
 1

Comprehensive Evaluation of an Educational Software Engineering
Simulation Environment

Emily Oh Navarro and André van der Hoek
Donald Bren School of Information and Computer Sciences

University of California, Irvine
Irvine, CA 92697-3425 USA

emilyo@ics.uci.edu, andre@ics.uci.edu

Abstract
Software engineering educational approaches are often evaluated only anecdotally, or in

informal pilot studies. We describe a unique approach to evaluating a software engineering
educational technique (SimSE, a graphical, interactive, customizable, game-based software
engineering simulation environment). Our method for evaluating SimSE went above and be-
yond anecdotal experience and approached evaluation from a number of different angles to
form a comprehensive assessment of SimSE’s effectiveness. In this paper we demonstrate the
insights and lessons that can be gained when using such a multi-angled evaluation approach.
Our hope is that, from this paper, educators will: (1) be provided with evidence about the
educational effectiveness of SimSE, and (2) learn ideas about how to comprehensively evalu-
ate their own approaches.

1. Introduction

In recent years, software engineering educators have created a wealth of innovative
approaches to teaching software engineering. Some of the most frequently proposed
ones focus on making the students’ class project experience more closely resemble one
they would encounter in the real world by doing such things as involving an industrial
participant [5], using only maintenance or evolution-based projects [8], or even pur-
posely sabotaging the project [3]. Others believe that the addition of one or more spe-
cific software engineering sub-topics to the curriculum (e.g., formal methods [14] or
Human-Computer Interaction [6]) is the crucial missing piece. Still others take an ap-
proach that has students practice software engineering processes in a computer-based
simulated environment [4].

Although the majority of these approaches seem promising, many of them are risky
and require a great deal of planning and restructuring to incorporate them into a cur-
riculum. It is therefore necessary that these educational approaches are properly and
thoroughly evaluated so that other educators can be provided with enough evidence of
their effectiveness to warrant the effort involved in adopting them. However, such ex-
tensive evaluations are rarely seen—most are only anecdotes of an approach’s usage
and/or the occasional brief, small-scale pilot study. Although these types of evaluations
provide good initial assessments of an approach’s potential (i.e., “this approach
works”), they fail to go beyond this and answer questions such as why and how an ap-
proach works, what its flaws are, how it can be made more effective, and what kinds of
considerations need to be made concerning its use.

In this paper, we present an example of a comprehensive evaluation of a software en-
gineering educational innovation that showcases the difference between the amount of
insight gained through a small pilot study versus that from an extensive, multi-angled
evaluation. Our educational innovation is SimSE, a graphical, interactive, customizable,

 2

game-based simulation environment for educating students in software processes. We
evaluated SimSE, first in an initial pilot study, then in three subsequent non-pilot ex-
periments, each one focusing on a different aspect of assessment. These were designed
to provide a collective picture of SimSE’s overall effectiveness and a general under-
standing of its strengths and weaknesses from multiple angles. It is our hope that the
work described in this paper will: (1) provide an example of how software engineering
educational approaches can be comprehensively evaluated, and (2) provide evidence for
SimSE’s effectiveness and guidance about how it can be incorporated into a course.

The remainder of this paper is organized as follows: In Section 2, we briefly describe
SimSE. In Section 3, we detail the series of experiments we conducted to evaluate
SimSE. Section 4 summarizes the lessons that can be generalized for other software en-
gineering educators evaluating their own approaches, and we present our conclusions
and plans for future work in Section 5.

2. SimSE

SimSE is a computer-based environment that facilitates the creation and simulation
of realistic game-based software process simulation models—models that involve real-
world components not present in typical class projects, such as large teams of people,
critical decision-making, personnel issues, budgets, and unexpected events. In so doing,
it aims to provide students with a platform through which they can experience many
different aspects of the software process in a practical manner without the overarching
emphasis on creating deliverables that is inherent in actual software development.

The graphical user interface of SimSE is shown in Figure 1. SimSE is a single-player
game in which the player takes on the role of project manager and must manage a team
of developers in order to successfully complete (a particular aspect of) an assigned
software engineering project. The player drives the process by, among other things, hir-
ing and firing employees, assigning tasks, monitoring progress, and purchasing tools.
At the end of the game the player receives a score indicating how well they performed.
In addition to the score, an explanatory tool provides students with further information
about their game, including which rules were triggered when, a trace of events, and the
“health” of various attributes (e.g., correctness of the code) over time.

To date, six SimSE models (and corresponding games) exist: a waterfall model, an
inspection model, an incremental model, an Extreme Programming model, a rapid pro-
totyping model, and a Rational Unified Process model. For more information on SimSE,
including its design, game play, and simulation models, see [9, 10].

3. Approach
 For our initial evaluation of SimSE, we conducted a pilot experiment to provide us with an
overall understanding of the thoughts, attitudes, and reactions of students who play SimSE, all
for the purpose of making an initial judgment about its potential as an educational tool. In
addition, we aimed to determine the strengths and weaknesses of SimSE through the feedback
of the students who play it. To do this, we had 29 undergraduate students play SimSE for two
hours, and fill out a questionnaire about their experience.
 In general, students’ feelings about the game were favorable (see [10] for full results). On
average, students found the game enjoyable and felt it had an appropriate level of difficulty.
They also felt that it was quite successful in teaching software engineering process issues,
and, for the most part, felt that SimSE would be a helpful part of a software engineering
course. Student comments brought to light some needed areas for improvement, such as

 3

awkward user interface issues and the need for more simulation models of different processes.
On the whole, however, this experiment established that SimSE has the potential to be an
educationally effective tool in teaching students software process concepts.
 Although the results of this pilot experiment were quite positive, they were far from com-
plete—numerous questions remained. Specifically, we still did not know much about why and
how SimSE helps students learn, whether or not it works well in a classroom setting, and what
its benefits and drawbacks are compared to other educational methods. Thus, we designed
three separate experiments to assess: (1) whether SimSE fits into a traditional software engi-
neering curriculum, (2) how SimSE compares to traditional methods of teaching software
process concepts, and (3) which types of learning processes students go through while playing
SimSE (i.e., how it helps students learn). The remainder of this section describes the design of
each experiment in further detail, followed by a summary of their collective results.

3.1. In-Class Experiment

 Because SimSE was designed to be used in conjunction with a software engineering course
as a complement to existing methods, a critical part of our evaluation was to actually use it in
such a setting and assess how well it incorporates as a course component. Specifically, we
wanted to determine how much students learn from using SimSE in class, how they perceive
and feel about the experience, and what kinds of practical considerations instructors should
keep in mind when using SimSE in their courses.
 Since this was the first time SimSE was being used in the context of a course and we were
unsure about how it would work in such a setting, we thought it appropriate to make it an ex-
tra-credit rather than compulsory exercise. Hence, we made it a moderate extra-credit assign-
ment, worth 7.5% of the final grade.

Figure 1: SimSE Graphical User Interface.

 4

 We used SimSE over two offerings of the introductory software engineering course at UC
Irvine. The students were given the assignment to play three SimSE models and answer a set
of questions concerning the concepts the models are designed to teach. These questions were
written in such a way that the students had to play the game (often repeatedly) in order to find
out the answer. Thus, their answers would provide us with a measure of how much they had
learned from playing the game. In addition to questions about the models, students were
asked to complete a questionnaire about their experience, similar to the one used in the pilot
experiment, so that we could gauge what effect the change of setting (from inconsequential
experiment to graded class exercise) had on students’ perceptions of SimSE.

3.2. Comparative Experiment

 The goal of our comparative experiment was to try and discover how SimSE compares to
traditional teaching methods (reading from a textbook and hearing lectures). In particular, we
aimed to compare the effectiveness of each method in teaching a specific set of software
process concepts, as well as other aspects underlying the learning process—both practical
aspects such as time spent and subjective aspects such as student attitudes and motivation.
With this comparison, one would be able to make an informed judgment about whether
SimSE would truly be a useful addition to a course—an addition more useful than one that
included extra traditional assignments such as readings or lectures.
 The subjects for this experiment consisted of 19 undergraduate students, 12 who had taken
an introductory software engineering course, and 7 who had not. This particular mix of educa-
tional experience was chosen for the following reason: SimSE is meant to be used as a com-
plement to existing teaching methods, so it assumes some background knowledge of basic
software engineering concepts, and hence, the target population is those students who have
taken at least one introductory software engineering course. However, students who have
taken a software engineering course will have already been taught (through textbooks and
lectures) much of the material that was taught in this experiment using textbooks and lectures.
Hence, creating a mix of students from the two different experience levels creates a balance
addressing both of these concerns, as well as helps provide some insight into how SimSE
does as a teaching tool for those who have no software engineering experience.
 The students were randomly divided into three groups (SimSE, reading, and lecture) of
approximately equal size, with the condition that in each group roughly half of the people had
passed the software engineering course while the other half had not. All subjects were given a
pre-test designed to measure their knowledge in the software process concepts that were to be
taught using the three methods. At the completion of the test, all subjects were then given in-
structions about the assignment to complete (SimSE, reading, or lectures). For the next four
days, the SimSE group was expected to play three SimSE models, the reading group was ex-
pected to complete a set of readings that covered roughly the same software process concepts
embodied in the SimSE models, and the lecture group was expected to attend two 50-minute
lectures about the same concepts. At the end of the four days, the subjects were given a post-
test which contained some of the same questions as those in the pre-test, but also included
some different questions to mitigate any bias or foreknowledge.
 Also at the end of the experiment, all subjects were asked to fill out a questionnaire regard-
ing their thoughts and feelings about the instructional method in which they participated. This
questionnaire contained two main types of questions: The first type of question asked them
about the teaching/learning method used, including how much time they spent on the exer-
cise, how much they enjoyed it, how effective they felt it was, and their preference for that
method compared to other methods. The second type of question asked them to provide some

 5

background information, which would allow us to detect any correlations between such vari-
ables as experience level or gender and the subject’s performance on the learning exercise.

3.4. Observational Experiment

 For our final experiment we conducted an in-depth observational study in which we ob-
served students playing SimSE and interviewed them about their experience. The primary
purpose of this study was to investigate the learning processes students go through when play-
ing the game—namely, how SimSE helps people learn. We designed SimSE with a number of
learning theories in mind (specifically, Learning by Doing [11], Situated Learning [2], Kel-
ler’s ARCS [7], Discovery Learning [1], and Learning through Failure [12]), and student re-
sponses from the first three experiments hinted that some of these were being employed, but
no further investigation into the presence of these theories was yet undertaken. In this ex-
periment, therefore, we specifically set out to detect which of these (and other) learning theo-
ries actually come into play in the learning process of a SimSE player.
 This experiment also had a secondary purpose: to evaluate how well the explanatory tool
achieves its goals of aiding students in understanding their score, helping them recognize
where they went wrong and/or right in the approach they took, and assisting them in planning
a successful approach to the next run of the game. This was done by having some students
play SimSE with the explanatory tool and some without, and noting the differences in their
behavior, attitudes, and opinions.
 For this experiment, 11 undergraduate students who had passed an introductory software
engineering course participated. This experiment occurred in a one-on-one setting—one sub-
ject and one observer. Each subject was first given instruction on how to play SimSE, and
was then observed playing SimSE for 2.5 hours. Eight subjects played with the explanatory
tool and three played without. While the subject was playing, their game play and behavior
were observed and noted. Following this, the subject was interviewed about their experience.
In addition to any spontaneous questions the observer formulated based on a particular sub-
ject’s behavior, all subjects were asked a set of standard questions. Several of the questions
were designed to detect the presence of one or more learning theories in the subject’s learning
process. Some questions did not target a particular theory, but were instead meant to evoke
insightful comments from the subject from which various learning theories could be detected,
and from which general insight into the learning process could be discovered. The interview
also included questions that were specifically designed for comparison between the subjects
who used the explanatory tool and those who did not. Following the experiment, the inter-
viewer’s observations and interview notes were analyzed to try to discover which learning
theories were employed, and how, as well as to discover any other insights about SimSE as a
teaching tool that could be gained from the data.

3.5 Summary of Results

 Although the specific results from each experiment are valuable in and of themselves, it is
even more useful to focus on the collective lessons learned from the experiments taken to-
gether as a whole. Thus, we present here the highlights of the most significant lessons and
insights we have learned about SimSE’s abilities as an educational tool (full results, including
numerous data analyses, graphs, and more detail on experiment setups can be found in [9]).

• Students who play SimSE seem to successfully learn the concepts it is designed to teach.
Students in the pilot experiment felt that SimSE was effective at teaching software
process concepts. Students from the in-class experiment were quite successful at an-
swering questions about these concepts correctly. In the comparative experiment, there

 6

was a strong correlation between reported time spent playing SimSE and increase in
software process knowledge. All subjects in the observational experiment were able to
recount learned concepts and improve their scores from game to game.

• Students find playing SimSE a relatively enjoyable experience. Students in all experi-
ments reported that they enjoyed playing SimSE for the most part. Several students in
the observational experiment were visibly enthralled with the game.

• Providing students with adequate and proper instruction in playing SimSE is critical.
Subjects from the in-class and comparative experiments felt that they did not receive
enough guidance to succeed in SimSE. As a result, they experienced some frustration
and confusion. In the comparative experiment, no subject in the SimSE group played as
much as they were assigned, partially due to this frustration. In the observational ex-
periment, it was observed that subjects tended to miss important information if it was
not sufficiently emphasized in the instructions. Thus, instruction must be a carefully
planned part of SimSE’s use, and should include such extensive measures as holding
training sessions and/or providing paper-based handouts.

• Students find SimSE repetitive when played for extended periods of time. Although it
was clear from the comparative experiment that the longer a student plays SimSE, the
more they learn, both the comparative experiment and the in-class usage revealed that a
longer playing time also contributes to a feeling of repetitiveness. Because the version
of SimSE used in these experiments included neither the explanatory tool nor adequate
instructions, it is anticipated that the addition of these two factors will lessen the need
for so many repetitions of the same model when used in classes in the future.

• Students learn through playing SimSE by employing the theories of Discovery Learn-
ing, Learning through Failure, Constructivism, Learning by Doing, Situated Learning,
and Keller’s ARCS. These were the learning theories that were most evident in the ob-
servational experiment. Thus, future versions of SimSE, as well as educational simula-
tions in general, should be designed with these theories in mind, aiming to maximize
the characteristics that are known to promote each one.

• SimSE is most educationally effective when used as a complementary component to
other teaching methods. The results of our experiments strongly suggested that a certain
level of existing software process knowledge must be possessed by a student in order
for maximal learning to be promoted. In the comparative experiment, students in the
SimSE group who had no previous exposure to software engineering had the over-
whelmingly worst improvement from pre- to post-test, compared to other subjects.
Their lack of background knowledge, combined with the inadequate instruction in
learning to play SimSE that was given, resulted in the SimSE group improving least
from pre- to post-test, compared with the lecture group and reading group (which im-
proved most). In the observational experiment, it was discovered that the opportunity to
put previously learned knowledge into practice was a major learning-facilitating charac-
teristic of SimSE. Thus, SimSE should be used with other teaching methods that pro-
vide this required knowledge, and should not be used as a standalone tool.

• The explanatory tool is a needed and useful part of SimSE that helps players under-
stand the reasoning behind their score. The most frequent complaint of the students
who played SimSE without the explanatory tool (in all four experiments) was the lack
of feedback given about their performance in the game. Students who played SimSE
with the explanatory tool (in the observational experiment) overall found it to be a help-
ful resource for understanding their score and the simulated process.

 7

4. Lessons Learned
 Each software engineering educational technique is, of course, different, and therefore re-
quires a different evaluation plan. However, it is our hope that researchers can use the design
presented here as an inspiration for the kinds of questions and considerations that should be
addressed when formulating evaluation plans for their own techniques. Nonetheless, there are
some general lessons about evaluating software engineering educational approaches that can
be gleaned from our experience and applied to a wide variety of situations.
 One of the most important lessons we learned was that surprises happen, and experiments
rarely turn out exactly as planned. A prime example of this was our comparative experiment.
The first surprise in this experiment was that 11 of the 30 initial subjects either dropped out
during the course of the experiment or failed to show up at all, leaving us with far smaller
treatment groups than originally planned. The second surprise was that none of the subjects in
the SimSE group completed their assignment, while most of the subjects in the other groups
did. Although our original intentions for the experiment were somewhat thrown off by these
surprises, by analyzing the data from every possible angle we were still able to learn a tre-
mendous amount. Moreover, the fact that none of the SimSE subjects completed the assign-
ment was actually an important piece of information that revealed some significant insights
about SimSE (its need to be used complementary to other methods, its inadequate instruc-
tions, and its repetitiveness when used without the explanatory tool). Thus, researchers should
keep open minds when unforeseen events occur in the course of their experiments. In such
cases, one should dig deep into the data and look for unexpected trends while remembering
that, in spite of these surprises (and often because of them), a great deal can still be learned.
 We also learned that one-on-one observation and interview is a highly powerful technique
yielding numerous insights that are simply impossible to discover in a group setting. For ex-
ample, while the in-class and comparative experiments suggested that the instruction and
guidance students were receiving in learning to play SimSE was inadequate in some way, the
observational experiment revealed the exact issues that needed to be emphasized in order for
the students to have a more successful experience. Framing our observational experiment in
the context of learning theories was an especially valuable choice, as it provided us with a
well-established framework for discovering some of the specific ways in which SimSE facili-
tates learning. A learning-theory-centric observational and interview experiment design is one
that could be applied to nearly any software engineering educational approach.
 Clearly, designing and carrying out an extensive evaluation like ours is a difficult and la-
bor-intensive endeavor with countless considerations to be made and details to be addressed.
Experiments must be designed, subjects must be recruited, and significant time must be in-
vested in conducting the experiments and analyzing the data. However, as we have shown
here, this is not an impossible task, and the return on investment is significant in terms of the
amount of insight that can be gained.

5. Conclusions and Future Work

The typical software engineering educational approach is usually evaluated only anecdo-
tally or through a small pilot study. As a result, much of what there is to be learned about an
approach’s value goes undiscovered. We have presented a clear example of this: In choosing
to extend SimSE’s evaluation beyond an initial pilot study into a multidimensional evaluation
approach, we were able to discover numerous insights about its effectiveness, its limitations,
the critical considerations surrounding its use, and promising directions for future work.

If more software engineering education researchers aim to comprehensively evaluate their
approaches, the community will be provided with more convincing evidence about each ap-

 8

proach’s efficacy, more frequent sharing and adoption of approaches will be encouraged, ap-
proaches will be made more effective through experience, and a greater overall understand-
ing of how software engineering can be taught and learned will be promoted. As a result,
the field of software engineering education will progress to become more effective in prepar-
ing students for their future careers.
 Though our experiment results have provided answers to our initial questions, they have
also raised new questions and brought to light issues that need to be addressed, both of which
must be dealt with through further experimentation. For example, we are planning to experi-
ment with certain modifications to in-class usage, such as making SimSE a mandatory exer-
cise and increasing the level of instruction students receive in learning to play SimSE. We
will also perform further observational experiments with new and revised simulation models
and versions of SimSE, to assess the value of these revisions.

Acknowledgements

Effort partially funded by the National Science Foundation under grant number DUE-
0618869.

References

[1] S. M. Alessi and S. R. Trollip, Multimedia for Learning. Needham Heights, MA, USA: Allyn &

Bacon, 2001.
[2] J. S. Brown, A. Collins, and P. Duguid, "Situated Cognition and the Culture of Learning," Educa-

tional Researcher, vol. 18, pp. 32-42, 1989.
[3] R. Dawson, "Twenty Dirty Tricks to Train Software Engineers," in Proceedings of the 22nd In-

ternational Conference on Software Engineering: ACM, 2000, pp. 209-218.
[4] A. Drappa and J. Ludewig, "Simulation in Software Engineering Training," in Proceedings of the

22nd International Conference on Software Engineering: ACM, 2000, pp. 199-208.
[5] R. J. Fornaro, M. R. Heil, and A. L. Tharp, "What Clients Want - What Students Do: Reflections

on Ten Years of Sponsored Senior Design Projects," in Proceedings of the Nineteenth Conference
on Software Engineering Education and Training. Oahu, HI: IEEE, 2006, pp. 226-236.

[6] O. Hazzan and J. E. Tomayko, "Reflection Processes in the Teaching and and Learning of Human
Aspects of Software Engineering," in Proceedings of the Seventeenth Conference on Software
Engineering Education and Training. Norfolk, VA, USA: IEEE, 2004, pp. 32-38.

[7] J. M. Keller and K. Suzuki, "Use of the ARCS Motivation Model in Courseware Design," in In-
structional Designs for Microcomputer Courseware, D. H. Jonassen, Ed. Hillsdale, NJ, USA:
Lawrence Erlbaum, 1988.

[8] J. C. McKim and H. J. C. Ellis, "Using a Multiple Term Project to Teach Object-Oriented Pro-
gramming and Design," in Proceedings of the Seventeenth Conference on Software Engineering
Education and Training. Norfolk, VA: IEEE, 2004, pp. 59-64.

[9] E. O. Navarro, "SimSE: A Software Engineering Simulation Environment for Software Process
Education." Irvine, CA: University of California, Irvine, 2006.

[10] E. O. Navarro and A. van der Hoek, "Design and Evaluation of an Education Software Process
Simulation Environment and Associated Model," in Proceedings of the Eighteenth Conference on
Software Engineering Education and Training. Ottawa, Canada: IEEE, 2005.

[11] C. R. Rogers, Freedom to Learn. Columbus, OH, USA: Merrill, 1969.
[12] R. C. Schank, Virtual Learning. New York, NY, USA: McGraw-Hill, 1997.
[13] D. A. Umphress and J. A. Hamilton, "Software Process as a Foundation for Teaching, Learning,

and Accrediting," in Proceedings of the Fifteenth Conference on Software Engineering Education
and Training. Covington, Kentucky, USA: IEEE, 2002, pp. 160-169.

[14] B. R. von Konsky, M. Robey, and S. Nair, "Integrating Design Formalisms in Software Engineer-
ing Education," in Proceedings of the Seventeenth Conference on Software Engineering Educa-
tion and Training. Norfolk, VA, USA: IEEE, 2004, pp. 78-83.

