software Architecture. ACM SIGSOFT Software Engi-
neering Notes. 17(4), p. 40-52, Oct., 1992.

[27] Pohl, K., Böckle, G., et al. Software Product Line Engi-
neering: Foundations, Principles and Techniques. 1 ed.
468 pgs., Springer: New York, NY, 2005.

[28] Prehofer, C. Feature-Oriented Programming: A Fresh
Look at Objects. 11th European Conference on Object-
Oriented Programming. p. 419-443, Jyväskylä, Finland,
Jun. 9-13, 1997.

[29] Robbins, J. and Redmiles, D. Software Architecture
Critics in the Argo Design Environment. International
Conference on Intelligent User Interfaces. p. 47-60, San
Francisco, USA, Jan. 6-9, 1998.

[30] Roshandel, R., van der Hoek, A., et al. Mae - A System
Model and Environment for Managing Architectural
Evolution. ACM Transactions on Software Engineering
and Methodology. 13(2), p. 240-276, Apr., 2004.

[31] Shaw, M., DeLine, R., et al. Abstractions for Software
Architecture and Tools to Support Them. IEEE Trans-
actions on Software Engineering. 21(4), p. 314-335,
Apr., 1995.

[32] Sinnema, M., Deelstra, S., et al. COVAMOF: A
Framework for Modeling Variability in Software Prod-
uct Families. 3rd International Software Product Lines
Conference. p. 197-213, Boston, USA, Aug., 2004.

[33] Software Engineering Institute. ACMEStudio.
http://www.cs.cmu.edu/~acme/AcmeStudio, Carnegie
Mellon University.

[34] Svahnberg, M., van Gurp, J., et al. A Taxonomy of
Variability Realization Techniques. Software Practice
and Experience. 35(8), p. 705-754, Jul., 2005.

[35] Tarr, P., Ossher, H., et al. N Degrees of Separation:
Multi-dimensional Separation of Concerns. 21st Inter-
national Conference on Software Engineering. p. 107-
119, Los Angeles, USA, May 16-22, 1999.

[36] Turner, C.R., Fuggetta, A., et al. A Conceptual Basis for
Feature Engineering. Journal of Systems and Software.
49(1), p. 3-15, Dec. 15, 1999.

