
DesignMinders: A Design Knowledge Collaboration
Approach

Gerald Bortis and André van der Hoek

University of California, Irvine

Department of Informatics
Irvine, CA 92697-3440

{gbortis, andre}@ics.uci.edu

Abstract. Software developers face numerous challenges in capturing and
reusing knowledge during informal design sessions. While the knowledge that
is brought to bear and generated during these sessions provides valuable
insights that can ideally be reused, informal software design is a time when
developers are gathered at the whiteboard working to solve problem and during
which the developer must remain “in the moment” while engaged in discussion
and sketching. In this paper we describe DesignMinders, a tool currently being
developed to address these issues by augmenting an electronic whiteboard with
the ability to capture, refine and explore design knowledge in the form of
notecards. This paper documents our progress and describes several key
challenges that we face.

Keywords: Software design, knowledge reuse, whiteboards, notecards

1. Introduction

Consider a team of software developers starting a new project. They hold a meeting to
discuss the design and to look for some inspiration from solutions applied in other
projects. They are not looking for a specific approach or technique; they just want to
get a general idea of what others have done or problems they have encountered when
working on similar projects. What if they had a way to easily explore this
information?

Consider another group of developers gathered at a whiteboard in a meeting room
working on a design problem. As they work through a potential solution, one of the
developers recalls a certain constraint that had to be worked through the last time a
similar problem was encountered. None of the developers can recall it, and the
meeting stops. What if they were using a system that could automatically provide
them with this information?

Finally, consider yet another group of developers, in the midst of session, when
they realize that they are making some crucial decisions about the design that they
would like to keep for later. What if they could easily capture these decisions, and
have them presented when needed during subsequent sessions?

This is the space on which our research is focused: supporting software designers
in capturing and using design knowledge in a lightweight way when they are
designing at the whiteboard. This paper presents a vision of how this might be done,
documents our progress towards it, and discusses several key challenges that we face.

2. Background

The above scenarios highlight obstacles that are commonly encountered by
developers during informal software design. This is a time when developers are
gathered at the whiteboard to better understand and work through a design problem. It
is an activity that spans the development lifecycle and during which developers bring
to bear knowledge from past projects or personal experiences that influence the
decisions that are made [1-3]. The knowledge involved is at times explicit, easily
conveyed, and about general software development practices, solution patterns, or a
particular application domain. It can also be tacit knowledge that is specific to the
organization or project [4]. As this knowledge is applied to the design, new
knowledge is generated in the form of discussions and artifacts on the whiteboard that
can provide valuable insights into how the system was designed; insights that in the
ideal world are easily recalled during subsequent design sessions.

Unfortunately, as in the above scenarios, most of this knowledge “vaporizes” and
fails to be reused after these design sessions, since it is difficult to capture and
represent using existing approaches [5]. Informal design is a time when developers
are engaged in ad hoc sketching and discussion, and are unlikely to follow a formal or
prescribed process. It is crucial that developers be able to capture knowledge in a
lightweight and informal way using a representation that allows for the knowledge to
be refined at a later time. The developers also must be able to explore the collected
knowledge and have it presented in a relevant way.

Existing techniques for capturing and reusing this design knowledge either fail to
address these challenges altogether, or are focused on capturing knowledge during the
more formal specification or implementation phases of the development process,
when the informal design knowledge has already been lost. For example, knowledge
management systems that allow developers to populate and search a knowledge base
containing formal design documents fail to address the need for concise and relevant
representations of knowledge during informal software design sessions when the
design problem is still being understood. On the other hand, design rationale
techniques attempt to capture the decisions that were made during a design session
using an argumentation schema that is incompatible with the activities and processes
that developers engage in while at the whiteboard. Such techniques are difficult to
apply during informal software design when developers are engaged both with the
whiteboard and with each other in discussion, and are unlikely to interrupt an
opportunistic exploration of the design problem to populate the knowledge base with
recently acquired knowledge about the design problem, or to formalize their partial
solutions into an argumentation schema [6].

3. DesignMinders

To address these challenges, we present DesignMinders, a software design knowledge
reuse tool to support developers in: capturing design knowledge in an easy way,
organizing the collected knowledge as a set of notecards, and making this collection
available for exploration and search during design sessions. We began by extending
the electronic whiteboard and sketching tool Calico [7] that provides developers with
distinct advantages over traditional whiteboards, the most important of which is the
ability to directly manipulate sketches that are made on the whiteboard by selecting
and moving them around. This allows for anything drawn or written on the
whiteboard to become elements of design knowledge that can be built upon. As a
result, we envision DesignMinders being used alongside Calico by developers during
design sessions. To better understand how DesignMinders accomplishes this, imagine
the following scenario.

A team of developers gathers to discuss the design of a new clinical application for
viewing and managing patient account information. Before they begin sketching
concepts for the user interface, they turn to the DesignMinders noteboard running
alongside the electronic whiteboard and begin exploring the available notecards. They
search for all cards tagged with the “ui” keyword, and are presented with a list of
notecards. They quickly browse through the names of the notecards, reading the
descriptions and glancing at some of the associated diagrams, and quickly assess if a
notecard is relevant to their application. They drag-and-drop several relevant
notecards from the search list to the noteboard and create a stack.

One of the selected notecards is named “Multiple Monitors” and describes how a
user interface can be designed to take advantage of multiple displays by allowing
certain elements to be expanded outside of the primary window. Similar to a design
pattern, the notecard’s name provides a brief description of the situation in which the
knowledge can be applied. Brief, descriptive names allow for notecards to be easily
identified when browsing a large collection. The body of the notecard contains the
details of the design knowledge that is being captured, like a concise description of
the commonly encountered situation and a suggestion for a possible solution.
Realizing that the approach suggested by the notecard is relevant to their application
since the primary window could potentially be cluttered with other information, they
incorporate it into their discussion.

Fig. 1 DesignMinders running alongside Calico on a pair of electronic whiteboards showing (1)

a notecard, (2) the noteboard, and (3) the search list.

The developers then proceed to use Calico to draw sketches of what the user
interface will look like, numerous class diagrams describing the model that will be
used to represent the account information, and a list of tasks that will need to be done
to complete this part of the project. They decide on a user interface that provides
search functionality that populates a list of accounts. As they work through the design,
DesignMinders is running on a secondary display alongside Calico and is monitoring
their canvas actions for keywords that can be used to bring up notecards that are
relevant to the design problem. It notices that the word “search” was written and
automatically brings up any notecards that are tagged with the keyword. As the
notecards are displayed on the noteboard, the title “Large Search Results” catches the
attention of one of the developers. He selects the notecard to view more details and
sees a description of a problem commonly encountered when displaying search
results. The details of the notecard describes an approach to breaking the results into
smaller sets that can be retrieved one at a time, a technique which the creator of the
notecard had employed in a previous project. The reverse side of the notecard
contains a class diagram created in a previous design session that roughly describes
the implementation. Realizing that this problem most certainly does apply to their
application, the developer brings up the notecard and the team re-evaluates their
existing design to incorporate the pattern and address the issue.

Fig. 2 Notecards showing name, details, tags, and reverse side with image captured from

whiteboard.

As the session progresses, the developers come up with numerous conceptual
sketches of the user interface, brief notes on how patient account information will be
retrieved, and some network diagrams describing the eventual deployment of the
application. Realizing that these sketches and notes could be useful for future design
sessions, they lasso several areas of the Calico canvas and select the “Create
Notecard” function, which result in several new notecards in the DesignMinders
interface. The developers decide that the user interface notecards should be colored
green, the patient account notes yellow, and the deployment diagrams red. The
notecards are automatically tagged with the day’s date and the internal name of the
project. With the cards now on the noteboard, they quickly go through each one and
give it a name and provide additional details or tags. The following week, the
developers return to the conference room to further work out details of the design.
They use the previously created notecards as a starting point to continue their
discussion.

Fig. 3 Noteboard with several notecards.

4. Discussion

DesignMinders faces the knowledge reuse challenges that exist during informal
software design by presenting developers with a lightweight means of capturing,

representing, and applying design knowledge. This is partially accomplished by
representing bits of knowledge using notecards that mimic physical index cards.
Physical cards lend themselves to easy browsing, manipulating, annotation, and ad
hoc organization through stacks. Our goal was to reproduce this interaction in an
electronic form to take advantage of the indexing and searching that can be
performed. The ease with which a notecard can be created “in the moment” and the
fact that none of the elements of a notecard (name, details, and tags) are required
significantly lowers the barrier to capturing important knowledge during design
sessions. The conciseness of the notecards also lends themselves to quick browsing to
determine relevancy to a particular design. Our goal of a lightweight knowledge
retrieval tool is also accomplished through the use of a search interface that allows for
quick browsing of collected notecards and a reduction of the search space through the
use of tags and colors to indicate significance or categories. The noteboard also
allows for the ad hoc creation of localized groups by stacking relevant cards, much
like one would create a stack of index cards.

5. Challenges

We see much promise in DesignMinders as a design knowledge reuse tool that can
aid in collaboration during software design sessions and answer the “what if?”
questions. Our lightweight and informal approach to knowledge reuse presents several
challenges for future work.

The first challenge is to continue to lower the barrier to quickly and easily
capturing knowledge by improving the integration between the ongoing design and
the knowledge representation. This includes the current ability to manually select
elements of the Calico canvas and create new notecards on the noteboard, as well as
to have notecards be created automatically based on groupings or certain criteria such
as the amount of time spent on a specific canvas. Also, we would like to increase the
amount of information that is automatically collected from Calico by taking
advantage of contextual elements, like UML diagrams and lists, to automatically
populate detail and tag fields on new notecards.

The second challenge is to allow developers to easily annotate the design with
reusable knowledge. Notecards are currently retrieved by browsing a list that allows
for filtering by any of the fields on the notecard as well as the color. Relevant cards
can be dragged onto the noteboard to create stacks of cards. We are exploring the
ability to drag-and-drop cards from the DesignMinders interface directly into the
Calico canvas, like attaching a sticky-note to a whiteboard. This would allow for the
notecards to essentially become part of the design, and even become rationale for
certain design decisions that are made.

The third challenge is to improve the relevance of the knowledge that is presented
to the developer during a design session. This includes adding the ability to recognize
words and phrases written on the canvas and present the designer with relevant cards
based on keywords. This further reduces the amount of work that the developer must
do to locate prior knowledge. There is also the potential to find relevant cards based
on similar diagrams. For example, if a UML diagram is drawn on the Calico canvas

while in UML mode, notecards with similar diagrams could be retrieved and
displayed alongside, or even directly incorporated into the canvas as reusable palette
elements.

6. Conclusion

A prototype version of DesignMinders is currently being developed. While the basic
functionality that we have described provides a novel approach for capturing and
presenting knowledge during informal software design sessions, DesignMinders can
be improved by addressing the challenges presented. We began by posing several
scenarios in which developers were hindered in their ability to capture and recall
previously gained insights during a software design session. We see DesignMinders
as a way to remove these barriers to knowledge reuse while addressing the needs of
the developers in capturing and presenting knowledge during this distinct activity.

Acknowledgments. Effort partially funded by the National Science Foundation under
grant number 0920777.

References

[1] G. Fischer, "Seeding, Evolutionary Growth and Reseeding: Constructing, Capturing
and Evolving Knowledge in Domain-Oriented Design Environments," Automated
Software Engineering, vol. 5, pp. 447-464, 1998.

[2] M. Cherubini, G. Venolia, R. DeLine, and A. J. Ko, "Let's go to the whiteboard: how
and why software developers use drawings," Proceedings of the SIGCHI conference
on Human factors in computing systems, 2007.

[3] A. Murray and T. C. Lethbridge, "On generating cognitive patterns of software
comprehension," Proceedings of the 2005 conference of the Centre for Advanced
Studies on Collaborative research, 2005.

[4] I. Frank M. Shipman and C. C. Marshall, "Formality Considered Harmful:
Experiences, Emerging Themes, and Directions on the Use of Formal
Representations in Interactive Systems," Computer Supported Cooperative Work,
vol. 8, pp. 333-352, 1999.

[5] R. Farenhorst, "Tailoring knowledge sharing to the architecting process," SIGSOFT
Software Engineering Notes, vol. 31, p. 3, 2006.

[6] A. Aurum and M. Handzic, Managing Software Engineering Knowledge. Secaucus,
NJ, USA: Springer-Verlag New York, Inc., 2003.

[7] N. Mangano, A. Baker, and A. v. d. Hoek, "Calico: a prototype sketching tool for
modeling in early design," Proceedings of the 2008 international workshop on
Models in software engineering, 2008.

