
Software Pre-Patterns as Architectural Knowledge
Gerald Bortis and André van der Hoek

University of California, Irvine
Department of Informatics

Irvine, CA 92697-3440
{gbortis,andre}@ics.uci.edu

ABSTRACT
Christopher Alexander’s introduction of patterns inspired their
application in fields such as software engineering. However, their
current realization deviates from his original intent in how and
when they are used. In this paper, we contrast Alexander’s con-
cept of patterns to their current realization in software engineering
and suggest a new approach to creating patterns which are broader
and can be applied at the early phases of the design process, and
thus adhere to Alexander’s original intent as a format for captur-
ing and sharing important design knowledge.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and
Features – Patterns

General Terms
Design, Documentation

Keywords
Patterns, design patterns, pre-patterns, architectural knowledge

1. INTRODUCTION
Patterns have become a powerful and ubiquitous concept in soft-
ware engineering. The notion of a pattern, or “a rule which ex-
presses a relation between a certain context, a problem, and a
solution” was first introduced in the field of architecture by Chris-
topher Alexander in his seminal book The Timeless Way of Build-
ing with the goal of providing an approach to designing buildings
and towns which posses an intrinsic quality which can not be
named, in other words, structures which are “alive.” In his work,
Alexander establishes a formal framework for capturing and de-
fining these patterns so that they can be shared and provide in-
sights into design problems [1].

The software engineering community at large has since readily
adopted patterns. The most notable of these efforts has been the
introduction of software design patterns described in Design Pat-
terns [8]. Patterns have also emerged in other areas such as user
interface design [4], web design [9], and ubiquitous computing
[6]. In each of these areas patterns provide a structured format for

capturing and sharing design knowledge between practitioners.

As the adoption of patterns continues to spread through the soft-
ware engineering community, it is important to understand how
they are being used, and how they deviate from the original intent
of Alexander's approach. In this paper, we contrast Alexander's
use of patterns in architecture with their current realization in
software engineering, and suggest a new approach to creating and
using patterns that is truer to their original intent.

2. TIMELESS PATTERNS
Alexander describes patterns as common recurring elements that
contribute to endowing a building or town with an unnamable
quality that is difficult to describe but trivial to detect. These pat-
terns are intertwined in a pattern language that composes patterns
and facilitates the design of complex “living” structures through
the exploration of a web of dependent patterns. Architects can
communicate their knowledge through this language that, over
time, is envisioned to become common to all designers. A pattern
is considered stable when it allows its own internal forces to re-
solve themselves. For example, a window seat addresses the po-
tentially conflicting forces involving a person’s natural tendency
toward light and the desire to sit and be comfortable. A structure
can only be “alive” when all of its composing patterns are stable.
Since these qualities are ones which are also desired in software
systems, patterns have proven useful in expressing essential
knowledge of recurring problems in software engineering. How-
ever, current applications of patterns differ from Alexander's in
several ways.

The first important difference is the timing of patterns, or the
phases of the design process at which a designer can employ pat-
terns. Alexander describes patterns as “rules of thumb” which
exist in the designer's mind in the form of an ideal structure [2]. In
describing his own process of designing a small cottage, he begins
by first listing the patterns “in the order they come in, one at a
time” given the requirements of the scenario, such as the state of
the existing structure, space available, cost of materials, etc. In
this early phase of design, he chooses a set of patterns he wishes
to utilize in his design, such as THE FAMILY and NUMBER OF STO-
RIES. Here we see that patterns are employed in the earliest phase
of the design process when the requirements are being identified.
He even introduces the SITE REPAIR pattern that solves the prob-
lem of preparing the site for the new structure. Such patterns do
not provide guidance in constructing the cottage, but rather in
preparing a design for the cottage, and span the entire life of a
design, from the designers mind to the last detail.

Alexander’s use of patterns in these examples differs significantly
from current approaches to applying patterns in software engi-
neering, which tend to focus heavily on object-oriented models of
software, and the creation of patterns that address implementa-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distrib-
uted for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

SHARK’08, May 13, 2008, Leipzig, Germany.

Copyright 2008 ACM 978-1-60558-038-8/08/05...$5.00.

tions based on these models. Patterns in software engineering are
often expressed through code fragments and accompanied by
UML diagrams that address the implementation. This approach to
patterns prohibits the designer from considering patterns during
the iterative process of gathering requirements and forming an
early architecture because the patterns address problems and make
use of concepts and terms that are encountered during implemen-
tation. Design patterns such as SINGLETON and FACTORY are con-
ceptually near to code, and fail to address problems encountered
in the early phases of design that involve making important high-
level decisions.

The second important characteristic of Alexander's patterns is
their level of detail. Alexander describes the use of patterns as the
process of “differentiating space” where very high-level patterns
are applied to an open space. As the space becomes more defined,
lower-level patterns can be applied. This process is accomplished
using a pattern language consisting of high-level patterns that are
composed of dependent lower-level patterns. For example, in
designing a structure, windows cannot be placed before a wall has
been designed, and a wall cannot be designed before the axis of
the building has been decided. Alexander writes, “to make a de-
sign, you take the patterns one by one, and use each one to differ-
entiate the product of the previous patterns.” We notice that such
patterns support every level of the decision making process.

The current realization of patterns in software engineering should
be viewed as low-level patterns that require high-level decisions
to be made before hand. Rather than spanning every level of the
decision making process, they require an architecture, and for the
space to be already differentiated, thus causing a discontinuity in
the design process.

From these two observations we note that Alexander's patterns are
more effective, and actually aimed at, sharing insights to a solu-
tion to a design problem, rather than structuring the implementa-
tion of the problem, which is how they have been realized in
software engineering. This difference, however subtle, is impor-
tant because it addresses the nature of a pattern and its ultimate
goal. To effectively foster the sharing of design knowledge and
support the growth of a pattern language, patterns must address
these issues in any field.

3. RELATED WORK
There have been attempts to adopt patterns at a higher level and
earlier in the design process. For example, there are efforts to
identify, name, and analyze patterns in software architectures as
architectural styles or idioms [10]. Architectural styles are pre-
sented as an abstraction of elements from various specific archi-
tectures and are less constrained and less complete than a specific
architecture [5]. Even though architectural styles strive to encap-
sulate high-level decisions and constraints of the elements, they
still differ from Alexander's patterns in that they are often singular
in nature. For example, choosing a style such as CLIENT-SERVER
or BLACKBOARD as part of the design process is the limited extent
of an architectural style. Alexander's patterns are hierarchical,
with high-level patterns being composed of more detailed pat-
terns, and they are applied throughout the design process.

Domain-specific software architectures, or DSSAs, are another
example of abstractions meant to address similar issues. DSSAs
provide an assemblage of software components, specialized for a
particular domain in a standardized structure for building applica-
tions, as well as “a context for patterns of problem elements, solu-

tions elements, and situations that define mappings between
them” [11]. While DSSAs are useful in providing a common lan-
guage that can be used to share knowledge of a particular domain,
they are at the same time constrained since they focused on a sin-
gle domain. In contrast, pattern languages are to be applied across
any domain. For example, the same patterns could be used for a
house as for a church. Furthermore, DSSAs require that the do-
main be thoroughly modeled so that reference architectures can be
created. This deviates from Alexander's original vision of patterns
as genetic code that guides the growth of a structure, rather than
blueprints that determine the final plan [2].

The goal of design rationale is to capture the knowledge and rea-
soning justifying a resulting design, such as how a design met
quality requirements and why certain designs were selected over
others [3]. While design rationale, once collected, can be used
similar to and even expressed as pre-patterns, they differ in that
they are constructed after the fact. Pre-patterns are instead meant
to guide the decision making process as the designer selects vari-
ous patterns to apply to the problem at hand.

Finally, pre-patterns share characteristics with the concept of
analysis patterns. Both pre-patterns and analysis patterns are in-
tended to be applied across domains and help the designer to bet-
ter understand the problem by capturing the conceptual structures
of the business process rather than actual software implementa-
tions [7]. However, analysis patterns are heavily oriented towards
the modeling of objects and their relationships, and do not directly
address other concerns such as architectures or user interfaces.
Pre-patterns have broader applicability and are meant to be less
precise regarding the models which are used in a design.

4. PRE-PATTERNS
Similar approaches to applying patterns have been made in other
areas of computer science as well. In attempting to identify com-
mon design problems that pertain to ubiquitous computing, Eric et
al. have developed the concept of pre-patterns to refer to “struc-
tured design knowledge in a nascent domain” [6]. By surveying
products related to ubiquitous computing, the authors identified
48 common designs that follow Alexander's structure of describ-
ing a particular design problem, as well as the forces that act upon
it, and a solution. They address problems particular to the field of
ubiquitous computing, such as DURABILITY AND ROBUSTNESS and
GROUP CALENDAR. The pre-patterns also tend to “focus on high-
level issues, such as user needs, versus specific user interfaces and
interaction techniques,” because “many of these high-level issues
are better understood than the low-level techniques for imple-
menting them” [6]. An empirical study of the effectiveness of
these pre-patterns has demonstrated that they aid novice designers
unfamiliar with an application domain to communicate ideas eas-
ier and to avoid some common problems in their design. In par-
ticular, the patterns prove to be effective in the idea generation
process by assisting in solving high-level design problems [6].

This notion of a pre-pattern that provides guidance during the
design process is a step in the right direction towards applying
Alexander's original patterns in software engineering. In this pa-
per we examine the potential of pre-patterns in software engineer-
ing, particularly as related to the problem of sharing architectural
knowledge. Pre-patterns are meant to supplement existing patterns
in software engineering since they address the problems which
occur early in the design process, and at a higher-level than exist-
ing design patterns. They achieve this by providing multiple solu-

tions, providing a higher level of abstraction, and by addressing
the design problem rather than the implementation.

Multiple solutions. Pre-patterns address one problem with multi-
ple potential solutions. Design patterns provide a single solution
to a problem, leaving only implementation details up to the de-
signer. This is not flexible and does not support the creative de-
sign process that involves the designer evaluating multiple solu-
tions. Since pre-patterns are used early in the design process, they
support creativity by presenting multiple solutions to a problem.

Level of abstraction. Pre-patterns provide a level of abstraction
that is higher than design patterns. Whereas design patterns pro-
vide code fragments and UML diagrams, pre-patterns do not need
to acknowledge model or paradigm specific concepts like objects
and interfaces that are encountered during implementation. At the
same time, pre-patterns can be contained within architectural
styles, which themselves can be represented as pre-patterns.

Problem solution. Because pre-patterns are used early in the
design process and at a higher level, they are inherently more
useful in structuring a solution given the context, rather than ad-
dressing the problems related to the implementation. They are
conceptually closer to requirements than design patterns and can
be used to convey the problem using a pattern language more
accurately, which is a closer realization to Alexander's original
concept of patterns that address the forces that act upon a context.

5. EXAMPLES
To illustrate these features, we provide several examples of pre-
patterns that have been observed by one of the authors in the de-
sign and implementation of Mirth, an open source healthcare inte-
gration engine. Mirth has been in continuous design and develop-
ment since early 2006 and is used in production in numerous hos-
pitals and health care organizations.

We present these pre-patterns in a format similar to that in A Pat-
tern Language because it conveys the intent of patterns by de-
scribing: the context or essence of the problem, examples for va-
lidity, and a set of potential solutions which describes the relation-
ships required to solve the stated problem in the stated context [1].

CONCURRENT MODIFICATION
Two or more people using an application simultaneously will
need access to the same data.
Web-based applications often allow multiple people to access the
content. For example, an order tracking system might allow the
salesperson and the customer to view and modify the same order
simultaneously. The ability to simultaneously use an application
suggests that concurrent modification of underlying data can oc-
cur.

Therefore, this problem may be addressed in several ways (note:
there are additional solutions beyond the three listed here; for
brevity we omit those at this time):

• locking the data and allowing only one user to view or mod-
ify it at any time,

• allowing each user to store a local copy of the data as they
view and modify it, and merging the modified version with
the shared version at a later time,

• providing all users with access to the data and ignoring any
concurrency issues.

LARGE QUERY RESULTS
Searches may return a large number of results that take a
long time to transmit between systems or to display.
Searching for and viewing items is a common feature of many
applications. In some situations, the searches may return a large
number of results. For example, using a library access system to
view all books on “software engineering” would return a signifi-
cant number of results that cannot all be retrieved or displayed.

Therefore, this problem may be addressed in several ways:

• paging (splitting the results into pages of a set size) the re-
sults of the query either locally on the system which is view-
ing the results, or remotely on the system which is providing
the results,

• limiting the number of results returned.

ROLES AND PRIVILEGES
People need different levels of access to different parts of the
system.
For security or privacy reasons, different people may not be al-
lowed to access specific parts of a system. For example, in an
employee timesheet system, only the manager should be able to
view all of the employee’s hours. The employees should only be
able to enter their own hours.

Therefore, this problem may be addressed by creating roles with
assigned privileges. For example, only the manager will be as-
signed the role that is given the privilege to access the employee
overview page.

LARGE DATA STREAMS
An application may receive a large data stream for processing.
Event-driven applications that receive data from external sources
may be subject to overwhelming amounts of incoming data. For
example, a message routing application may receive more mes-
sages than it can store or process.

Therefore, this problem may be addressed in several ways:

• by keeping a buffer of a preset size to store data when its size
has exceeded processing limitations,

• by rejecting any new incoming data, optionally with a notifi-
cation to the sending system.

In elaborating these pre-patterns, we notice several key features.
First, they are broader than design patterns in their context. Pre-
patterns do not assume a specific programming paradigm or im-
plementation model. Instead, they provide insights which are use-
ful in guiding the decision making process and in forming a solu-
tion. For example, the LARGE QUERY RESULTS pre-pattern repre-
sents a characteristic that is exhibited by numerous distributed
systems. By having this pre-pattern present during the thinking
process one can quickly examine the problem at hand in his or her
head for the potential presence of this issue. With a checklist of
pre-patterns, it then becomes possible to avoid many surprises
later in the development lifecycle when the actual architecture and
design are much more complete and would possibly need to
change much in order to accommodate this kind of concern.

Second, several of the pre-patterns suggest several possible solu-
tions. These solutions are intended to stimulate the designer into
considering possible alternatives, and in creating his own. We also

note the composability of these pre-patterns. For example, CON-
CURRENT MODIFICATION should be considered along with LARGE
QUERY RESULTS in situations where multiple users may edit the
results returned from the search. Here we see that applying pre-
patterns to a design problem is a process similar to Alexander’s
“differentiating space.” Unlike approaches that attempt to differ-
entiate the space only once during the design process, pre-patterns
can be combined in many different ways as new design problems
appear. For example, Mirth was built using an overall architec-
tural style, CLIENT-SERVER, but pre-patterns still naturally fit and
in many ways inspired the choice of style and subsequent refine-
ment and adjustment of the Mirth design as problems such as
LARGE QUERY RESULTS due to message volume and CONCURRENT
MODIFICATION due to threading became apparent.

6. DISCUSSION
Based on these observations, we propose that pre-patterns should
be explored as a viable tool for sharing architectural knowledge,
since the application of pre-patterns automatically conveys
knowledge pertaining to why a particular design was chosen in
solving a design problem. This knowledge of the solution, rather
than the implementation, is immensely valuable in better under-
standing the decisions that are made when architecting a software
system.

Like Alexander’s original patterns, pre-patterns provide a standard
design vocabulary that can be shared among designers. As practi-
tioners apply pre-patterns, they can recognize and create new pre-
patterns that further convey knowledge of architectural design
problems. This process of applying and reformulating patterns, or
what Alexander calls the “evolution of a common language,” is
the key insight into effectively sharing architectural knowledge.
Pre-patterns help bridge the gap between the designer and the user
by providing representations of the solution that are discussable
and open to criticism.

Finally, as stated before, because pre-patterns are applied during
the early phases of design, they can also be used to make the de-
signer aware of problems that he may not have been considering
in developing the solution. This unique state in which pre-patterns
exist, distinct from design patterns and architectural styles, allows
them to act as an awareness mechanism for architectural knowl-
edge.

7. CONCLUSIONS AND FUTURE WORK
In this paper we introduced the concept of pre-patterns for soft-
ware engineering. We believe pre-patterns are a closer realization
of Alexander’s original approach to conveying important design
knowledge through patterns that can be applied at the earliest
phases of design. Pre-patterns also provide the designer with high-
level abstractions that are oriented towards framing the problem
rather than the implementation. When applied, their broad appli-
cability also encourages the evaluation of multiple potential solu-
tions to a design problem. These distinguishing attributes make
pre-patterns a useful vehicle for expressing and sharing architec-
tural knowledge.

We realize this introduction is only the beginning of our work. To
evolve the concept of pre-patterns, we want to continue to collect

new pre-patterns based on our involvement in the design of soft-
ware systems such as Mirth. Specifically, we want to reconstruct
Mirth completely and in detail in terms of pre-patterns at various
levels of abstraction, and do so as well for other systems to under-
stand which pre-patterns play a role when and where. With this
kind of knowledge we can better address the ultimate role we
envision for pre-patterns: how they can enhance the design proc-
ess, particularly early on but as much so in their effect on later
phases of the design process.

Because pre-patterns are broad in scope and are applied during the
early phases of the design process, we realize their potential in
further avenues of research. We wish to further analyze the value
of pre-patterns in representing requirements or concerns during
design and in enabling stakeholders to better understand and track
them before they are further formalized. We also wish to investi-
gate various methods of applying pre-patterns during design, in-
cluding potential support through tools that expose designers to
common problems and to foster creativity, with the ultimate goal
of supporting the design of higher quality software applications.

8. ACKNOWLEDGEMENTS
Effort partially funded by the National Science Foundation under
grant numbers DUE-0536203 and IIS-0534775.

9. REFERENCES
[1] Alexander, C., A Pattern Language: Towns, Buildings, Con-

struction. 1977: Oxford University Press.
[2] Alexander, C., The Timeless Way of Building. 1979: Oxford

University Press.
[3] Antony, T., et al., A survey of architecture design rationale.

J. Syst. Softw., 2006. 79(12): p. 1792-1804.
[4] Borchers, J., A Pattern Approach to Interaction Design.

2001: John Wiley and Sons.
[5] Dewayne, E.P. and L.W. Alexander, Foundations for the

study of software architecture. SIGSOFT Softw. Eng. Notes,
1992. 17(4): p. 40-52.

[6] Eric, S.C., et al., Development and evaluation of emerging
design patterns for ubiquitous computing, in Proceedings of
the 5th conference on Designing interactive systems: proc-
esses, practices, methods, and techniques. 2004, ACM: Cam-
bridge, MA, USA.

[7] Fowler, M., Analysis Patterns: Reusable Object Models.
1997: Addison-Wesley.

[8] Gamma, E., Helm R., Johnson R., and Vlissides J., Design
Patterns. 1995: Addison-Wesley.

[9] Graham, I., A Pattern Language for Web Usability. 2003:
Addison-Wesley.

[10] Gregory, D.A., A. Robert, and G. David, Formalizing style to
understand descriptions of software architecture. ACM
Trans. Softw. Eng. Methodol., 1995. 4(4): p. 319-364.

[11] Will, T., DSSA (Domain-Specific Software Architecture):
pedagogical example. SIGSOFT Softw. Eng. Notes, 1995.
20(3): p. 49-62.

