
An Experience Report on the Design and Delivery of

Two New Software Design Courses
Alex Baker and André van der Hoek

Department of Informatics
University of California, Irvine
Irvine, CA 92697-3440 U.S.A.

+1 949 824 6326

{abaker, andre}@ics.uci.edu

ABSTRACT

In this paper, we report on our experience in designing and deliv-

ering two new software design courses in the Informatics major at

UC Irvine. When the major was created in 2004, it explicitly con-

tained slots for two software design courses to be created from the

ground up. The authors led this effort, focusing one course on the

topic of system design and one course on the topic of implementa-

tion design. We discuss the philosophy and pedagogy behind the

courses, present key class activities, and reflect on having offered

each course twice over the past two years.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information

Science Education – Curriculum; D.2.2 [Software Engineering]:

Design Tools and Techniques - Object-Oriented Design Methods.

General Terms
Design

Keywords
Software design, system design, implementation design, software

design studio, general design thinking

1. INTRODUCTION
In Fall 2004, the University of California, Irvine inducted the first

class of students into its new Informatics major, which studies the

design, use, application, and impact of information technology (an

overview of the major can be found here [1]). The major is struc-

tured around a core of courses in software engineering, databases,

programming languages, computer-supported collaborative work,

human-computer interaction, and social and organizational impact

of information technology. Design is a theme throughout, which is

why it was decided to include two full courses on software design

in the curriculum (UC Irvine follows the quarter system, meaning

that each course involves ten weeks of instruction).

The topic of software design is addressed in several courses in

various existing majors at UC Irvine (i.e., Information and Com-

puter Science, Computer Science, and Computer Science & Engi-

neering), but the total amount of material would be insufficient to

fill twenty weeks of lectures. Moreover, the opportunity to take a

step back and consider what ideally should be taught in a pair of

software design courses was appealing. Hence, the authors led an

effort to design the two courses from the ground up.

Curriculum-wise, the first course is offered at the end of the

sophomore year, after students have taken a general software en-

gineering course, two HCI courses, two programming language

courses, and a requirements engineering course. The second

course is offered immediately following, namely at the beginning

of the junior year, and sets the stage for an advanced software

architecture course as well as, in the senior year, a nine-month

capstone project involving an industrial partner. As such, we

could count on a relative level of proficiency in a number of core

areas (e.g., programming, design of user interfaces, role of soft-

ware engineering), but also needed to prepare the students for the

subsequent courses and their careers afterward by providing them

with relevant skills, knowledge, and hands-on abilities.

In this paper, we describe our philosophy and pedagogy in design-

ing and delivering the two courses, present key class activities that

illustrate how students participated and learned in the courses, and

reflect on having taught the courses twice over the past two years.

2. PHILOSOPHY AND PEDAGOGY
In designing these courses, we examined the existing literature in

software engineering education, educational standards (e.g., IEEE

and ACM Curricular Guidelines [2], SWEBOK [3]), and courses

in software design at other institutions that we knew of or other-

wise found by searching the Internet. We learned that an over-

arching focus is on the design artifact, and especially the patterns

and notations in which the design artifact is to be captured. Much

less is said about the design process via which a design is ulti-

mately created. Adoption of a studio approach to software design

[4, 5] was most promising in this regard. Studios draw their inspi-

ration from other design fields, where frequent and open critique

is a key technique in honing students’ design skills [6].

We wanted to provide a broader perspective on design, as inspired

by the general design literature, as well as a deeper examination of

the more traditional topics, as afforded by the twenty weeks of

instruction available to us. Guiding the philosophy and pedagogy

of the two courses, then, are the following four key principles.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

SIGCSE’09, March 3–7, 2009, Chattanooga, Tennessee, USA.

Copyright 2009 ACM 978-1-60558-183-5/09/03...$5.00.

Provide a General Design Perspective: The authors have spent

time previously in studying design in general, as it exists in fields

other than software engineering, and in relating the resulting les-

sons back to software design [7]. We wanted to cast the courses in

this perspective, framing software design relative to these other

fields, illustrating how software presents a unique kind of design

problem, but at the same time showing how it is not wholly unlike

the kinds of design problems faced in other fields. People have a

natural ability to design, and an intuitive understanding of the role

of design in other fields [8]. We believe that leveraging this re-

source makes software design more accessible and allows students

to more easily leverage their inherent problem-solving skills.

Encourage Design-Minded Thinking: Designers exhibit a broad

variety of behaviors when faced with a given design problem. It is

well-known in other fields that designers often work opportunisti-

cally, proceeding with a given direction as long as possible. More

experienced designers also know when and how to generate alter-

natives, as well as how to properly evaluate them. They will

gather relevant (domain) knowledge to back up decisions, or read-

just a problem definition when it does not enable them to design

the right solution. None of these ideas are explicitly taught in

software design courses, yet the portfolio of approaches that a

designer has to enact such behavior is critical to their success in

designing. We wanted our courses to explicitly discuss and pro-

mote these “designerly” behaviors [8].

Separate System Design and Implementation Design: Software

engineering courses typically let students practice a design largely

on their own. A requirements document is provided and a student

must hand in a design document several weeks later, which is then

graded. Design, however, is much broader, and, in the real world,

customers’ requirements are imprecise and incomplete, requiring

a designer to augment and carefully interpret them. Designers are

therefore often involved in actually setting requirements, working

in teams representing a range of different stakeholders, and gener-

ally framing a design problem and its associated solution, some-

times from the highest levels to the smallest details, with impor-

tant design decisions made throughout. Our courses therefore

separate system design from implementation design. The first

course centers on system design, which involves deciding what

functions a software system should provide and how it should

interact with the world. The second course centers on implementa-

tion design, introducing the more traditional subjects of designing

the internal structures that facilitate a system’s implementation

and its maintenance. This division, although it admittedly sets a

boundary that in practice is less stringent, allowed us to focus our

lectures and topics, and allowed students to more easily relate

their activities to non-software design fields.

Balance Theory and Practice: Any designer’s ability to generate

quality software systems is highly influenced by their experiences

amassed over the years [9]. While including a generous portion of

hands-on practice, often in a studio setting, we also structured our

courses to provide a strong theoretical foundation through which

students can contextualize their practical work. We believe that

this helps students assimilate their experiences in class while at

the same time laying a basis for long-term learning, to be applied

when the students become practicing software engineers.

In short, we strove to teach students to think critically about soft-

ware design problems, spanning from early decisions during sys-

tem design to later yet equally important decisions made in im-

plementation design. We particularly wished to provide a blend of

interdisciplinary theoretical foundations and practical experiences

to allow students to hone a designerly mode of thinking.

After offering both classes a first time, we made several improve-

ments in how we brought this described philosophy and pedagogy

to the students, the results of which are described below.

3. SYSTEM DESIGN COURSE
The first course introduces students to a variety of general design

concepts and theory, and explores the ways in which software can

be designed to meet real-world needs. The course not only teaches

students about software. It also broadly promotes effective design

methods, problem solving skills, and creative thinking. Here, we

explain several approaches that we used to teach these lessons.

3.1 Non-Software Design Activities
In perhaps our most radical departure from traditional approaches,

during the first three lectures, students use a variety of materials to

design non-software products, such as trophies, bridges, and tow-

ers. We do not even broach the subject of software, simply open-

ing the first lecture with such a non-software design exercise. We

have three objectives in using this approach:

1. To get students designing. Software design is intimidating to

most students, often leading to tentative and limited engage-

ment. Any person, however, has an innate ability to generate

ideas, solve problems, and refine solutions. We want students

to immediately exercise these abilities, and become comfort-

able with them. This approach also sets the tone for the entire

course as one of a hands-on and very open experience.

2. To provide accessible examples about designing in which the

students have a personal investment. By taking pictures and

movies of the students in action, these exercises allowed later

examples to draw upon the students’ own design sessions to

make points about designing. This proved remarkably effec-

tive, especially when illustrating discrepancies between a

student’s practices in these exercises versus those in soft-

ware.

3. To jar students out of their assumptions about software de-

sign. Previous classes expose students to some notations that

may be used in design (e.g., UML, architecture), but talk lit-

tle about the surrounding process. By using non-software de-

sign exercises, we immediately emphasize a broader perspec-

tive that focuses on the creative process of taking a problem,

generating ideas, and critically evaluating alternatives.

The exercises and materials provided are carefully put together to

illustrate some pointed lessons. The series of non-software design

exercises typically moves from an individual exercise involving a

purposely vague prompt (design brief), to providing a constrained

problem, to a team exercise, to a team creating design instructions

for another team to follow. Materials include pen-and-paper, Play-

Doh, wooden sticks, and electrical wire, in different amounts de-

pending on the exercise.

One of the exercises is to design a bridge with limited materials, a

span as long as possible, and still able to carry a small load (a full

can of Play-Doh). Another exercise is to design a classroom chair

for mass-production. From these and other equally simple design

exercises, a tremendous number of design lessons can be gleaned.

Students naturally use different media (from prototyping a chair in

Play-Doh to drawing a design on paper), they are creative (no two

designs are the same), they design at different levels of abstraction

(in addition to visual looks, some chair designs include measure-

ments), they overcome communication barriers, they observe how

different team members have different assumptions but also bring

to bear individual knowledge that can be leveraged, etc. It is these

lessons that we echo back when the students design software, and

these lessons for which we provide them with the theory to put in

perspective and the tools to effectively put in practice.

3.2 General Design Theory
After the introductory non-software design exercises, and before

switching to software, the students are introduced to a theoretical,

general model describing the key factors involved in design […].

The authors derived this model after studying design in a number

of disciplines. The model illustrates key aspects of both the design

product (e.g., it is an abstraction describing some eventual desired

outcome; an outcome must be feasible; any design is but one in a

large space of possible designs) and aspects of the design process

(e.g., it involves ideas, goals, knowledge, and representation, all

of which are continuously transformed into each other by various

design activities; tools can only assist in generating and interpret-

ing representations; representations are stated in one or more lan-

guages). The model is purposely not prescriptive. Instead, its de-

scriptive nature enables different slices through the model to illu-

minate different processes, both conscious and subconscious, that

typically take place in design. Jones’ “divergence – transformation

– convergence” is one such process [10], as is Schön’s reflective

conversation with materials [11]. Other examples abound.

Use of a theoretical model in class takes some of the mystery sur-

rounding design away from students’ minds. It illustrates that it is

not black magic, but that there are clearly distinguishable factors

and approaches that students can understand and practice. More-

over, by reintroducing video and photographic snapshots of their

own non-software design exercises, we use the model to illustrate

that they already have some naturally-occurring designerly behav-

iors. We complement the introduction of the model with assigned

readings, including Spector and Gifford’s paper relating software

to bridge design [12] and book excerpts from seminal design au-

thors such as Petroski [13], Jones [10], and Schön [11].

Use of the model also enables us to explain later in the class why

we engage in various kinds of exercises, what kind of behavior is

expected of the students in these exercises, and how they might go

about the exercises. As such, the model really helps in removing

students from existing biases and perceptions about software de-

sign (e.g., as a UML-centric rote translation of requirements into a

certain code structure). In its place is a framework through which

it is possible to precisely articulate designerly behavior and illus-

trate the challenges that the students will face as software design-

ers, in this class, and later in their professional lives.

3.3 System Design
We then switch to the topic of system design, which we introduce

as the activity of deciding what the functions of a software system

should be and how it should interact with the world. It is rare that

a complete set of requirements provides all of the answers in this

regard, and many decisions must still be made. Indeed, a software

designer is often tasked to design a system for a client under

certain vague guidelines, and will end up working together with

the client to effectively design the requirements. It is in this realm

that our class aims to provide a design perspective to the students.

From our theoretical framework and the broader design literature,

we identified six important traits exhibited by effective designers

across fields, which we wished to impart on our students.

1. Creative initial exploration of design decisions.

2. Selection of an appropriate central guiding design principle.

3. Creation and comparison of alternative partial solutions.

4. Flexibility in changing an ineffective design.

5. Selection of an appropriate medium in which to explore, re-

cord, and present design ideas.

6. Effective use of others’ previously used approaches and so-

lutions.

Accordingly, the design exercises that we assigned to the students

were quite open-ended, allowing for several possible approaches

to the design process, as well as a number of different solutions.

For example, students first received an in-class group design exer-

cise about Peak-Seeker, an imagined program for sharing informa-

tion about mountain climbing routes. Groups were to devise no

less than three initial designs, list the concerns at play, and present

these results in class. The goal was not to design the internals of

the system, but rather to understand the users’ needs, and figure

out the goals that should guide the software’s development.

After this initial exercise, we presented examples of existing ar-

chitectures and designs, and also discussed at length the issue of

primary concerns in a given design problem. Finding and address-

ing these primary concerns, often through a small handful of guid-

ing design principles and decisions, is a skill that students have to

acquire. Such concerns can reside in a system’s structure, context,

communication, user interface, persistence, algorithms, and other

aspects. We highlight how each such aspect may require different

strategies, knowledge, and languages to achieve and then express

the envisioned solution.

Students then practiced system design over several weeks, through

a variety of different exercises, including poster presentations with

critiques in class, more formal presentations, silent brainstorming,

requiring alternative design approaches, etc. Much of this practice

takes place in an open setting, so that all students are continuously

and actively involved in some design aspect at all times – whether

it is generating, describing, or reviewing a design. Much was also

continuously tied back to the six objectives listed above and to the

broader framing in design theory and non-software design.

3.4 System Design Studio Projects
In the last six weeks of the course, students were tasked with two

large-scale group projects involving a structured sequence of ac-

tivities for exploring the design space, as well as deliverables and

presentations that were critiqued. Feedback was provided by other

groups and the teaching staff, in a variety of ways, including for-

mal reviews, written critiques, and informal comments made upon

hearing presentations. As such, each design project was a rapidly

iterative exercise, in which both the product and the process could

be critiqued.

The first system design project was to create an educational

cooking game. Students had to consider how a software tool

might be used to teach this subject, and had to determine at what

basic level to model the cooking activities. This provides a potent

example of our delineation between system and implementation

design; there are difficult modeling decisions to be made about

this system long before the program’s internal structures are con-

sidered.

The second assignment involved four groups, each presented with

a different, open-ended design problem (one problem involved the

design of the software for a GPS watch to track children, another

software for office managers to track office workers’ activities). In

each problem, numerous open decisions as to what the functional-

ity of the software should be must be made in the context of criti-

cal issues such as safety, privacy, conflicting users’ needs, unex-

pected consequences, and ease of use. Students, thus, were forced

to creatively work within the boundaries set, consider the problem

from many different angles, and often had to compromise to come

to some sort of solution. Throughout, again, the focus is on design

decisions at the level of how the system should function, tradeoffs

that must be made, team work, and promoting designerly thinking.

In this sense, the actual outcome – in the form of a document and

associated final presentation – was less important than the process

that each of the groups of students followed. We therefore asked

each group to document this process and hand it in before every

lecture, so we could monitor and help steer the projects closely.

4. IMPLEMENTATION DESIGN COURSE
The second course shifted focus to more traditional software de-

sign subjects, focusing on how to create a roadmap for the imple-

mentation of a software system as well as how to create this

roadmap such that subsequent maintenance will be eased. We are

prohibited by space from discussing all aspects of the class, so we

highlight one particular aspect and briefly summarize others. The

interested reader is invited to visit the course web site, where all

of the materials for both courses are freely available. (http://

www.ics.uci.edu/~andre/teaching.html).

4.1 Software Aesthetics
We opened the class with the slightly unorthodox subject of

“software aesthetics”; in short, what is it that makes one design

good, and another poor? An intuitive understanding of quality is

important in the education of any designer, and software designers

are no exception. These lessons began with a theoretical discus-

sion of ways in which people have expressed a sense of “good

software design” in the past, defining principles, enumerating

objectives, and providing strategies for design. This involved

traditional issues of coupling, cohesion, and “-ilities”, but also

more subtle points such as the formality and readability of dia-

grams.

The discussion was guided by a five-step exercise where students

created designs for an electronic version of the board game Scrab-

ble. Steps involved designing a first version, critiquing other stu-

dents’ designs according to our pre-defined, precise review sheet,

revising one’s own design based on the critiques received, imple-

menting another student’s design, and finally discussing scenarios

of modifications to one’s implementation. Throughout, an empha-

sis was placed on changeability: from the beginning, students had

to consider possible changes that could be made to the game.

Especially because students had to implement another student’s

design, this brought a sense of urgency and realism into the class.

This particular exercise provided a wealth of opportunities from a

learning point of view. Students scrutinized other student’s de-

signs and had to confront being scrutinized by others in the same

way. Issues of understandability, usefulness, and overall elegance

of the designs took center stage, as it is always another human

who must consume a design – a point underlying almost the entire

exercise. Qualities that were anticipated of certain designs did not

necessarily materialize in the implementation of those designs –

even among the designs that were considered by the class to be

the best. We were able to publicly (though anonymously) discuss

both the designs and the critiques, the latter being critical to set a

bar for what we consider acceptable design quality. These discus-

sions covered all lecture time in the first weeks, promoting (as

with our first course) a setting in which students design from the

start, in an open setting, with continuity in the exercises.

4.2 Subsequent Course Topics
After design aesthetics, we touched upon a variety of topics key to

real-world design. For each topic, we made sure to balance theory

(as appropriate) with practice. We also continued the emphasis on

design-minded thinking throughout, as such thinking should pre-

vail in implementation design as much as it does in system design.

• Design Recovery – Students were asked to reverse engineer a

design for Calico [14], a freehand sketching tool. Students

worked in teams of four, and it proved challenging (unsur-

prisingly); even with tools that automatically generate a

UML diagram of the code, understanding the principal de-

sign decisions underlying the structure is difficult. However,

first having students go through the exercise and then jointly

exploring the code and highlighting design decisions that we

considered good or bad enabled them to learn about design

from a real system, one that was built using an existing draw-

ing API and employed an event-based architecture.

• Design Patterns – Our discussion of this subject was largely

traditional, introducing a number of patterns to the class, dis-

cussing their philosophy and purpose, and providing exam-

ples of their use. However, we also leveraged the students’

familiarity with the Calico code to ask them to modify their

recovered designs to include several patterns of their choos-

ing, and to justify their choices. This provided an opportunity

for a hands-on attempt at employing patterns, and in design

evolution, without the need to code an entire system.

• Components – We also presented students with lessons about

finding and applying existing software components, as much

of today’s software relies on such external components. In

particular, students were introduced to the question of how to

set up an evaluation framework for choosing a component.

Accordingly, different groups of students had to research the

addition of three features to Calico (speech recognition, ges-

ture recognition, and a new underlying graphical framework),

to be delivered by reusing an existing component and fitting

it into the existing Calico code. Groups were not only asked

to present their candidates and final selections, but to discuss

also the search process and selection criteria they used.

• Large Scale Software Design – By necessity, classes of this

kind tend to focus on small-sized projects. But we wanted to

dedicate at least one lecture to the issue of scale: discussing

the ways that a project’s size affects the lessons we had pre-

sented. This involved a series of subjects, including the ways

that the size of a project affects planning for change, the role

of documentation, and maintaining a unified design vision.

4.3 Final Project
One larger-scale project occupied the final two-and-a-half weeks

of the class. This project involved two large teams, each of which

was given the same task of designing and implementing a version

of Pac-Man, with the added feature of allowing additional players

to control Pac-Man’s four ghostly adversaries – from other com-

puters. This project presented a slightly more realistic scenario to

the students; there were 14 members on each team, and the project

was fairly large for the time allocated. Our primary motivation for

this approach was, quite simply, to force students to divide up the

implementation effort. While a four-person project might allow a

single strong coder to “take over”, that would be infeasible on this

project, and in practice both teams divided into subteams to tackle

different parts of the code. This required committing to an early

solution, handling the overhead of communication between teams,

and integrating a project’s code; challenges that are best addressed

through effective implementation design.

During the project, students exhibited many of the skills we taught

them. Both projects used design patterns and one group was able

to effective use the pre-existing UCIGame framework. While one

group struggled with the networking element of the project, the

other group was able to dedicate two members to researching that

aspect of the problem, and effectively integrated their work. The

project provided many challenges, but also a more realistic, inte-

grated application of several of the class’s lessons.

5. DISCUSSION
Our experience in teaching both courses twice in the span of two

years has largely been positive. Student responses, collected both

informally and through course evaluations, show that the students

liked the vision for the courses, pedagogical approach taken, class

materials, and overall feel of the courses. A telling indication was

obtained unexpectedly this year: when asked about the most use-

ful class in their entire four-year curriculum, a third of the gradu-

ating seniors mentioned one or both of the courses that we taught.

We consider a number of choices we made critical:

• The general design framing, particularly with respect to the

first few weeks of hands-on non-software design exercises;

• Continuous design exercises throughout the courses to keep
the students practicing and engaged;

• Assignments that built upon each other for several weeks at a

time (Scrabble and the use of Calico being prime examples);

• Grounding the design exercises in design theory to motivate

the practical experiences; and

• The use of larger final design projects to integrate the lessons
from the previous weeks.

As a result, students gained confidence early on and truly fostered

a design-based attitude towards software. Additionally, they could

understand why the courses developed as they did, as well as their

relevancy to anticipated future careers. The courses were demand-

ing, yet students bought into the concept, delivered creative, high-

quality designs, and participated outstandingly in design critiques

and class discussions.

We realize that none of this guarantees that they actually learned

something. In new courses, such as the two courses described, this

is generally difficult to assess. From personal observations, espe-

cially in how students’ design behaviors and the resulting designs

evolved from early in the courses to the final projects, we believe

they learned a great deal. We also note that in many ways the

activities they undertook were more important than the eventual

deliverables. One of the teams essentially failed its final project in

the second course. This experience, however, was rich with ex-

amples that we used to drive home a variety of points, points that

otherwise we would not have been able to illustrate so pointedly.

Despite broad buy-in, a few students found the first class too

“soft”, disdaining the non-software elements and not finding the

material practical enough. On the other end of the spectrum, some

students who were not as apt at writing code had difficulties in the

second class. This is to be expected, given the nature of the In-

formatics students, some of which are more interested in a “pro-

gramming” career and some of which more interested in a “non-

programming” career. As such, we believe we actually found the

right balance, but recognize that adoption of such courses in a

major with a strong CS focus may find some resistance from stu-

dents, especially in the case of the system design course.

Finally, some caveats about our approach. We found that at times

the physical layout of the classroom was crucial to our success. It

is important that students be able to flexibly move around, join in

groups, discuss, participate, and work on problems; we wished at

times that we had a space more appropriate to these activities. We

also note that our approach hinges on a small class size. We were

able to look at all submissions, both preliminary and final, thor-

oughly and quickly. We held interactive discussions and indeed

allowed all of the students to participate in presentations and cri-

tiques. In a class of more than 30 students (ours had an enrollment

of 28 max), such an approach may become untenable.

6. REFERENCES
[1] A. van der Hoek, D.G. Kay, and D.J. Richardson, " Infor-

matics: A Focus on Computer Science in Context," in SIG-

CSE Technical Symposium on Computer Science Education,

2005, pp. 551-555.

[2] IEEE-CS and ACM, "Curriculum Guidelines for Under-

graduate Degree Programs in Software Engineering," 2004.

http://sites.computer.org/ccse/

[3] R. D. P. Bourque, A. Abran, J. W. Moore, and L. L. Tripp

"A Guide to the Software Engineering Body of Knowledge,"

vol. 15, pp. 35-44, 1999.

[4] S. Kuhn, "The Software Design Studio: An Exploration,"

IEEE Software, vol. 15, pp. 65-71, 1998.

[5] J. E. Tomayko, "Teaching Software Development in a Studio

Environment," SIGCSE Bulletin, vol. 23, pp. 300-303, 1991.

[6] D. A. Schön, Educating the Reflective Practitioner: Jossey-

Bass, 1990.

[7] A. Baker and A. v. d. Hoek, "Examining Software Design

from a General Design Perspective" in ISR Technical Report:

UCI-ISR-06-15 University of California, Irvine, 2006.

[8] N. Cross, Designerly Ways of Knowing: Springer, 2006.

[9] B. S. Adelson, E. , "The Role of Domain Experience in

Software Design," IEEE Transactions on Software Engineer-

ing, vol. SE-11, pp. 1351-1360, 1985.

[10] J. C. Jones, Design Methods. New York: John Wiley and

Sons, Inc, 1970.

[11] D. A. Schön, The Reflective Practitioner: Basic Books, 1982.

[12] A. Spector and D. Gifford, "A computer science perspective

of bridge design," Communications of the ACM, vol. 29, pp.

267-283, 1986

[13] H. Petroski, The Evolution of Useful Things: Alfred A.

Knopf, Inc., 1992.

[14] N. Mangano, "Calico Homepage," 2008.

http://calico.bhnet.us/index.php?n=CalicoNav.About

