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Abstract 

The essence of any modeling approach for product 
line architectures lies in its ability to express variabil-
ity. Existing approaches do so by explicitly specifying 
variation points inside the architectural specification 
of the entire product line, usually with optional and 
alternative elements of some form. This, however, 
leads to a sizable mismatch between conceptual vari-
ability (i.e., the features through which architects logi-
cally view and interpret differences in product archi-
tectures) and actual variability (i.e., the modeling con-
structs through which the logical differences must be 
expressed). We contribute a new product line architec-
ture modeling approach that unites the two. Our ap-
proach uses change sets to group related architectural 
differences and relationships to govern which change 
set combinations are valid when composed into a par-
ticular product architecture. The result lifts modeling 
of variability out of modeling architectural structure, 
consolidates related variation points, and explicitly 
and separately manages their compatibilities. 

1. Introduction 

The use of product lines as a principled form of 
software reuse has significantly increased over the past 
decade [6, 7, 22, 27]. This paper is concerned with how 
to define and evolve a product line and the individual 
products that constitute it. While a few exceptions exist 
[5, 15], the predominant way of doing so is through a 
product line architecture (PLA): an abstraction in 
which the high-level structure of the product line is 
defined in terms of architectural elements that are 
(eventually) mapped onto the source code that imple-
ments the product line [6]. 

A key aspect of any PLA is that it must capture the 
variabilities that exist in the product line. To date, a 
variety of different modeling languages have been pro-
posed for capturing PLAs [2, 23, 32, 34]. Common to 
all of these modeling languages is that they capture a 

PLA as a single, monolithic architecture containing 
variation points to differentiate among products. These 
variation points, architectural elements themselves, 
take on several forms. Koala uses switches [23], Mé-
nage allows optional, variant, and optional variant ele-
ments [11], and COVAMOF utilizes optionals, alterna-
tives, optional variants, variants, and values [32]. In all 
of these cases, the result is what could be considered a 
configurable architectural specification: by making 
appropriate choices to resolve the variation points, a 
single product architecture describing a single product 
is selected from the PLA [30]. 

While insertion of variation points in an architec-
tural description can adequately model PLA variation, 
it also exhibits a sizable mismatch between conceptual 
and actual variability. For instance, consider an op-
tional feature, which is conceptually described as in-
volving one or more components and links that are 
included or excluded in unison. However, a traditional 
approach models each component and link separately 
as a variation point in and of itself, each governed by 
its own redundant (often Boolean) clause to determine 
inclusion or exclusion. Thus, the way in which an ar-
chitect logically views and interprets a PLA, i.e., in 
terms of the features that determine differences among 
individual products, does not match the modeling con-
structs available to express those differences. 

The problem of redundancy is compounded and 
transformed into an intricate problem of relationship 
management when additional kinds of variabilities are 
introduced (e.g., variants, optional variants, alterna-
tives), and especially when those variabilities interact 
(e.g., selection of one variant requires inclusion of an-
other). Keeping track of which individual variation 
points belong together quickly becomes a nightmare of 
repetitive, brittle, and non-intuitive expressions. 

The solution presented in this paper alleviates these 
difficulties by bringing together conceptual and actual 
variability. Specifically, we contribute a new modeling 
approach that uses change sets to group related archi-
tectural differences and relationships to constrain 



which combinations of change sets are valid when 
composed into a particular product architecture.  

A change set consolidates related variation points 
into a single conceptual variation. Instead of embed-
ding variation points directly in the architecture, our 
approach promotes change sets to be first-class entities 
consisting of sets of closely-related additions, remov-
als, and (property) changes performed on the architec-
tural description. Doing so eliminates the need for 
variation points entirely. Furthermore, change sets are 
independently manipulatable, making them the primary 
representation mechanism and focus for architects. 

Relationships ensure that only desired product archi-
tectures are constructed. They allow an architect to (1) 
explicitly set the rules according to which change sets 
may be combined, and to (2) form the basis for the 
modeling of variants, includes, excludes, and other 
kinds of concepts common to PLA modeling [34]. Note 
that relationships are specified at the same level as 
change sets, thereby removing the redundancy existent 
in previous approaches and separating out each indi-
vidual relationship into its own entity that can be inde-
pendently manipulated and managed. 

Overall, our approach turns the existing approach of 
“architecture first, variability second” into one of “ar-
chitecture first, variability first.” Both an architecture 
and its variability are equally important and must be 
equally available to the architect. Matching the model-
ing facilities with conceptual thinking is a critical first 
step in realizing this equality. We believe the results 
presented in this paper demonstrate that our approach 
successfully achieves this first step. 

2. Background 

The work presented in this paper relies on concepts 
from the areas of software architecture, which includes 
product line architecture, and configuration manage-
ment. We introduce these concepts here. 

2.1 Software Architecture 

The field of software architecture provides high-
level abstractions for representing the structure, behav-
ior, and key properties of a software system. Software 
architectures involve descriptions of the elements from 
which systems are built, interactions among those ele-
ments, patterns that guide their composition, and con-
straints on these patterns [26]. 

Architecture description languages (ADLs) [20] aid 
architecture-based development by providing formal 
notations for describing software systems. Examples of 
ADLs include C2SADEL [19], Darwin [18], Rapide 
[17], UniCon [31], and Wright [1]. Some are supported 

by an architecture design environment through which 
an architect can graphically design and manipulate ar-
chitectures, e.g., ArchStudio [12] or AcmeStudio [33]. 

Whereas a “regular” software architecture only de-
fines the structure of a single software system, a prod-
uct line architecture (PLA) defines the architectural 
structure for a set of closely-related products [6]. As 
such, a PLA serves a dual role. First, it must support 
understanding and manipulating the commonalities and 
variabilities that exist among individual product archi-
tectures constituting the PLA. Second, it must support 
identification of one or more individual product archi-
tectures from the PLA, for instance to deploy one or 
more individual products to a client. 

A number of ADLs support the specification of 
product line architectures, including xADL 2.0 [9], 
Koala [23], and GenVoca [3]. These ADLs typically 
distinguish core elements from variation points, the 
latter specifying places in the PLA where differences 
exist among specific product architectures. Most ex-
press these differences in some form of configuration 
or constraint language and promote commonly-used 
rules to first-class language constructs. For instance, 
xADL 2.0 uses Boolean expressions and Koala has a 
language construct for switches that routes connections 
to one of several alternative interfaces. 

2.2  Configuration Management 

The discipline of configuration management (CM) 
has been primarily concerned with capturing the evolu-
tion of a software system at the source code level [10]. 
For this, it has extensive and detailed mechanisms and 
procedures for storing multiple versions of code and 
allowing multiple developers parallel access to that 
code [8]. Automated conflict detection and merge rou-
tines help in reconciling overlapping changes that may 
arise as a result of parallel development [21]. 

Of interest to this paper are the concepts of exten-
sional and intensional versioning [8]. In extensional 
versioning, the configuration management system fo-
cuses on managing versions of artifacts that result after 
making changes. Typically, a version graph is used to 
relate different versions of an artifact; developers re-
trieve a particular version, modify it, and then add the 
new version to the graph when complete. 

In contrast, intensional versioning makes changes a 
first class entity, inverting the relationship between 
versions and changes [8]. Instead of ensuring that each 
version is uniquely stored and accessible, intensional 
versioning stores each change as a change set (a 
“delta”) independently from the other changes. So, 
instead of requesting a version of an artifact, develop-
ers retrieve an artifact by requesting a series of change 



sets from which a “version” is constructed. Similarly, 
after modification of this “version,” the delta between 
this new and the original version is stored as an indi-
vidually-identifiable change set. This has the advantage 
that new incarnations of an artifact can be composed by 
mixing and matching different change sets.  

3. Motivating Example 

To understand the problems with current PLA mod-
eling approaches, we introduce a motivating example: a 
hypothetical software system implementing an audio 
player available in a Free, Trial, and Pro version. As 
shown in Table 1, each version differs in the set of 
components that constitute its software architecture. 
Each architecture is shown using boxes for compo-
nents, small boxes with directional arrows for inter-
faces, and lines connecting interfaces for connections.  

Figure 1 shows a representation of the audio player 
as a traditional PLA. The notation is as follows: core 
elements belonging to all product architectures are 
shown as solid boxes or lines, optional elements as 
dashed boxes or lines, and variant elements as large 
boxes containing the variants. Additionally, but not 
shown, each variation point is annotated with a Boo-
lean guard that specifies how to construct desired 
products. For example, the CD Reader component 
(part of a variant component) has a guard that reads: 

ProductType == 'free' || ProductType == 'trial' 
indicating that this particular variant is included in both 
the Free and Trial versions of the player. 

Modeling product variation as individual variation 
points in a PLA reveals the first difficulty: high-level 
conceptual desires must be expressed in terms of mul-
tiple, low-level variation points. In our example, we 

conceptually desire “a Free product that plays only 
CD’s” and “a Trial product with a purchase reminder 
that plays both CD’s and MP3’s.” However, these must 
actually be expressed disjointly, using many individual 
variation points. For example, modeling the MP3 vari-
ability involves the MP3 Variant, its two optional inter-
faces, links, and an optional Sound Source interface. 

Additionally, each low-level variation point must be 
governed by its own constraint expression to determine 
which parts of the PLA are included in which products. 
These are highly redundant since, as just discussed, 
multiple variation points may be required to express a 
single feature. Thus, the second difficulty: constraint 
expressions are redundantly spread throughout the 
architecture. While these expressions can sometimes 
be updated automatically [11], consider what happens 
when creating the new Basic version of the player 
shown in Figure 2. This version is similar to the Pro 
version, except that it includes the CD Reader from the 
Free version. When expressing this new product, the 
architect must tediously check, and potentially update, 
each and every constraint expression. Here, capturing 
the Basic product would involve updating the CD 
Reader, MP3 Encoder / Decoder, and Sound Source 
components, their interfaces, and links. 

The third issue is that constraint expressions imply 
relationships, hiding dependencies among features. 
This can be seen with the additional interface on the 
Sound Source component, as highlighted in Figure 2. It 
was previously only present in the Pro version of the 
product. However, it is not the version of the product 
that determines its inclusion, but the presence of the 
CD Reader / Writer or MP3 Encoder / Decoder. Cur-
rent techniques only allow one to model this interface 
as optional, hiding the dependency in the constraint 
and, thus, losing the relationship. 

4. Approach 

Our work was sparked by the observation that exist-
ing approaches to modeling product line architectures 
are predominantly extensional in nature. However, as 
the example in Section 3 shows, conceptual differences 
in product features and their interrelationships are not 

Table 1. Different audio player versions. 
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Figure 1. Audio player product line architecture. 



easily expressed in the available modeling constructs. 
The first key insight to our solution is that an inten-

sional approach based on change sets provides a natu-
ral mapping from conceptual intent and understanding 
to actual realization. The second key insight is that 
“straight” change sets, as they are applied in the con-
figuration management field, are not sufficient: explicit 
and detailed management of change set relationships 
must complement their use. Below, we detail these two 
insights and outline our solution in the context of the 
motivational example. 

4.1 Change Sets 

The traditional model of intensional versioning as 
used in the field of configuration management distin-
guishes baselines from change sets. A baseline is a be-
ginning, formed by a configuration of artifacts that 
represents a stable state of the software being managed. 
Change sets represent independent increments from the 
baseline, such as a bug fix or a new feature addition. 
Each change set is captured as a “diff,” detailing the 
exact lines of code added, removed, or changed with 
respect to the baseline [8]. A particular version of the 
software is then constructed by merging a desired set of 
change sets to the baseline. 

The advantages of this approach are twofold:  
1. Because each change set encapsulates a logically-

related set of changes, it provides developers with a 
natural model of interacting with the configuration 
management system. No longer must they mentally 
map desired conceptual features onto specific arti-
fact versions; they can request features by name. 

2. Because each change set is built from the baseline 
and stored independently from other change sets, it 
is possible to combine change sets in new ways. 
This is the key to intensional versioning: combining 
different change sets produces different results. 

These are the exact advantages that we would like to 
achieve with respect to PLAs. However, there is one 
major disadvantage to using intensional versioning: 
3. Because each change set is independent, change 

sets may exhibit conflicting changes, which pro-
duce invalid or incomplete results when combined. 
For instance, one change set may remove a line of 
code that another happens to modify. 

We discuss how we address this disadvantage using the 
concept of relationships and a specialized merge proc-
ess in the next sections. Here, we describe the founda-
tion of modeling PLAs using intensional versioning. 

We first modify the code-centric concepts of base-
lines and change sets to capture architectural concepts. 
This is done by making architectural elements the con-
stituents of change set additions and removals. Second, 
we increase a change set’s independence by abandon-
ing the concept of a (required) baseline, instead always 
starting out with an empty (virtual) baseline. This al-
lows an architect to use change sets in new contexts 
without requiring a core (baseline) architecture as a 
starting point. Of course, an architect may still use a 
change set as a baseline if desired, for example, to cap-
ture elements common to all products. Finally, we al-
low a change set to be modified at any time. Because 
PLA design is not linear, it must be possible to update 
all change sets at all times, so features stay coherent. 
This differs from change sets in the configuration man-
agement world. Those change sets only capture the 
evolution of a baseline over time and are not intended 
to be modified once they are created. While malleable 
change sets may introduce more conflicts during the 
design process, we address this issue with relationships 
and a specialized merge process to be described later. 

To illustrate the use of change sets in our approach, 
consider the example presented in the previous section, 
but now restated using change sets. The approach is 
flexible enough that variability can be captured at many 
levels of granularity. Exactly how is up to the architect 
and their preferences. For instance, a very fine-grained 
approach could be used where each component, inter-
face, and link is separately modeled as optional, each 
represented by its own change set. 

Alternatively, a very coarse-grained approach could 
differentiate entire products. Suppose we begin with 
the Basic audio player as a first (baseline) change set. 
To turn the Basic player into the Trial version requires 
a change set that: (1) adds the Purchase Reminder 
component, its link and interfaces, (2) removes the 
MP3 Encoder / Decoder, replacing it with the MP3 
Decoder component, and (3) removes the now defunct 
link to, and interface on, Sound Source. Similarly, an-
other change set could capture the changes that morph 
the Basic player into the Free version, and still another 
would morph the Basic player into the Pro version. 

These two approaches, fine-grained change sets and 
product-oriented change sets, technically work, but 
perhaps do not have as many benefits from an archi-
tect’s point of view as others. A better approach is to 
map features onto change sets. This is demonstrated by 
the change sets listed in Table 2, where each change set  

Figure 2. New Basic audio player version. 



adds a particular feature to the audio player. In each of 
these change sets, an annotation with a “+” means that 
it adds that particular element and an annotation with 
an “×” means that it removes that particular element. 
Elements without any annotations are there for the sole 
benefit of the reader, placing the changes within con-
text. For example, the CD Writer change set removes 
the CD Reader component with its link, and adds the 
CD Reader / Writer component with its links. 

Note that these feature-oriented change sets have an 
implicit hierarchical arrangement. The Record Support 
change set, which only adds a single outgoing interface 
to the Sound Source component, prepares this compo-
nent for use by other components that record audio 
streams (in addition to playing them). This was sepa-
rated out from the MP3 Encoder and CD Writer change 
sets, which both rely on its presence. The other change 
sets depend only on the Baseline change set. We will 
see in the next section that these implicit hierarchical 
arrangements can be conveniently and explicitly mod-
eled using relationships. 

Our approach does not differentiate between com-
mon elements and variable elements. Instead, our ap-
proach uses changes sets to capture both concepts. One 

advantage to this approach is that common elements 
themselves may be modified by later change sets. For 
instance, the Baseline change set captures elements 
initially thought to be common to all product architec-
tures, while the CD Writer change set removes the CD 
Reader component. This allows new variability or up-
dated common functionality to be introduced without 
the need to go back and modify all other product vari-
ants. Moreover, it also supports modeling product 
populations [24], which involve entirely different 
products to which similar changes are applied. 

Finally, we note that change sets explicitly address 
the first issue presented by our motivating example. 
They consolidate related changes into a single concep-
tual variation, uniting concepts with the actual model-
ing constructs, therefore allowing an architect to think 
in terms of features rather than variation points. Of 
course, the architect is the one who ultimately decides 
the exact breakdown of a PLA into change sets; they 
may prefer alternative breakdowns than by feature. Our 
approach still supports them fully in doing so. 

4.2 Relationships 

Capturing product lines using an intensional ap-
proach introduces new challenges during composition. 
Invalid products may be composed out of change sets 
that contain conflicting or dependent changes. We use 
relationships to enable an architect to express and rea-
son about such dependencies, to support an architect in 
creating only desired product architectures. 

One type of relationship, structural dependencies, 
operate at the level of the architecture structure, and 
arise when elements introduced by one change set de-
pend on elements introduced by another. For instance, 
the MP3 Encoder change set structurally depends on 
the Record Support change set because it adds a link 
that connects to an interface introduced by the Record 
Support change set. By the same reasoning, one change 
set can conflict with another if elements it introduces 
depend on elements the other removes.  

While structural dependencies are of a syntactic na-
ture, a PLA also involves modeling semantic relation-
ships. One such type, compatibilities, dictates which 
change sets are and are not compatible with one an-
other, based on conceptual design knowledge of the 
architect. For instance, our example has a trial version 
of the product without record support, but with a nag-
ging purchase reminder. The intent is that users will try 
the product and decide to purchase the full version for 
the extra feature (or to remove the nag screen). Conse-
quently, the Record Support and Purchase Reminder 
change sets are mutually exclusive: both change sets 
should never be included at the same time. 

Table 2. Audio player PLA change sets. 
Change Set Architectural Changes 
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Another semantic relationship, composition, is used 
to group change sets into higher-level concepts, such as 
a subsystem or entire products. For instance, it would 
be useful to record that the Trial version of the audio 
player is composed of the Baseline, MP3 Decoder, and 
Purchase Reminder change sets. We can do so by de-
fining a Trial change set and a corresponding (compo-
sition) relationship stating that when including the Trial 
change set, the Baseline, MP3 Decoder, and Purchase 
Reminder change sets must also be included. Composi-
tion relationships may also refer to other change sets, 
which represent compositions themselves, allowing 
their hierarchical composition. It is also possible to 
establish relationships among composition relation-
ships to model high-level conceptual compatibilities. 

Structural dependencies, compatibilities, and com-
positions are expressed using the following constructs: 
1. and relationships state that if all change sets a, b, 

and c are included, then d must also be included; 
2. or relationships state that if any change set a, b, or 

c is included, then d must also be included; and 
3. variant relationships state that from a set of change 

sets a, b, and c, only a certain minimum and maxi-
mum number may be included at the same time. 

The first two relationships can designate the inclusion 
of multiple change sets (e.g., if a, b, and c are included, 
then d, e, and f must also be included), can have ne-
gated “source” change sets (e.g., if a and b are included 
and c is not included, then d must be included), and can 
have negated “destination” change sets (e.g., if a or b 
are included then d must not be included). They may 
also be specified without “destination” change sets, in 
which case the and relationship is interpreted as a dis-
junction (e.g., a, b, and c must always be included) and 
the or relationship as a conjunction (e.g., a, b, or c 
must always be included). The variant relationship may 
contain an arbitrary number of change sets, and may 
limit the number of change sets selected concurrently to 
one (making a group of change sets mutually exclusive, 
creating a switch [23]) or multiple (creating what CO-
VAMOF terms an alternative [32]). 

As with change sets, different ways exist to choose 
and organize relationships. This is influenced by the 
choice of change sets, but also by personal preferences 
of the architect. For instance, we previously discussed 
modeling the Record Support and Purchase Reminder 
change sets as mutually exclusive. However, it would 
be as valid to create a relationship stating that including 
the Free or Trial change sets may requires excluding 
the Record Support change set. This is a matter of 
taste, and usually evolves as the PLA evolves. 

Finally, we note that relationships, combined with 
change sets, address the remaining issues presented by 

our motivating example. First, redundancy is avoided 
because relationships refer to change sets rather than 
individual architectural elements. Also, a relationship 
only needs to be modeled once, after which any valid 
product architectures must satisfy it. Second, because 
relationships are modeled explicitly, conceptual inter-
dependencies among change sets are no longer hidden. 

4.3 Merging 

Relationships aid an architect in composing only 
valid collections of change sets. However, since we are 
capturing PLA concepts and allow an architect to “go 
back” and modify a change set at any time, it is possi-
ble to produce circular (or cyclic) dependencies, which 
requires a special merge algorithm, compared to tradi-
tional configuration management approaches. 

If we used a sequenced merging algorithm with cir-
cular and cyclic structural dependencies, two problems 
arise. The first we refer to as “ghost additions,” and 
occurs when a link from the first change set relies on 
the presence of an interface from the second change set 
and, vice versa, a link from the second change set relies 
on the presence of an interface from the first change 
set. Regardless of which change set is applied first, a 
necessary element will not be there. The second prob-
lem is “ghost removals:” if two change sets each re-
move an element established by the other, one of those 
removed items is bound to erroneously reappear. 

To address these two problems, we use a special 
merge algorithm. First, we apply all additions of all 
change sets, in the order of components first, interfaces 
next, and links last. Then we perform all of the remov-
als, in the order of links first, interfaces next, and com-
ponents last. The result is that all necessary elements 
are always there, avoiding ghost additions, and 
elements that are intended to be removed are always 
removed, avoiding ghost removals. The benefit of this 
approach is that cyclic change sets are applied pre-
dictably and consistently. 

Note, this advocates an automatable approach with 
no human intervention. We can see some situations, 
though, in which an architect may want to have a 
slightly different behavior or even want to exhibit man-
ual control. Other merge algorithms and implementa-
tions can be envisioned accordingly and inserted into 
our EASEL environment (see Section 5). 

5. EASEL 

To demonstrate our approach, we have implemented 
it in EASEL, a new product line architecture modeling 
environment. As illustrated in Figure 3, EASEL is par-
titioned into two separate areas: a drawing canvas for 



specifying PLAs and a variability spreadsheet for man-
aging change sets and relationships. 

If none of the special features of EASEL are used, 
the drawing canvas of EASEL operates similarly to 
ArchStudio [12] or AcmeStudio [33], allowing an ar-
chitect to define single architectures. But, the drawing 
canvas has additional behaviors that bring it into the 
realm of PLA modeling by implementing the concepts 
discussed in Section 4. First, it is actually a “layered 
canvas,” with each layer representing a change set. The 
visible architecture, then, is constructed from the 
change sets selected by the first column of the variabil-
ity spreadsheet. For example, the architecture shown in 
Figure 3 is a result of the Pro, Baseline, Record Sup-
port, CD Writer, and MP3 Encoder change sets. 

To realize our approach, EASEL stores change sets, 
relationships, and the resulting architecture internally 
using XML. Thus, changes can be consistently re-
corded and reapplied using the XML element ID’s and 
property names, which are globally unique and remain 
constant. It would be difficult to use textual diffs for 
this purpose, since they use adjacent lines of text to 
determine where a change is to be applied, and these 
can potentially be modified by other change sets. Still, 
and even with the specialized merging process, con-
flicts may occur when change sets modify the exact 
same element in an incompatible way, i.e., two change 
sets that each rename a component, but to a different 
name. In such cases, the order in which change sets are 
listed is used to resolve the conflict. 

The second additional behavior is that each of the 
elements on the drawing canvas may be annotated to 
explicitly illustrate what specific changes are recorded. 
In Figure 3, the CD Writer change set is selected as 
such (see second column of the variability spread-

sheet), annotating the CD Reader / Writer component, 
its interfaces, and its links with a “+” to show that these 
elements are added, and the CD Reader component, its 
interface, and its link with an “×” to show that these 
elements are removed. Elements that are not a part of 
the final result, but that are changed by a selected 
change set, are drawn using lighter, transparent colors. 
Selecting multiple change sets results in annotations 
that would result from logically combining them. 

The third and final additional behavior lies in how 
an architect populates the contents of change set. In 
EASEL, modifications are incorporated into the change 
set currently selected for editing. In Figure 3, any addi-
tion or removal made by an architect at this time would 
be incorporated into the Baseline change set, as high-
lighted. This allows an architect to revisit and update a 
change set as easily as creating a new one. 

The variability spreadsheet shown on the right hand 
side of Figure 3 provides an architect with a graphical 
representation through which they manage relation-
ships. Rows represent change sets and the columns 
relationships. The following symbols are used: 
• A circle is a source of an or relationship (e.g., A in 

“if A or B are included, then C must be also”). 
• A square is a source of an and relationship (e.g., A 

in “if A and B are included, then C must be also”). 
• A slash superimposed over a circle or square repre-

sents a source negation (e.g., B in “if A is included 
and B is not included, then C must be included”). 

• A plus is a change set implied by a relationship (e.g., 
C in “if A is included, then C must be included”). 

• An X is a change set excluded by a relationship (e.g., 
C in “if A is included, then C must be excluded”). 

Figure 3. EASEL. Relationships are Labeled R1 to R9 for Reference. 



• A diamond represents a variant in a variant relation-
ship. The minimum and maximum number of vari-
ants that may be selected concurrently is viewable 
and editable using context menus.  

Returning to the example in Figure 3, the way to read 
some of the relationships, then, is as follows: 
R2. The Trial change set is logically composed of the 

MP3 Decoder and Purchase Reminder change sets 
(i.e., if the Trial change set is included, then the 
MP3 Decoder and Purchase Reminder change sets 
must also be included). 

R5. The MP3 Decoder and MP3 Encoder change sets 
are variants of each other; only one can be in-
cluded at a time. 

R6. If either the Free or Trial change set is included, 
then the Record Support change set should not be. 

Note that the composition relationship for the Trial 
product architecture (R2) appears to be incomplete; it 
is missing the Baseline change set. This, however, is 
covered by R9, which states that the Baseline change 
set must be included when any of the specified change 
sets below it are included; it therefore does not have to 
be repeated for the Trial feature composition. 

Finally, EASEL automatically detects structural de-
pendencies and conflicts between change sets, which 
are added to the variability spreadsheet with a darker 
background. These act as critics [29], and disappear 
when no longer applicable. Additionally, EASEL does 
not prevent an architect from combining change sets 
that violate relationships. However, it does inform them 
of violated relationships by highlighting them. 

6. Evaluation 

We evaluated our approach in three ways. First, we 
compared the compactness of models produced using 
our environment, EASEL, with those produced by a 
representative of traditional, extensional environments, 
Ménage [11]. We then discuss the expressiveness of 
our approach. Finally, we comment on its usability by 
making four typical changes to a PLA, as performed 
using both approaches. 

To compare model compactness, we modeled three 
PLAs in both EASEL and Ménage: (1) the motivating 
example in Section 3, (2) the entertainment system 
used to evaluate Ménage [11], and (3) an actual system, 
ArchStudio [12]. Table 3 presents these results, show-
ing that our approach resulted in more compact, and 
significantly less complex, PLAs. Specifically, the ex-
cessive number of Boolean guards were replaced with 
fewer change sets and relationships. This is exactly 
what we hoped for, giving PLA designers a representa-
tion that is significantly less burdensome to maintain. 

Our approach must be adequately expressive, able 
to model intensionally all PLAs that can be modeled 
extensionally using variation points. Fortunately, the 
field of configuration management has already shown a 
general equivalence in expressiveness of extensional 
and intentional approaches [8]. 

It should also be possible to express any PLA that is 
modeled in a feature model or through a propositional 
formula. In response, we observe that these can both be 
rewritten in conjunctive normal form (CNF) and there-
fore captured in EASEL as a series of or relationships. 
Of course, the and relationship and variant relation-
ship of EASEL enable much more compact expres-
sions, just as the mandatory, optional, and alternative 
relationships of feature models and the various analo-
gous operators of propositional formulas. 

Finally, we believe that it is in the usability of our 
approach that its greatest benefits are seen. A full study 
is ultimately necessary to make this claim. However, 
we are encouraged by the initial evidence gained from 
modeling the three PLAs using both approaches. First, 
the modeling of entire systems results in compact nota-
tions. But second, we informally found that our ap-
proach was easier to use for changing PLAs as well. 
This was confirmed when we performed four typical 
changes, which included: (1) creating a new product 
architecture out of existing features, (2) adding a new 
optional feature, (3) adding this feature to some prod-
ucts, and (4) updating this feature for a few of the 
products. Though subjective and personal, combined 
with the advantages of compactness, explicitness, and 
equal expressiveness, we believe that we have suffi-
ciently shown EASEL to be a new and promising alter-
native for PLA modeling. 

7. Related Work 

Our work is related to several different efforts. 
AHEAD, an example of feature-oriented programming 
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[28], uses a compositional expression language that can 
be generically mapped onto rules that govern the un-
derlying composition process [4]. AHEAD has been 
applied to the domain of product line architectures. 
However, AHEAD is only “additive” and prohibits 
element deletion, which is essential to our approach. 

Likewise, our work is related to multi-dimensional 
separation of concerns [35]. Change sets are close to 
modules, and change set selection with our merge algo-
rithm, is close to a hypermodule. However, most re-
search in this area has focused on the source code level 
(e.g., Hyper/J [25]) and only on adding functionality. 

Aspect-oriented programming [14] is also related to 
our work. By their very nature, change sets are close to 
aspects in their compositional capabilities; in fact, one 
could probably support the other and vice versa. How-
ever, compared to aspects, our work has taken the ge-
neric change set idea, modified it to support PLAs, and 
built enhanced support through detailed relationships. 

COVAMOF [32] provides perhaps the best support 
for modeling variability in the extensional approach. It 
certainly has the most comprehensive set of language 
concepts with which an architect can model PLAs. Be-
cause our approach elevates variability to a level equal 
to architecture, all COVAMOF language concepts can 
be subsumed by just two concepts, change sets and 
relationships. Other extensional approaches to model-
ing PLAs [2, 23, 32, 34], including our own previous 
work on Ménage [11], are similarly subsumed. 

Finally, the field of feature engineering has worked 
on modeling features and their relationships for a num-
ber of years [5, 13]. These models usually stay at the 
conceptual level, although some exceptions exist in 
which attempts are made to map the conceptual fea-
tures to concrete implementations [36]. Of most inter-
est here is the work by Lago and Van Vliet, who built 
an extensive mapping from conceptual features to ar-
chitectural components [16]. We believe our work 
complements their work by, for the first time, providing 
a PLA approach that reduces the complexity of such 
mappings. In providing a modeling mechanism in 
which features and variability can be naturally ex-
pressed, the mapping becomes one-to-one. 

8. Conclusions 

This paper contributes a new approach to modeling 
product line architectures that leverages change sets 
and relationships to bring together conceptual variabil-
ity and the actual modeling of this variability. By 
adopting an intensional modeling approach, variability 
is placed at the same level of importance as architec-
ture and the resulting modeling concepts of change sets 

and relationships support architects in modeling their 
PLA in a much more concise and natural sense. As 
implemented in EASEL, the approach supports the 
modeling of overall PLAs and the composition of indi-
vidual product architectures out of these PLAs. It par-
ticularly enables exploration of different compositions 
by informing the user of whether these compositions 
adhere to the rules of the relationships. 

Our future work involves several different strands. 
First, we wish to enhance the usability of EASEL. For 
instance, it should be easy to split or combine change 
sets, or move elements from one change set to another. 
Second, we recognize that for a large PLA, the set of 
relationships can grow large; it is incumbent to address 
this problem. We will explore filters that display only 
relevant relationships and attempt to group and summa-
rize them. Third, we wish to enhance EASEL’s auto-
matic analysis of structural relationships to deduce 
“unless” change sets, which resolve structural conflicts. 
For instance, if one change set adds a link to an inter-
face removed by another change set, it structurally con-
flicts with that change set unless a third change set is 
included that removes the offending link. Automati-
cally finding this change set among the existing change 
sets would help users develop consistent product archi-
tectures. Fourth, at a more conceptual level, we wish to 
explore how our approach integrates with substructure 
(i.e., hierarchical composition of components and con-
nectors), strong typing (which would cut across change 
sets), and versioning (both at the level of the entire 
PLA and individual types). Finally, we wish to fully 
evaluate the usability of EASEL. These are non-trivial 
cognitive implications of an approach like this that we 
ignored to first accomplish our basic goal of represent-
ing PLAs as change sets and relationships. 
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