
Decisions and Rationale during the Evolution of a
Coordination Infrastructure

Roger M. Ripley and André van der Hoek
University of California, Irvine

Department of Informatics
Irvine, CA 92697-3425 USA

{rripley,andre}@ics.uci.edu

ABSTRACT
For workspace-to-workspace awareness systems, the de-
sign of the underlying infrastructure stands out as diffi-
cult. We discuss our experience building infrastructures and
visualizations that aim to help people better coordinate
their work, showing how our infrastructures have evolved
through four of our prototype systems: Palant́ır, Lighthouse,
Workspace Activity Viewer, and World View. Through our
experiences and the lessons we have learned, we offer re-
quirements for an ideal infrastructure.

1. INTRODUCTION
Coordination of development activities is one of the core

activities in a software development project. Awareness
tools, and their associated visualizations, aim to support de-
velopers by arming them with awareness of parallel activi-
ties, allowing them to self-coordinate their actions by placing
their work in the context of others’ actions.

As part of our research in workspace-to-workspace aware-
ness tools, we have built infrastructures and visualizations
that aim to help both developers and managers better co-
ordinate their work by informing them of relevant parallel
work, design evolution, loci of activity, and the context of
those activities. A common difficulty through all our systems
has been the underlying infrastructure.

The remainder of this paper is organized as follows. We
briefly review the awareness tools we have developed in Sec-
tion 2. Continuing with Section 3 we describe our experi-
ences developing, evolving, and using our infrastructures. In
Section 4 we discuss requirements for an ideal infrastructure,
and conclude with Section 5.

2. SYSTEMS
We will discuss two systems that capture, distribute, and

visualize workspace actions (Palant́ır and Lighthouse), as
well as two stand-alone visualizations for already collected
data (Workspace Activity Viewer and World View).

2.1 Palantír
Palant́ır [10, 9] is a workspace awareness tool based on

the hypothesis that conflicts in parallel development can be
considerably reduced, both in magnitude and number, by
providing developers with insight into ongoing project ac-
tivities. Palant́ır collects, distributes, organizes, and presents
workspace information.

Palant́ır has different visualizations which present parallel
activities in varying degrees of detail and obtrusiveness; how-
ever, they are all geared toward the individual developer and
reveal the rest of the project from the perspective of that de-
veloper. The Palant́ır-Eclipse integration (Figure 1(a), left)
“decorates” the package explorer view with red triangles to
quickly alert the developer that parallel activity is taking
place. The fully graphical visualization (Figure 1(a), right)
complements the Eclipse integration by allowing for explo-
ration of a hierarchical, stackable view of an artifact and its
constituents. Other visualizations are similarly complemen-
tary; descriptions can be found in [11].

2.2 Lighthouse
Whereas Palant́ır provides awareness focused around files

and blocks of code, Lighthouse [4] looks at the bigger pic-
ture by using the system design metaphor. As shown in Fig-
ure 1(b), Lighthouse builds a real-time UML-like class di-
agram to convey development activities. This visualization
shows how the current system design is directly emerging
from the collaboratively built source code and evolving as
the code changes and advances. Design decay, conflicting
changes in shared artifacts, and duplicate work can be spot-
ted as they surface. The class diagram is annotated with
authorship information, identifying the responsible develop-
ers for each step of the system design evolution.

2.3 Workspace Activity Viewer
Both Palant́ır and Lighthouse are targeted primarily at

developers. The Workspace Activity Viewer [8], on the other
hand, gives managers an overview of both past and ongoing
activities in a project, using information extracted directly
from developers’ workspaces. As shown in Figure 1(c), it
visualizes the developers and artifacts in a project using a 3D
metaphor with stacks of cylinders representing artifacts and
developers. Parallel work, developer activity, dormancy, and
magnitude of change are represented by size and position
along the different axes.

The Workspace Activity Viewer reveals how the project is
evolving, both socially and technically, via a movie-like play-
back of the state of the project, showing what developers are



(a) Palant́ır. (b) Lighthouse.

Developer 
Mode

Artifact
Mode

(c) Activity Viewer. (d) World View.

Figure 1: Screenshots of our awareness tools.

active when, and what types of artifacts they contribute to.
It also shows social dependencies by revealing when devel-
opers are simultaneously working on the same artifact.

2.4 World View
World View [12] provides a location-oriented view of a

software development project (Figure 1(d)). It allows project
managers and developers to see the inter-team relationships
in a global project, by providing the context in which de-
velopment activities are taking place (teams, location, etc.)
on a world map. It has the flexibility of not only visualizing
conflicts, but any kind of location-relevant dependency, such
as bugs and change requests submitted by one team but not
resolved by another. Location can be especially relevant for
those dependencies as differing time zones and national hol-
idays can have large effects on the timeliness of resolution.

3. INFRASTRUCTURE EXPERIENCE
Underneath these systems, there is an evolving infrastruc-

ture which we change to meet new requirements from our
tools and to address shortcomings discovered when evaluat-
ing and deploying them.

3.1 Events
In order to make Palant́ır independent of both the under-

lying SCM system and the development environment, Palan-
t́ır silently intercepts the interactions of the developer with
the repository (e.g., check-in, check-out, synchronize), mon-
itors the activities of the developer in the workspace (e.g.,
edit, local save, local delete), and then transmits that infor-
mation to other “remote” workspaces via events. Artifacts
that are modified typically trigger the following sequence of
events: Populated, ChangesInProgress, ChangesCom-
mitted, and UnPopulated. When a developer saves their
work frequently, but holds off on committing, an artifact
will emit multiple ChangesInProgress (one for each lo-
cal save) followed by a ChangesCommitted (for the even-
tual check-in). If a developer instead commits immedi-
ately after each change, pairs of ChangesInProgress and
ChangesCommitted will result. Artifacts that are used by
developers for ancillary purposes trigger a simple series of
events: Populated followed by UnPopulated. Palant́ır’s
entire set of events is described in [10].

Palant́ır initially used a peer-to-peer architecture, as
shown in Figure 2(a), using S iena [2] as the event service to
broadcast Palant́ır events. When a new developer joined the
Palant́ır workgroup, each Palant́ır instance would publish
bootstrap events for the artifacts in its workspace, giving
the new client a snapshot of every developer’s state.

3.2 Centralization
Palant́ır’s peer-to-peer architecture specifies that when

a new developer connects, each existing Palant́ır instance
would bootstrap the new one with their current state. This
was deficient, however, because when a developer leaves the
Palant́ır workgroup, the knowledge of what they are working
on is lost to joining developers, and when a developer rejoins
the Palant́ır workgroup, their visualizations have lost their
own history and now only reflect the current status of other
developers. Furthermore, since Palant́ır did not persistently
store events, there was no way to analyze the collected data
for patterns or to generate historical visualizations.

To address these issues, we added a centralized server,
as shown in Figure 2(b), which encapsulates the event
service—acting as a S iena dispatcher, captures all events
to a database, and handles publishing bootstrap informa-
tion from those stored events. The data definition for the
events table occurs automatically, based on the attributes
in the notifications received by S iena.

3.3 Direct database connection
Using S iena as our event service had several drawbacks.

The first was that ordering of events was not guaranteed,
and occasionally dependent events would arrive out of or-
der. The second was that S iena’s transports all required a
routable unfirewalled connection between client and server
and vice versa, preventing clients from being behind network
address translation. We wrote a tunneling transport to ad-
dress this, but it was an awkward solution. We realized that
we could push the bootstrap and event capture logic from
the server into the client, and have the client connect directly
to the database server replacing the event service with the
event table. We utilized the LISTEN and NOTIFY functions in
PostgreSQL [6] to wake up the client to retrieve new events
without having to poll the server. This made event commu-
nication reliable while simultaneously simplifying the system
architecture, as shown in Figure 2(c).

3.4 Client event cache
After Palant́ır was connecting directly to the database,

there remained one major infrastructural issue: clients re-
quired a full time network connection to the database server.
Any drop of the database connection and events being gen-
erated by the client would be lost. To remedy this, we mod-
ified the event capture module to store generated events
locally when there was not an active connection to the
database. Palant́ır visualizations would continue to show the
last connected state until a connection was reestablished. If
the client started disconnected, it would immediately cache



EVENT SERVICE

WORKSPACE WRAPPER WORKSPACE WRAPPER

INTERNAL STATE INTERNAL STATE

CM CLIENT CM SERVER CM CLIENT

VISUALIZATION

EXTRACTOR

VISUALIZATION

EXTRACTOR

WORKSPACE REPOSITORY WORKSPACE

(a) Palant́ır: peer-to-peer.

EVENT SERVICE

EVENT DATABASE

CAPTURE BOOTSTRAP

SERVER

WORKSPACE WRAPPER WORKSPACE WRAPPER

CM CLIENT CM SERVER CM CLIENT

WORKSPACE REPOSITORY WORKSPACE

EXTRACTOR

INTERNAL STATE

VISUALIZATION VISUALIZATION

EXTRACTOR

INTERNAL STATE

(b) Palant́ır: central server.

EXTRACTOR

INTERNAL STATE

VISUALIZATION

BOOTSTRAP

VISUALIZATION

EXTRACTOR

INTERNAL STATE

WORKSPACE WRAPPER WORKSPACE WRAPPER

CM CLIENT CM SERVER CM CLIENT

WORKSPACE REPOSITORY WORKSPACE

EVENT
DATABASE

CAPTURE CAPTURE

BOOTSTRAP

(c) Palant́ır: direct database.

CM SERVER

REPOSITORY

EVENT LOGIC

LOCAL MODEL

DISPLAY LOGIC

VISUALIZATION

EVENT
REPLICATOR

LOCAL EVENT
DATABASE

ECLIPSE WRAPPER

ECLIPSE

WORKSPACE

LOCAL EVENT
DATABASE

EVENT
REPLICATOR

EVENT LOGIC

LOCAL MODEL

DISPLAY LOGIC

VISUALIZATION

ECLIPSE WRAPPER

ECLIPSE

WORKSPACE

MASTER EVENT
DATABASE

Client 1 Client 2

(d) Lighthouse: database replication.

Figure 2: Infrastructure evolution.

events, but none of the visualizations would be enabled until
a connection was able to be established.

3.5 Local database replication
One drawback to the event caching mechanism of Palant́ır

was that if a client started disconnected, they would not be
able to use any of the visualizations or analyses, even while
their own events were being saved locally.

When designing the event distribution method for Light-
house, we decided to store and retrieve all events locally us-
ing an embedded SQL database, Derby [1]. Unlike Palant́ır’s
events, which were sets of name-value pairs, Lighthouse’s
events were defined as a rich object-oriented model. Because
of this, we used Hibernate [7] to map the events objects
onto database tables. Periodically the local stored events
are pushed to a master event database, while pulling new
remote events left by other Lighthouse clients into the local
event database, as shown in Figure 2(d). This allows for dis-
connected operation without losing functionality, and it also
allows developers to write visualizations that are irrespective
of connection status. The master event database keeps a his-
tory of all events, supporting bootstrapping new developers
when they join a project, analyses, and visualizations.

3.6 Project history playback
The Workspace Activity Viewer uses Palant́ır’s database

of events. In order to accomplish a movie-like playback of
workspace state across an entire project—with the ability
to rewind, fast-forward, and jump to any position—we have
to derive the project state at any particular moment. It is too
time-consuming to derive the project state from the event
database live during playback, so we preprocess the events
to create in-memory indicies.

Rather than building that array of timestamps and point-
ers into the event database for each developer and each arti-
fact, the infrastructure should facilitate the queries needed
by the visualization, and other analysis queries, instead of
acting as solely as a repository of historical events.

3.7 Approximating unavailable data
In order to evaluate the Workspace Activity Viewer, we

needed real data for the visualization to process. We mined
the CVS repositories of several open-source projects hosted
on SourceForge [13]. Since the repository only contains
records of SCM interactions—not workspace activity data—
we simulated workspace activities between check-outs and
check-ins. The event model gives us the flexibility of ap-
proximating any unavailable data, with the caveat of being

judicious when making conclusions based upon that data.
To generate the simulation data, we used the CVS meta-

data for each commit (who, when, and how much changed)
to establish points of known state for each artifact. Before
each of these check-ins, we generate events indicating that
the artifact is being changed by the developer who checked
it in, with the frequency and severity (magnitude of change)
increasing as the commit time approaches. As a result, our
simulation is accurate at commits, and plausible in between.

3.8 Metadata
The context in which development activities takes place is

critical: the teams that developers belong to, the locations
they work in, etc. To visualize conflicts between teams, the
event information stored by Palant́ır was insufficient in that
it does not store what team individuals belong to, nor where
specific teams are located. The database schema had to be
expanded to not only include the events table, but also to
be able to maintain the metadata required by World View.
When updating the metadata, it will not suffice to replace
the old value with the new—it must be versioned so that
visualizations and analyses can see their evolution as well.
As teams change members, members move between different
geographic locations, etc., the visualizations need to remain
accurate historically to see how geography boundaries af-
fected the software project over time.

4. ANALYSIS / DISCUSSION
Based on our experience, we have determined several di-

mensions of requirements that should be considered in future
coordination infrastructures.

4.1 Events and states
There are two primary and complementary ways to track

actions: event streams and captured states. Event streams
track what happened, but at the cost of having to iterate
through the stream in order to know the state of the system
at a particular moment in time. Captured states track what
is, but neglect the cause of the transitions between states.
Therefore, we propose tracking both the events and the re-
sultant states, in the same way that a check register records
the transaction (event) and the current balance (state).

4.2 Relationships
Events tend to refer to an action performed by a developer

upon an artifact in the software project. This can be gener-
alized as two entities entering into a relationship, mutating
an already existing relationship, or terminating a relation-



ship. This generalization opens up a realm of possibilities,
such as, relationships between authors and teams (authors
X , Y, Z belong to team W, author S is managed by author
T ), relationships between artifacts (class A depends on class
B, class C implements requirement M). The infrastructure
should be able to store and version these relationships as
they begin, change, and end. The use of relationships can
also subsume much of what metadata was used for prior.

4.3 Hierarchical types and actions
In order for there to be more flexibility with regards to

mapping actions and artifacts onto visualizations, the infras-
tructure should support a hierarchy of types and actions. If
desired, a visualization that tracks when an class is mod-
ified should be able to recognize when a method in that
class is modified without requiring a storm of events for the
method, class, project, etc., for example. A different visu-
alization could show changes at the method level if it was
designed before events were captured with that granularity.
Furthermore, actions can have a hierarchy, e.g. renaming a
method is a specific type of changing of a method signature.
This will allow for visualizations and analyses to be more
independent of the type and granularity of data collected.

4.4 Queries and analyses
Beyond captured events, states, and relationships, some

visualizations and tools require additional computationally
expensive analyses to be performed. Ariadne (an analysis
and visualization tool not discussed in this paper) ana-
lyzes source code authorship metadata combined with source
code call analysis to derive socio-technical dependencies [5].
These types of analyses should be automatically performed
and kept up-to-date on the server, so that they are avail-
able immediately when needed, similar to nightly builds, or
database views. By having these analyses integrated into the
infrastructure, the information they provide can be shared
with and used to supplement other visualizations, such as
World View or Workspace Activity Viewer.

4.5 Client configuration
Using the infrastructure should require a minimum

amount of configuration by the end user developer. Configu-
ration should be automatically downloaded from the infras-
tructure into the client when possible, or even read out of a
small configuration file in the SCM repository, requiring only
that the developer be able to check out their project from
the repository to be able to activate the awareness client.

4.6 Client disconnection
The infrastructure also needs to accommodate temporar-

ily disconnected clients. When a client is disconnected, they
need to be unimpeded in their work. Notifications about the
disconnected state should be unobtrusive. Users should also
be able to maintain the maximum possible benefit from the
system while disconnected, e.g. with working visualizations
based on the last known state of the project.

5. CONCLUSIONS
In this paper we presented the infrastructures and visual-

izations that we have built to help both developers and man-
agers better coordinate their work by informing them of rel-
evant parallel work, design evolution, loci of activity, and the

context of those activities. We showed how our infrastruc-
ture has evolved through Palant́ır, Lighthouse, Workspace
Activity Viewer, and World View, and the difficulties we en-
countered which spurred this evolution. We finally gave some
requirements for an ideal awareness infrastructure. Jazz [3] is
a major step in right direction with regards to infrastructure
support, but there remains more to be done with regards to
supporting workspace level awareness.

6. ACKNOWLEDGMENTS
Effort partially funded by a 2004 Eclipse Innovation

Grant, a 2005 IBM Eclipse Technology Exchange Grant,
a 2006 IBM Technology Fellowship, and by the National
Science Foundation under grant numbers IIS-0205724 and
IIS-0534775.

7. REFERENCES
[1] Apache Software Foundation. Apache Derby.

http://db.apache.org/derby/, 2008.

[2] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf.
Design and evaluation of a wide-area event
notification service. ACM Transactions on Computer
Systems, 19(3), Aug. 2001.

[3] L.-T. Cheng, S. Hupfer, S. Ross, and J. Patterson.
Jazzing up Eclipse with collaborative tools. In
Proceedings of the 2003 eclipse technology eXchange,
2003.

[4] I. A. da Silva, P. H. Chen, C. V. der Westhuizen,
R. M. Ripley, and A. van der Hoek. Lighthouse:
coordination through emerging design. In Proceedings
of the 2006 eclipse technology eXchange, 2006.

[5] C. R. de Souza, S. Quirk, E. Trainer, and D. F.
Redmiles. Supporting collaborative software
development through the visualization of
socio-technical dependencies. In Proceedings of
GROUP ’07, 2007.

[6] PostgreSQL Global Development Group. PostgreSQL
Manual: NOTIFY. http://www.postgresql.org/
docs/current/interactive/sql-notify.html, 2008.

[7] Red Hat Middleware, LLC. Hibernate.
http://www.hibernate.org/, 2008.

[8] R. M. Ripley, A. Sarma, and A. van der Hoek. A
visualization for software project awareness and
evolution. In Proceedings of VISSOFT 2007, 2007.

[9] A. Sarma, G. Bortis, and A. van der Hoek. Towards
supporting awareness of indirect conflicts across
software configuration management workspaces. In
Proceedings of ASE ’07, 2007.

[10] A. Sarma, Z. Noroozi, and A. van der Hoek. Palant́ır:
Raising awareness among configuration management
workspaces. In 25th International Conference on
Software Engineering, pages 444–454, 2003.

[11] A. Sarma and A. van der Hoek. Visualizing parallel
workspace activities. In IASTED International
Conference on Software Engineering and Applications
(SEA), 2003.

[12] A. Sarma and A. van der Hoek. Towards awareness in
the large. In Proceedings of ICGSE ’06, 2006.

[13] SourceForge, Inc. Welcome to SourceForge.net.
http://sourceforge.net/, 2008.


