
Continuous and Automated Evolution of

Architecture-to-Implementation Traceability Links♣♣♣♣

♣ This paper is an extended version of the paper “ArchTrace: Policy-Based Support for Managing

Evolving Architecture-to-Implementation Traceability Links”, which was published in the pro-

ceedings of the Twenty-first ACM/IEEE International Conference on Automated Software Engi-

neering, 2006.

Leonardo G. P. Murta* André van der Hoek** Cláudia M. L. Werner*

*Federal University of Rio de Janeiro

COPPE - System Engineering and Computer Science

P.O. Box 68511, Rio de Janeiro, RJ 21945-970 Brazil

Phone: +55(21) 2562-8675

{murta, werner}@cos.ufrj.br

**University of California, Irvine

Department of Informatics

221 ICS2 Building, Irvine, CA 92697-3440 USA

Phone: +1(949) 824-6326

andre@ics.uci.edu

Abstract

A traditional obstacle in the use of multiple representations is the need to maintain trace-

ability among the representations in the face of evolution. The introduction of software archi-

tecture, and architecture-based development, has brought this need to architectural descrip-

tions and corresponding source code. Specifically, the task is to relate versions of architec-

tural elements to versions of source code configuration items, and to update those relations

as new versions of the architecture and source code are produced. We present ArchTrace, a

new approach that we developed to address this problem. ArchTrace distinguishes itself by

continuously updating traceability relations from architectural elements to code elements

through a policy-based extensible infrastructure that allows a group of developers to choose

a set of traceability management policies that best match their situational needs and/or work-

ing styles. We introduce the high-level approach of ArchTrace, discuss its extensible infra-

structure, and present our current set of ten pluggable traceability management policies. We

conclude with a retrospective analysis of data collected from a twenty month period of devel-

opment and maintenance of Odyssey, a component-based software development environment

comprised of over 50,000 lines of code. This analysis shows that our approach is promising:

with respect to the ideal set of traceability links, the policies applied resulted in a precision of

95% and recall of 89%.

1. Introduction

With the introduction of software architecture as a critical artifact in the software life cy-

cle, a new problem has emerged: traceability between an architectural description and its cor-

responding source code must be maintained as they each evolve over time. Software architec-

tures are currently used as a basis for run-time evolution (OREIZY et al., 1998; VAN DER

HOEK, 2004), product selection in software product lines (BOSCH, 2000; CHEN et al.,

2003), new testing approaches (RICHARDSON and WOLF, 1996; MUCCINI and VAN DER

HOEK, 2003), impact analyses (ZHAO et al., 2002), and numerous other activities that will

not operate properly without a detailed and accurate mapping from an architectural descrip-

tion to relevant corresponding source code configuration items.

The fact that both the architecture and the source code can – and do – evolve independ-

ently represents a significantly complicating factor. It may be feasible for a developer to spec-

ify a proper mapping once, but it is not reasonable to expect the developer to continuously

maintain and evolve that mapping manually, especially not when the software system under

development is of significant scale and undergoes numerous changes.

Several different approaches already address the problem of maintaining traceability be-

tween an architectural description and corresponding source code configuration items. These

approaches can be classified into two categories: equality by definition and after the fact re-

construction. Equality by definition refers to methods in which an architectural description

and its source code configuration items are perfectly traceable because one is embedded in-

side the other. For instance, ArchJava (ALDRICH et al., 2002) and XDoclet (WALLS and

RICHARDS, 2003) embed the definition of architectural elements in the source code. While

this kind of solution is effective in maintaining 100% accuracy, it is not as realistic, as it is

often the case that the architecture of a system is maintained in an architecture description

that is separate from the source code, with different people using different tools and different

notations maintaining the two.

Data mining (SHIRABAD et al., 2001; YING et al., 2004; ZIMMERMANN et al., 2004),

information retrieval (ANTONIOL et al., 2002; HUFFMAN HAYES et al., 2003; MARCUS

and MALETIC, 2003; SETTIMI et al., 2004), and syntactic analysis (BRIAND et al., 2003)

techniques fall into the category of after the fact reconstruction. This category encompasses

techniques which (re)discover traceability links. These techniques tend to be generic in na-

ture, and do not take into account the special relationship between architecture and source

code, nor do they leverage the structured way in which both tend to co-evolve. Because of

their reliance on mathematical properties, and low tolerance for exceptions, their performance

is suboptimal when applied to the problem of architecture-to-implementation traceability.

In this paper, we present an alternative approach that falls in between equality by defini-

tion and after the fact reconstruction. This approach can be typified as instant update, and

relies on two critical observations: (1) rather than reconstructing traceability links after some

significant amount of time has passed, we continuously update the links in response to each

and every change committed by a user, and (2) the specific update to be made is determined

by an actively specified set of traceability management policies. The result is an approach that

can be tailored to different user practices, takes advantage of the knowledge encoded in the

policies regarding architectural and source code evolution, and accommodates the incorpora-

tion of new policies.

We have implemented this approach in an extensible infrastructure, ArchTrace, which we

explicitly designed to support policy-based traceability management between evolving archi-

tectural descriptions and evolving source code configuration items. ArchTrace operates

through triggers that it inserts into external systems, most notably in the environment used to

evolve architecture – typically an architectural design environment – and in the environment

used to evolve source code configuration items – typically a Configuration Management

(CM) system. These triggers monitor changes made by users to the architecture description or

configuration items, and fire when those changes are committed. Upon firing, ArchTrace runs

any applicable policies to update traceability links, as depicted in Figure 1. As an example,

when a developer checks in a modification to a source file, ArchTrace runs a policy that adds

a traceability link from the corresponding architectural element to the new version of the

source file and another policy that removes the traceability link to the old version.

An important aspect of ArchTrace is that it is pluggable with respect to the set of trace-

ability management policies that it uses. At this moment in time, we have implemented ten

such policies, but other policies can easily be coded and used. For instance, current policies

focus on tracing components, connectors, and interfaces, but we can extend the set of avail-

able policies to additionally trace other, perhaps more fine-grained elements.

Figure 1: ArchTrace context.

We note that, while our goal is to investigate a new technique for automatically maintain-

ing traceability of evolving architecture-to-implementation links, we do not directly compete

with data mining, information retrieval, and syntactic analysis techniques. Rather, we see our

work as an exploration of a complementary technique – one that eventually may very well

make use of these other techniques in providing its functionality. This is illustrated by our

evaluations of ArchTrace. We performed a retrospective analysis of ArchTrace as applied to

20 months of data regarding the development of Odyssey (WERNER et al., 2003), a compo-

nent-based software development environment consisting of over 50,000 lines of code cover-

ing about 20 components. Initial results were promising, but they improved some when we

incorporated an extra policy based on straightforward data mining to help in establishing an

initial set of traceability links.

The rest of this paper is organized as follows. Section 2 presents a motivating example to

ground the ensuing discussion. Section 3 introduces the high level approach underlying

ArchTrace, which is followed by a discussion of its implementation in Section 4. Section 5

evaluates the approach. Section 6 discusses related work and we conclude the paper in Sec-

tion 7 with an outlook at our future work.

Architectural Elements

Configuration Items

Traceability Links

Roles Tools Artifacts

Architect

Developer

use to create

and evolve

ArchTrace

CM System

Architectural Design Environment

2. Motivating example

In this section, we provide an example that we will use throughout the paper to describe

the features of ArchTrace. The example concerns a word processing application, the architec-

ture of which is shown on the left hand side of Figure 2. This architecture has three compo-

nents (Print, Toolbar, and Display), one connector (Bus), and two interfaces (Input and Out-

put). All architectural elements exist in a single version and the source code that implements

these architectural elements is organized into three directories: Model, View, and Controller.

These directories contain, respectively: Printer.java and Action.java; EditingWindow.java;

and CommandDispatcher.java, BusFacade.java, Input.java, and Output.java, as shown on the

right hand side of Figure 2.

Figure 2: Starting situation for our example scenario.

Figure 2 also shows that the Print component and Input interface are immutable, as they

were already committed and can no longer be changed (unless, of course, new versions are

created). Further, the Print component is implemented by Printer.java and Action.java; the

Toolbar component by Action.java and CommandDispatcher.java; the Display component by

EditingWindow.java; the Bus connector by Action.java and BusFacade.java; the Input inter-

1.0

Toolbar

1.0

Display

1.0 *

Print

Bus

1.0

Output

1.0

Architectural Elements Configuration Items

[* Immutable version]

Input

1.0 *

Architecture

Toolbar

Bus

Input

View

Model

Controller

EditingWindow.java (1.0)

Action.java (1.0 *)

Printer.java (1.0 *)

Output.java (1.0)

CommandDispatcher.java (1.0)

BusFacade.java (1.0)

Input.java (1.0 *)

Display Print

Output Output

face by Input.java; and the Output interface by Output.java. Note that the source files that

implement the Print component and Input interface are immutable already.

The first step of our scenario consists of an architectural change, namely to create version

2.0 of the Print component. As a result, the new version inherits the traceability links of the

previous version, which is expected since at this point nothing else has happened. Dashed

lines represent these new traceability links in Figure 3.

Figure 3: Situation after Print version 2.0 is created.

The second step consists of a series of changes to the code: (1) checking out Action.java,

(2) modifying the checked out copy, (3) moving it to the Controller directory, and (4) in the

process of checking in the new version, changing its name to Command.java. The set of

traceability links now needs to be updated to reflect these changes. Specifically, architectural

elements that used to link to version 1 of Action.java should now link to Command.java,

which is version 2 since it represents an evolutionary step from Action.java. However, we

should take into account the immutable state of the first version of the Print component. As

an immutable version, its traceability links should not be updated to allow history to remain

intact. Figure 4 shows the resulting set of traceability links. Three links, from the Print com-

ponent (version 2.0), Toolbar component (version 1.0), and Bus connector (version 1.0), were

Bus

1.0

Output

1.0

Architectural Elements Configuration Items

[* Immutable version]

Input

1.0 *

View

Model

Controller

EditingWindow.java (1.0)

Action.java (1.0 *)

Printer.java (1.0 *)

Output.java (1.0)

CommandDispatcher.java (1.0)

BusFacade.java (1.0)

Input.java (1.0 *)

1.0

Display

Print

1.0 *

2.0

1.0

Toolbar

redirected from Action.java to Command.java, and one traceability link, from version 1 of the

Print component, was kept to point to Action.java due to immutability restrictions.

Figure 4: Situation after Action.java is checked out, modified, moved, renamed to Com-

mand.java, and checked in.

The final step consists of two interrelated changes to the architecture and source code: (1)

a new version of the Input interface is created as the result of a check out, modification, and

check in, and (2) the Input.java file is checked out, modified, and checked in. Again, the set

of traceability links must be updated to reflect these changes, with the result shown in Figure

5. It is important to note that these updates must be independent of the order in which the two

changes are committed (i.e., regardless of whether the architectural change is checked in first

or whether the source code change is checked in first, the set of traceability links that eventu-

ally results must be exactly the same).

It is worth noting that, for illustration purposes, the example intentionally presents a sim-

ple scenario. However, it provides concrete situations in which evolution of traceability links

is difficult, even with automated tools: source-code elements being moved and renamed,

traceability links being updated selectively due to immutability, and interrelated modifica-

tions requiring consistent results regardless of the order of commits.

Bus

1.0

Output

1.0

Architectural Elements Configuration Items

[* Immutable version]

Input

1.0 *

View

Model

Controller

EditingWindow.java (1.0)

Action.java (1.0 *)

Printer.java (1.0 *)

Output.java (1.0)

CommandDispatcher.java (1.0)

BusFacade.java (1.0)

Input.java (1.0 *)

Command.java (2.0 *)

1.0

Display

Print

1.0 *

2.0

1.0

Toolbar

Figure 5: Situation after Input and Input.java are updated jointly.

3. Approach

The goal of ArchTrace is to support the evolution of traceability links; we are explicitly

not concerned with establishing the links in the first place. While our framework does support

the incorporation of data mining and other policies for the purposes of creating an initial set

of links (we illustrate one such example in Section 4), we have concentrated on the evolution

of traceability links since this is a difficult, unaddressed, yet important property in the face of

architecture-based development (MEDVIDOVIC and ROSENBLUM, 1997). Generally

speaking, the problem that we address in this paper can be stated as follows: given an initial

set of established traceability links, and given that both an architecture and its implementation

can evolve independently, how can traceability links be updated with the addition of new

links, removal of existing links, and changes in existing links to ensure that each architectural

element is at all times accurately linked to its corresponding source code configuration items,

and vice versa? In essence, we want to find an automated way of evolving traceability links as

an architecture and/or implementation change.

Model

View

Printer.java (1.0 *)

Action.java (1.0 *)

EditingWindow.java (1.0)

Controller

CommandDispatcher.java (1.0)

BusFacade.java (1.0)

Bus

1.0

Output

1.0

Command.java (2.0 *)

Input.java (1.0 *)

Output.java (1.0)

Architectural Elements Configuration Items

[* Immutable version]

Input

1.0 *

2.0 *

Input.java (2.0 *)

1.0

Toolbar

1.0

Display

Print

1.0 *

2.0

In support of this goal, we have designed our approach to consist of the following fea-

tures: (1) a policy-based infrastructure, allowing the matching of policies to work practices;

(2) policies that specifically take advantage of their knowledge of architectural and source

code artifacts to make educated guesses on what to do upon architectural or source code

change events; (3) policies that, when appropriate, request human input – but do so far less

often than just maintaining all links manually; (4) policies that act as either rules, deciding

upon actions to take, or constraints, limiting the kinds of actions that can be taken; and (5) a

result that maintains a N-M bidirectional mapping, allowing both architectures and source

code to evolve independently while maintaining full navigation from architecture to source

code, and vice versa.

The philosophy behind our approach is that it is worth to evolve traceability links con-

tinuously, during the evolution of architectures and their implementation. Whereas existing

approaches are forced to, in essence, rediscover all of the links after an architectural element

or source code configuration item has changed, we stay in lockstep with the modifications

and update the set of links as soon as a new (architectural or source code) element is checked

into the respective repository, as shown in Figure 6.

Figure 6: Traceability links evolution via policy triggering.

In response to new “check in” events, multiple policies may be triggered. Policies are in-

tentionally simple, each capturing one small aspect of traceability link evolution that matches

potential actions that a user may take. For instance, a policy that deals with checking in a new

architectural element, a policy that deals with removing a source code configuration item, a

policy that suggests establishing traceability links to the most recent version of a source code

configuration item, etc. Policies, thus, have a separate responsibility. But, because execution

of one policy can result in the triggering of one or more other policies, the result is a set of

closely collaborating policies that together are responsible for appropriately updating trace-

ArchTrace

time

Events Traceability Links

Policies

Architectural Elements

Configuration Items

ability links. Usually, then, multiple policies are involved when a developer checks in an ar-

chitecture or a set of source code configuration items. Such updates can be implemented us-

ing three individual policies: a policy to verify whether an element is immutable, a policy to

create new traceability links to the latest versions of the source code elements, and a policy to

remove old traceability links.

Policies can be enabled and disabled individually. This is to support different work prac-

tices and different CM systems. Some developers establish certain practices on how to evolve

their artifacts, and different CM systems establish different procedures (CONRADI and

WESTFECHTEL, 1998). Rather than attempting to build a single all-encompassing solution,

we adopt a pluggable infrastructure that supports the addition of new policies through the

programmatic interface of ArchTrace.

Our approach distinguishes four classes of policies: architectural element evolution poli-

cies, implementation evolution policies, pre-trace policies, and post-trace policies. Architec-

tural element evolution policies fire when an architect makes modifications to an architecture,

and implementation evolution policies fire when the source code evolves.

Pre-trace policies operate just before a new link is added or an old one is removed, acting

as constraints. Their primary task is to detect the introduction of inconsistencies between the

traceability link that is added or removed and the set of already existing traceability links.

Should such inconsistencies arise, pre-trace policies can veto additions or removals, prohibit-

ing actions from completing. An example of such a pre-trace policy is a policy that prohibits

updating a traceability link from a version that resides in the main line of development (trunk)

to a newly branched version; this kind of update would lead to inconsistent mixing of trunk

and branch versions of source code in the same architecture.

Post-trace policies are executed after the creation or removal of traceability links has ac-

tually been completed. This allows the definition of policies that update additional traceability

links when traceability links are added or removed. For example, when an architectural ele-

ment needs to be updated with a newer version of a source code configuration item, an im-

plementation element evolution policy adds the link, but a post-trace policy is responsible for

removing the old link. This, in turn, may trigger other policies, in effect creating a rolling set

of policies of different types that are executed. For instance, execution of a post-trace policy

may lead to the addition of even more traceability links. If this occurs, all pre-trace policies

will be triggered again to verify if the suggested traceability links are appropriate. Note that

post-trace policies can only execute if all pre-trace policies have approved the suggested

changes by other policies, and will only execute after a change has been made. Unlike pre-

trace policies, post-trace policies cannot “rollback” the addition or removal of traceability

links. Another example of a post-trace policy is a policy that removes an existing traceability

link from a source code configuration item when a new traceability link is established to the

directory that contains the source code: this existing traceability link would be redundant.

We observe that it is possible for pre-trace policies to not just act as constraints, but also

to enact rules that establish or remove traceability links. Post-trace policies, on the other hand,

cannot act as constraints, as the execution of a set of policies is stateless – a policy executed

after some set of other policies is not aware of the links that were added or removed by these

other policies and, therefore, cannot roll back to a previous state.

Policies may request assistance from users; they are not meant to operate automatically

and be “hidden” at all times. Rather, when it is pertinent that a user chooses one of two

courses of action, or when additional human input is needed, a policy can leverage the inter-

face of ArchTrace to obtain the information it needs. While, in our experience, it is relatively

rare that interaction with users is necessary, it is critical to support this functionality. Should a

“wrong” decision be made by a policy at some critical juncture, the set of traceability links

can become significantly out of sync over time with those that actually should exist. Rather

than guessing an alternative, it is better to request user assistance. Note that the reason that it

is relatively rare for policies to need human input is because the users are involved in the se-

lection of the policies that are activated in the first place: they already have selected a set of

policies that describes how they operate and wish to be supported. An example of an interac-

tive policy is a policy that detects the existence of a newer version of a source code file when

a traceability link is being established to an older version. This may indicate that a user is

working with older code on the main trunk, which generally is an undesirable situation, but at

times may be necessary.

It is important to note that we designed our approach to be compatible with collaborative

development. Because the CM system is responsible for resolving conflicts, perhaps with the

help of the user performing some merges, traceability links simply evolve based on what is

eventually checked in and do not interfere or cause problems when multiple users are in-

volved in modifying the architecture and source code base.

Another important aspect of our approach is that it is designed to be independent of spe-

cific tools that are used. Architects can have their own tool to evolve architectures, such as

ArchStudio (DASHOFY et al., 2002), and implementers can have their own tools to do their

work, such as the Eclipse IDE (ECLIPSE FOUNDATION, 2007) and Subversion (COLLINS-

SUSSMAN et al., 2004). All our approach needs to operate are notifications about check in

events, and access to the respective repositories to obtain, if needed, additional information

with which policies can make their decision.

Clearly, underneath any approach like ours has to be an infrastructure for actually captur-

ing and storing the links that trace architectural elements to their source code configuration

items. This infrastructure must support fine-grained links in order to allow the mapping of

individual architectural elements to (sets of) individual source code configuration items, and

vice versa. Additionally, it must support versioning in order to distinguish different versions

of architectural elements and different versions of source code configuration items, as each

have their own sets of associated traceability links. This kind of infrastructure is readily avail-

able in the form of hypermedia and hypertext versioning systems (WHITEHEAD, 2000), and

we describe in the next section how we built a straightforward incarnation of such an infra-

structure ourselves.

Finally, we note that our approach does not necessarily prescribe any particular policies

that it must or must not include; users are free to use whichever policies they desire. Nonethe-

less, certain policies are commonplace and including them as a standard part of the imple-

mentation of our approach – as described in Section 4 – clearly provides advantages in terms

of reuse and examples of how policies are constructed and combined.

4. Implementation

ArchTrace is implemented in the Java language and is available at

http://www.cos.ufrj.br/~murta/ArchTrace. The current implementation assumes the use of

xADL 2.0 (DASHOFY et al., 2001) to describe software architectures and Subversion to

store source code configuration items.

4.1. Overall architecture

Figure 7 presents the ArchTrace architecture. It consists of six components, four of which

standard (shown as solid grey boxes) and the other two custom (shown as patterned boxes).

The custom components depend on the particular architecture evolution environment and CM

system used. As stated, we rely on xADL 2.0 and Subversion, but because the Architecture

Connector and Repository Connector components are designed with abstract interfaces, the

rest of ArchTrace is independent of the details of those two components.

Figure 7: ArchTrace architecture.

Connector components insert tool-specific listeners. Upon receiving events (illustrated us-

ing dashed lines), they pass those on to the generic Event Listening component, which is re-

sponsible for interpreting the data contained in the events and invoking the appropriate part of

the Policy Triggering component to begin the updating of traceability links.

The Policy Triggering component coordinates which specific policies are executed at

what time in order to manage the set of traceability links and evolve them by adding and re-

moving links. As discussed in Section 3, this kind of coordination is necessary because a pol-

icy may recursively trigger the execution of other policies, resulting in them together perform-

ing relatively complex tasks. For instance, in the case of the one of the examples in Section 2,

renaming and moving of a source file, a policy that updates the architectural element with the

new link will trigger another policy that removes the older traceability link. Moreover, the

policy that removes the older traceability link may trigger a third policy that prohibits this

removal when the architectural element is marked as immutable.

Actions that result in changes to the set of traceability links are actually enacted by the

Traceability component. Since traceability links are typically stored either in the architecture

description, such as xADL 2.0 or UniCon (SHAW et al., 1995), or in the CM system (by

checking in a description of an architecture with the source code), this component is respon-

sible for actually supporting the creation, removal, and querying of traceability links. It inter-

Event Listening

Architecture

Connector

Repository

Connector

Policy Triggering Traceability

Policies

implementation

(java classes)

Policy Manager

Architecture

(xADL)

CM repository

(Subversion) Policies

descriptor

(XML)

acts with both the Architecture Connector and Repository Connector components to build

upon their generic interfaces and operate independently.

Figure 8: ArchTrace policy activation and deactivation.

Finally, the Policy Manager component is responsible for managing which policies are

active at what time. During bootstrap of ArchTrace, this component loads all policies, instan-

tiates them, and allows the user to activate and deactivate specific policies, as shown in

Figure 8. Here is where the pluggability of ArchTrace comes into play: when new policies are

created, these new policies, once loaded by this component, will integrate as any of the ten

policies that we already built: they can be enabled, disabled, executed, and triggered by other

policies.

Figure 9: ArchTrace screenshot.

It should be noted that, while ArchTrace typically operates in the background, it is possi-

ble for architects or developers to query ArchTrace at any time in the software development

lifecycle to visualize the traceability links among architectural elements and their implemen-

tation. Shown in Figure 9, ArchTrace allows exploration of the set of links: one can see all

the links for a given architectural element or choose a file for which one wants to know to

which architectural elements it belongs. An example of impact analysis activity using

ArchTrace user interface consists on selecting a source code (right hand side of Figure 9) and

visualizing all architectural elements that are related to this source code. Moreover, it is pos-

sible to select some of these architectural elements (left hand side of Figure 9) and see all

source code configuration items that implement them. An additional possibility is to use other

tools of ArchStudio, such as Ménage (GARG et al., 2003), to perceive the relationships

among components, connectors, and interfaces and use this knowledge to guide new queries

in the ArchTrace user interface.

4.2. Traceability links schema

As mentioned before, ArchTrace uses xADL 2.0 to describe software architectures. Spe-

cifically, our work relies on the xADL 2.0 Implementation Schema, which defines an abstract

element that is a placeholder for data that relates to the implementation of architectural ele-

ments. We have extended this abstract schema with a concrete schema that adds traceability

to source code stored in configuration management repositories, as shown in Figure 10. Spe-

cifically, we support the tagging of architectural elements with a series of configuration items.

Figure 10: ArchTrace schema.

Our schema consists of an element named ConfigurationManagementImplementation,

which is composed of a set of ConfigurationItem elements. Each ConfigurationItem is repre-

sented by the tuple (name, version, repository) where name is the name of the configuration

item, version is the selected version of the configuration item, and repository is the configura-

tion management repository address where the configuration item version is stored. For ex-

ample, the traceability links of component Print version 2.0, as presented in the example of

Figure 4, can be described via our schema using the information shown in these two tuples:

(“Model/Printer.java”, 1.0, svn://server/src)

(“Controller/Command.java”, 2.0, svn://server/src)

4.3. Architecture and repository connection

As mentioned before, ArchTrace abstracts its interaction with specific architecture devel-

opment environments and configuration management systems through a generic layer. This

generic layer has to be specialized for each concrete kind of architecture development envi-

ConnectorType

Implementation

Name : string

Version : string

*

Repository : string

InterfaceType

ComponentType

Notation

Box: Element name

Dashed box: Existing element

Hierarch: Sub-elements

Italic: Abstract element

 : Extension

No cardinality: 1 element

*: Optional multiple elements

ConfigurationItem

ConfigurationManagementImplementation

ronment or CM system. This specialization occurs via the creation of a new architecture or

CM repository connector. However, ArchTrace imposes some restrictions to which these con-

nectors should adhere.

In the case of a new kind of architecture development environment, its architecture con-

nector must implement the ArchConnector interface, which details three main functionalities:

(1) translation between the general model of architecture used by ArchTrace, which consists

of components, connectors, and interfaces, and the specific architectural model of the envi-

ronment, which may similarly consist of components, connectors, and interfaces, but also can

be as varied as packages and dependencies, workflow and services, CORBA components and

IDL interfaces, and so on; (2) management (add, remove, and query) of traceability links for a

given architectural element; and (3) emission of change events from the architecture devel-

opment environment to trigger the policies of ArchTrace.

In the case of a new kind of CM system, the CM repository connector must implement the

CMConnector interface, which details two main functionalities: (1) translation between the

general model of a CM repository adopted by ArchTrace, which consists of configurations

and configuration items, and the specific CM model of the CM system (e.g., file-oriented or

object-oriented) and (2) emission of change events from the CM system to trigger the policies

of ArchTrace.

ArchTrace policies, thus, do not need to directly manipulate the architectural elements or

their code base as stored in the CM repository. Instead, they can rely on the ArchTrace API,

which is composed of the classes Architecture and ArchitecturalElement for interacting with

architectures and the classes Repository, Configuration, and ConfigurationItem for interacting

with CM repositories.

4.4. Policies API

Each ArchTrace policy is implemented as a Java class that follows a specific interface

provided by ArchTrace. Every policy must provide a short description and the rationale be-

hind the policy. Moreover, a method called “execute” should be implemented. The arguments

of this method vary depending on the type of policy. The pre-trace and post-trace policies

receive the traceability link that is being added or removed, as well as the action that informs

the policy as to whether the traceability link is being added or removed. An architectural ele-

ment evolution policy receives a pointer to an architectural element and an indication as to

what happened to that element (i.e., was it added, removed or changed?). Finally, an imple-

mentation evolution policy receives a pointer to a configuration item and, once again, an indi-

cation as to the specific action that took place (i.e., was it added, removed or changed?). Us-

ing this information, as well as the querying capabilities of the Traceability component listed

in Figure 7, policies should have sufficient information to make their decisions. If that is not

the case, they can use the user interface of ArchTrace to request additional information from

the user. Figure 11 summarizes the API provided by ArchTrace for policies construction.

Figure 11: Policies API.

4.5. Built-in policies

We have implemented an initial set of ten policies. Table 1 presents a list of the policies

together with their motivation and related policies (“REL” column). We developed the poli-

cies based on informally observing ourselves and other developers in action. In addition, dur-

ing the design of ArchTrace, we simulated a set of hypothetical scenarios in which different

changes were made to an architecture and its implementation, and observed the effects these

changes should have had on the traceability links among the elements. These scenarios in-

cluded the creation of new versions of architectural elements, the creation of new versions of

source code, the renaming and moving of source code, the structuring of source code in a

composite way, and the initial establishment of traceability links using existing techniques.

From these collective experiences, we devised the ten policies presented here, as these pro-

vide basic support for some of the most common scenarios.

Table 1: ArchTrace built-in policies

As a first observation, we noted that, when a new version of a source file is available, it is

necessary to use this version for architectural elements that are under development. This led

us to create three different atomic policies: addition of new traceability links when new ver-

sions of source files are available (policy 10), removal of old traceability links when new

traceability links are created (policy 6), and denial of traceability links creation and removal

to immutable architectural elements (policy 2). Together, these policies ensure traceability

ID TYPE DESCRIPTION REASONING REL

1

Pre-trace

(interactive

constraint)

Suggests the creation of trace-

ability links to the most recent

configuration item version if a

traceability link is created to an

older version.

Sometimes, especially when the configuration

item versions have different names or paths,

traceability links are mistakenly established to

older versions of the configuration item because

the user does not know that there are newer ver-

sions available.

2

Pre-trace

(automatic

constraint)

Denies creation or removal of

traceability links on immutable

architectural elements.

Usually, it is not desirable to evolve traceability

links of architectural elements that are marked as

“immutable” because they are considered stable.

10

3

Pre-trace

(automatic

constraint)

Denies creation of traceability

links to more than one version of

the same configuration item.

Some programming languages do not support

more than one version of the same configuration

item to be included in the same runtime environ-

ment.

6,10

4

Pre-trace

(automatic

constraint)

Denies creation of traceability

link to sub configuration items if

the composite configuration item

is already traced.

If a composite configuration item (i.e., directory)

is linked from a given architectural element, it is

redundant to have traceability links to its parts

(i.e., subdirectories and files).

7

5

Pre-trace

(automatic

constraint)

Denies removal of traceability

links to source code in the trunk

when a commit is performed in a

branch.

Commits in branches should not interfere with the

main line of development.

6

Post-trace

(automatic rule)

Removes traceability links from

old configuration item versions

when a traceability link is created

to a newer version.

Some programming languages do not support

more than one version of the same configuration

item in the same runtime environment.

3,10

7

Post-trace

(automatic rule)

Removes traceability links from

sub configuration items if a trace-

ability link is created to the com-

posite configuration item.

If a composite configuration item (i.e., directory)

is linked from a given architectural element, it is

redundant to have traceability links to its parts

(i.e., subdirectories and files).

4

8

Post-trace

(interactive rule)

Suggests related traceability links

when a traceability link is cre-

ated.

Usually, architectural elements that have trace-

ability links to a given configuration item also

have traceability links to other configuration

items. Data-mining techniques can be used to

detect these related traceability links, avoiding

incomplete traces.

9

Architectural

Element

Evolution

(automatic rule)

Copies all existing traceability

links to the new version of the

architectural element when it is

available.

Typically, new architectural element versions

start out with the same traceability links as those

of the previous version the version from which

they were originated.

10

Implementation

Evolution

(automatic rule)

Updates traceability links when a

new version of a configuration

item is available.

This represents natural evolution of the imple-

mentation of architectural elements.

2,3,6

links are updated to newer versions, but that the links of immutable architectural elements are

kept untouched.

Another common pattern that we observed was that, when a new version of an architec-

tural element is created, it should inherit all traceability links from its ancestor. This led us to

policy 9, which copies all traceability links from the previous version of an architectural ele-

ment when a new version is created.

In addition, depending on the combination of the policies described above, a given archi-

tectural element may have traceability links assigned to more than one version of the same

source code. This situation should be avoided depending on the underlying programming lan-

guage (i.e., compiling and running a system with two files in which the same Java class is

defined is prohibited by the language); this led us to create policy 3. Additionally, when a

source code configuration item undergoes a name or path change, users that are not aware of

the new name or path change may erroneously establish traceability links to older versions of

the source code. In the example of Figure 4, Action.java was renamed to Command.java. In

this scenario, the user is warned by policy 1 if they try to establish a traceability link to Ac-

tion.java, but can use the interface of ArchTrace, shown in Figure 12, to nonetheless establish

the link.

Figure 12: ArchTrace suggestion based on history analysis.

Because most CM systems allow hierarchical organization of source files, a potential re-

dundancy emerges when both the container and the contained are linked. To avoid this situa-

tion, both proactively and passively, we implemented policies 4 and 7. The policies simply

link to the container, indicating that it and all of its contents belong to a particular architec-

tural element.

An additional issue that we addressed is branching. While architectural branches are han-

dled correctly just with policy 9, at the source code level some side effects take place when

Policy 10 is used: inadvertent removal of traceability links to the main line of development

(trunk) because generally policy 6 will also be in use. Therefore, we included in our standard

set of policies a pre-trace policy (policy 5) that denies removal of traceability links to source

code for which a new traceability link is added to a branch. It is worth to note that policy 5 is

automatic at this moment, always denying the removal of a trunk traceability link in response

to commits on branches.

Finally, we observe our discussion of Section 1 on data mining. We see data mining

(SHIRABAD et al., 2001; YING et al., 2004; ZIMMERMANN et al., 2004) and other exist-

ing techniques for traceability detection (ANTONIOL et al., 2002; BRIAND et al., 2003;

HUFFMAN HAYES et al., 2003; MARCUS and MALETIC, 2003; SETTIMI et al., 2004) as

complementary to our approach. In order to demonstrate this, we implemented policy 8 to

show the feasibility of integrating data mining into our technique. This policy uses association

rules (AGRAWAL and SRIKANT, 1994) to suggest new traceability links based on similarity

to previously created sets of traceability links. Particularly, when a new architectural element

is created that must be linked to existing source code configuration items, the developer has

to create these traceability links one by one if the artifacts are scattered over different directo-

ries. If, however, the set of manually created links is similar to an existing set of links to some

degree (i.e., above some threshold), then the policy will automatically suggest to include the

rest of the traceability links of the existing set. Its user interface is shown in Figure 13. This

policy is particularly useful when a new architectural element is created and initial traceability

links need to be established.

Figure 13: ArchTrace suggestion based on data mining.

4.5.1. Policy implementations

In this section, we detail some of our policies. The main purpose is twofold: (1) to illus-

trate how small in footprint policy implementations can be, and (2) to show how policies in-

teract with the ArchTrace API to gather the necessary information for accomplishing their

tasks.

Figure 14 presents the implementation of the execute method of policy 2. Each policy has

3 methods, as shown in Figure 11, but the other two of them are boilerplate (getDescription

and getRationale). As this is a pre-trace policy, its main purpose is to prevent a certain situa-

tion from occurring, in this case the creation or removal
1
 of traceability links on immutable

architectural elements. Accordingly, the policy throws an exception if this is an immutable

architectural element that is inputted via its parameters. This exception is handled by the Pol-

icy Triggering component, shown in Figure 7. The goal of this exception is to notify the Pol-

icy Triggering component to rollback the traceability creation or removal event. This is the

way pre-trace policies indicate to ArchTrace that a proposed traceability link should not be

established.

Figure 14: Policy 2 algorithm.

Figure 15 presents the implementation of the execute method of policy 9, which is respon-

sible for copying all traceability links from a base version of an architectural element to its

new version. This policy, thus, only deals with actions of the type ADD_ACTION, and then

loops over all base versions of the architectural element (there may be more than one base

version if the architectural element is the result of a merge operation), retrieves all traceability

links of each such base version, creates corresponding traceability links for the new version,

1 Currently, ArchTrace supports no other actions beyond adding or removing traceability

links, so the check is technically superfluous, but for future extensibility reasons and clarity

we incorporated it in the code of the policy.

1 public void execute(Trace trace, byte action) throws TraceAbortedException {

2 if ((action == ADD_ACTION) || (action == REMOVE_ACTION)) {

3 if (trace.getArchitecturalElement().isImmutable()) {

4 throw new TraceAbortedException("Immutable architectural elements can

5 not have their traces changed.");

6 }

7 }

8 }

and reports its activities to the user. It is worth noticing that this policy does not throw an ex-

ception because is not a pre-trace policy (it cannot act as a constraint).

Figure 15: Policy 9 algorithm.

Finally, Figure 16 presents the algorithm of policy 5. This algorithm automatically denies

the removal of traceability links from source code configuration items in the main line of de-

velopment if a commit is performed to a branch. Again, this is a pre-trace policy, so it checks

for the particular situation to occur and throws an exception if it does.

Figure 16: Policy 5 algorithm.

Overall, we note that the implementation of policies can be quite straightforward. None of

our policies exceeds 150 total lines of code, and the essence of each policy is typically im-

plemented in at most a few dozen lines of code. This is an artifact of the policy-based nature

of ArchTrace, as well as the generic interfaces that abstract from the specifics of the architec-

ture development environments and CM systems that are used.

4.6. Policy triggering example

We now revisit the example of Section 2 to describe ArchTrace’s handling of the trans-

formation from the initial scenario, shown in Figure 2, to the final scenario after the changes,

in Figure 4.

After the first action is performed by the developer, namely the creation of a new version

of the Print component, ArchTrace receives an architectural evolution event. This event trig-

gers policy 9, which is responsible for copying all traceability links from the first version of

1 public void execute(Trace trace, byte action) throws TraceAbortedException {

2 if (action == ArchTracePolicy.REMOVE_ACTION) {
3 ConfigurationItem ci = trace.getConfigurationItem();

4 if (ci.getLatestVersion().isBranch()) {

5 throw new TraceAbortedException("Traces to configuration items in the

6 trunk should persist after branching.");

7 }

8 }

9 }

1 public void execute(ArchitecturalElement ae, byte action) {

2 if (action == ADD_ACTION) {

3 for (ArchitecturalElement ancestry : ae.getAncestries()) {

4 for (Trace trace : TraceManager.getInstance().getTraces(ancestry)) {
5 ConfigurationItem ci = trace.getConfigurationItem();

6 Trace newTrace = new Trace(ae, ci);

7 if (ae.getArchitecture().addTrace(newTrace)) {

8 GUIManager.getInstance().addPolicyMessage(newTrace + " added.");
9 }

10 }

11 }

12 }

13 }

the Print component to the second version of the same component. After the execution of

policy 9, both versions of the Print component have equivalent sets of traceability links.

However, the first version is immutable, meaning that its traceability links will never change.

On the other hand, the second version may have its traceability links evolved in the future.

Figure 3 shows the scenario after the execution of policy 9.

The developer performs a second action, which consists of first changing the code of Ac-

tion.java, then moving it to the Controller directory, and finally changing its name to Com-

mand.java. When this overall change is committed, an event is sent to ArchTrace, which trig-

gers policy 10, creating a new traceability link from the Toolbar component (version 1.0) to

Command.java (version 2.0). However, the execution of policy 10 triggers policy 6, which is

responsible for removing the old traceability link from the Toolbar component (version 1.0)

to Action.java (version 1.0).

Policy 10 is triggered three additional times for the same event. The second triggering of

policy 10 tries to create a traceability link from the Print component (version 1.0) to Com-

mand.java (version 2.0). However, policy 2 denies the creation of this traceability link be-

cause the Print component (version 1) is marked as immutable. The third triggering of policy

10 creates a traceability link from the Print component (version 2.0) to Command.java (ver-

sion 2.0). This is allowed by the pre-trace policy 2, which is triggered, but does not undertake

action since version 2.0 of the Print component is not immutable. Because the action is al-

lowed, the creation of this traceability link triggers post-trace policy 6, which removes the old

traceability link from the Print component (version 2.0) to Action.java (version 1.0). Finally,

the fourth triggering of policy 10 creates a new traceability link from the Bus connector (ver-

sion 1.0) to Command.java (version 2.0). However, the execution of policy 10 triggers policy

6 again, which is responsible for removing the old traceability link from the Bus connector

(version 1.0) to Action.java (version 1.0). This behavior is allowed by the pre-trace policy 2,

because version 1.0 of the Bus connector is not immutable.

The third action concerns the interrelated evolution of the Input interface and Input.java

source code. We stipulated in Section 2 that ArchTrace must behave in the same way inde-

pendent from the order of commit. Suppose that the architecture is committed first. In this

case, ArchTrace receives an architectural element evolution event. This event triggers policy

9, which is responsible for copying all traceability links from Input interface version 1.0 to

the new, second version of the interface. This results in a traceability link from Input interface

version 2.0 to Input.java version 1.0. Then, the source code commit triggers policy 10, creat-

ing a new traceability link from Input interface version 2.0 to Input.java version 2.0. How-

ever, the execution of policy 10 triggers policy 6, which is responsible for removing the old

traceability link from the Input interface version 2.0 to Input.java version 1.0. Policy 10 is

additionally triggered to evolve traceability links of Input interface version 1.0, but this action

is prohibited by policy 2 due to the immutability of version 1.0.

Now suppose that the source code is committed first. ArchTrace receives an implementa-

tion evolution event. This event triggers policy 10 first, which is responsible for evolving the

existing traceability links of Input interface 1.0 to the new version of the source code. How-

ever, this action is prohibited by policy 2 due to immutability of Input interface version 1.0.

Thus, at this stage no new links are created. When the architectural change is committed, it

triggers policy 9, which is responsible for copying all traceability links from Input interface

version 1.0 to the new, second version of the same interface. Still, this does not result in the

creation of links, because the triggering of policy 9 triggers policy 1, which recognizes that a

newer version of Input.java is available (version 2.0). It, thus, suggests the establishment of

the traceability link to Input.java version 2.0. As one can see, through a difference sequence

of policies, the same results are applied as when the architectural change was committed first.

5. Evaluation

To evaluate the effectiveness of ArchTrace and its current set of policies, we executed a

retrospective study of an existing system. This kind of study, in which we replayed past data

from a real development project to simulate an actual development effort involving “live”

developers, allowed us to analyze how our tool would perform without having to actually put

the research tool into prolonged use. In fact, we could simulate in two weeks a two-year ef-

fort. The system under study, named Odyssey, is a software development environment being

developed at the Federal University of Rio de Janeiro since 1997.

To perform the study, we gathered the Odyssey versioning data produced during the pe-

riod of July 9, 2003 until March 1, 2005. We used and reorganized the data to replicate the

original check-ins that took place, and then replayed those check-ins anew into a CM reposi-

tory instrumented with ArchTrace. The result was that, during playback, we received all the

events that would have taken place had ArchTrace been used in the first place, allowing us to

reproduce the original scenario of development and maintenance, covering both major archi-

tectural changes and a host of source code changes. This strategy made it possible to look

back in time and understand whether our policies would have operated properly in establish-

ing and evolving the right set of traceability links.

The next sections detail our planning of the retrospective study, our preparation of the en-

vironment for the study, the mechanism we used to gather statistics, the execution of the

study, and the qualitative and quantitative analysis of the results that we obtained.

5.1. Study planning

The study consists of four steps. The first step consists of the initial detection of the

proper traceability links between the Odyssey architecture and its source code on July 9,

2003. This initial set of traceability links was manually identified by Odyssey developers by

examining the architectural definition and its realization as components, connectors, and in-

terfaces in the source code.

The second step is the evolution of the traceability links during 20 months of Odyssey de-

velopment and maintenance. Replaying the set of check-ins that were originally performed in

this period of development and maintenance, the initial set of traceability links was trans-

formed, step-by-step, as triggered by each check-in, into a new set of traceability links. This

evolved set of traceability links is named Te.

The third step consists of the detection of the traceability links that should exist on March

1, 2005 among the Odyssey architecture and source code. This set of ideal traceability links,

named Ti, was manually created by Odyssey developers by examining the actual architecture

as evolved over the period of time and identifying the source files that implement each archi-

tectural element.

Finally, the fourth step consists of the comparison of the set of ideal traceability links (Ti)

with the set of actual traceability links produced by ArchTrace (Te). This comparison illus-

trates the effectiveness of the ArchTrace policies in evolving traceability links.

Below, we discuss each of these steps in more detail.

5.2. Environment preparation

Table 2 shows some Odyssey statistics. We note that the system is non-trivial, consisting

of over 2700 files, and that the study also represents a significant set of data with a total num-

ber of commits during the study period of 307 and a total number of revisions to individual

artifacts (both architectural and at the implementation level) of close to 8500.

Table 2: Odyssey statistics

Files 2703 Repository size 40158 KB

Revisions 8463 Total commits 307

Unique tags 13 First revision date July 9, 2003

Unique branches 7 Last revision date March 1, 2005

At the beginning of the playback, we turned on all policies except 1, 3, 5 and 8. Policy 5

is designed to work with branches, but the case study involved only development on the main

trunk. Policy 3 is not designed to operate together with policies 6 and 10, as the effect is ei-

ther preventive (policy 3) or proactive (policies 6 and 10), and we chose a proactive approach

(others may choose a more cautious route, in just using policy 3). Policy 1 and 8 are designed

to operate in an interactive manner, at times requesting user input. We turned off any policies

involving interactivity to avoid ourselves giving potentially “better” input than original de-

velopers would have given; our results, thus, form a lower bound of what theoretically can be

achieved.

5.3. Statistics gathering

This retrospective study aims to analyze different statistics gathered from the ArchTrace

execution. To allow this automatic gathering, we implemented a statistics gathering aspect

(KICZALES et al., 1997) and weaved it into ArchTrace. The aspect is composed of 19 point-

cuts that collect the following 27 metrics for each of the 307 configurations: the configuration

number, author, and date; the number of configuration items added, removed, and modified;

the number of executions of each policy; the number of traceability links added and removed

manually; the number of traceability links added and removed automatically; the number of

traceability link additions and removals lost; the number of indirect traceability links added

and removed manually; the number of indirect traceability links added and removed auto-

matically; and the number of indirect traceability link additions and removals lost.

In this context, indirect traceability links are traceability links implicitly detected when a

given traceability link is established to a composite artifact. For example, if a traceability link

is established to a directory, all files and subdirectories inside this directory are also implicitly

linked (even though no links exist since our policies handle this recursive traceability). The

effect of losing a traceability link to a composite artifact, then, can have significant effects on

the functioning of the policies. Hence, we monitored both direct and indirect links in our

study.

5.4. Study execution

Execution of the study comprised two major steps: (1) playback of existing check-ins and

(2) analysis of lost traceability links. The first step is performed through a tool that we explic-

itly wrote to submit, check-in by check-in, the accumulated version history of Odyssey,

shown in Figure 17. The tool simply goes through each check-in, recreates a workspace,

populates it with the known changes, and commits the workspace. The tool pauses after each

step, waiting for manual confirmation that it is okay to move to the next check-in in order to

provide time for the analyses in step two.

Figure 17: Incremental check-in playback.

The second step is performed after each individual check-in has been performed and

ArchTrace has responded by evolving the traceability links. We then manually checked if

there were any lost traceability links. We kept track of two kinds of lost traceability links: lost

additions (i.e., traceability links that ideally exist, but were not added by ArchTrace), and lost

removals (i.e., traceability links that ideally do not exist, but were not removed by

ArchTrace).

It is important to reiterate that the kinds of changes that we replayed were both at the

source code level and the architectural level. Though architectural changes took place less

frequently (as one would expect in any kind of project), the architecture of Odyssey went

through three major releases: 1.0.0, 1.1.0, and 1.2.0. With each release, we checked in the

architectural elements, triggering architectural element evolution policies. Generally, we al-

lowed ArchTrace to update the traceability links itself, except one time when the architecture

evolved with the addition of four new components. An initial set of traceability links was

established manually at that time for those components.

5.5. Qualitative analysis

During the 20 months of Odyssey development and maintenance, 77 versions of 21 archi-

tectural elements were created. Moreover, 3031 configuration items were added, renamed, or

moved, 154 configuration items were removed, and 1563 modifications were applied to exist-

ing configuration items. Most configuration items were added in July 2003, as shown in

Figure 18. This reflects the beginnings of our study. After November 2003, most activities

were related to modifications of existing configuration items, with just a few configuration

item additions and removals.

0

500

1000

1500

2000

2500

C
o
n
fi
g
u
ra
ti
o
n
 I
te
m
s

J
u
l/0

3

A
u
g
/0
3

S
e
p
/0
3

O
c
t/
0
3

N
o
v
/0
3

D
e
c
/0
3

J
a
n
/0
4

F
e
b
/0
4

M
a
r/
0
4

A
p
r/
0
4

M
a
y
/0
4

J
u
n
/0
4

J
u
l/0

4

A
u
g
/0
4

S
e
p
/0
4

O
c
t/
0
4

N
o
v
/0
4

D
e
c
/0
4

J
a
n
/0
5

F
e
b
/0
5

M
a
r/
0
5

Time

Removed

Added

Modif ied

Figure 18: Configuration items evolution.

The results of which policies were active during the study are shown in Figure 19. As ex-

pected, policies 2, 6, and 10 were used most often, as they represent responses to the normal

evolution of configuration items (e.g., links from architectural elements are updated to reflect

newer versions of the files). But several interesting events took place that led to the involve-

ment of other policies as well. First, during the initial detection of the proper traceability links

between the Odyssey architecture and its source code on July, 2003, policy 8 was explicitly

enabled to help with the otherwise manual effort of identifying an initial set of traceability

links. While, as stated before, this problem is outside the scope of this paper, the use of policy

8 illustrates that techniques such as data mining can be effectively incorporated in ArchTrace

and can add value. After this initial phase, though, we disabled policy 8.

0

500

1000

1500

2000

2500

E
x
e
c
u
ti
o
n
s

J
u
l/0

3

A
u
g
/0
3

S
e
p
/0
3

O
c
t/
0
3

N
o
v
/0
3

D
e
c
/0
3

J
a
n
/0
4

F
e
b
/0
4

M
a
r/
0
4

A
p
r/
0
4

M
a
y
/0
4

J
u
n
/0
4

J
u
l/0

4

A
u
g
/0
4

S
e
p
/0
4

O
c
t/
0
4

N
o
v
/0
4

D
e
c
/0
4

J
a
n
/0
5

F
e
b
/0
5

M
a
r/
0
5

Time

Policy 2 Policy 4

Policy 6 Policy 7

Policy 9 Policy 10

Figure 19: Execution of different policies.

The second interesting even took place in November 2003, as indicated by the spike in the

number of times policies were executed. At that time, a major reorganization of the Odyssey

source code was performed. This significantly affected the names of packages and the loca-

tions of existing classes. Policies 6 and 10 dealt with this situation by updating traceability

links to reflect the new organization of the source code. Figure 19 shows that only policies 6

and 10 were needed to support the reorganization, and Figure 20 shows that those two poli-

cies automatically added and removed many traceability links while only losing a few.

0

200

400

600

800

T
ra
c
e
a
b
il
it
y
 L
in
k
s

ju
l/0

3

a
g
o
/0
3

s
e
t/
0
3

o
u
t/
0
3

n
o
v
/0
3

d
e
z
/0
3

ja
n
/0
4

fe
v
/0
4

m
a
r/
0
4

a
b
r/
0
4

m
a
i/0
4

ju
n
/0
4

ju
l/0

4

a
g
o
/0
4

s
e
t/
0
4

o
u
t/
0
4

n
o
v
/0
4

d
e
z
/0
4

ja
n
/0
5

fe
v
/0
5

m
a
r/
0
5

Time

Lost Addition

Lost Removal

Manual Addition

Manual Removal

Automatic Addition

Automatic Removal

Figure 20: Traceability links evolution.

Policy 9, which is responsible for copying existing traceability links to new versions of

architectural elements, was triggered on May, August, and September, 2004, meaning the

three updates to the Odyssey architecture. Policy 2 was frequently triggered to deny the evolu-

tion of traceability links related to immutable architectural elements, since those are now

checked in, frozen, and should no longer change.

5.6. Quantitative analysis

To conclude the study, we compared the set of traceability links evolved by ArchTrace

(Te) with the set of ideal traceability links detected by Odyssey developers (Ti). Te comprises

222 traceability links and has coverage of 638 artifacts. On the other hand, Ti comprises 235

traceability links and has coverage of 691 artifacts.

Figure 21 presents the summative results of the analyses, illustrating that, at the end of the

20 month evolution, the set of traceability links evolved by ArchTrace (Te) has 12 out of date

traceability links, affecting 113 artifacts. Moreover, 13 traceability links were lost (|Ti-Te|),

affecting 53 artifacts due to the fact that some of the lost links pointed to compound artifacts

(i.e., directories). Overall, ArchTrace correctly identified 89% of the ideal set of traceability

links and traced 76% of the source code to corresponding architectural elements in the con-

text of the Odyssey project.

Figure 21: Quantitative analysis summary.

To put these figures in perspective, we borrow two metrics from the information retrieval

field (BAEZA-YATES and RIBEIRO-NETO, 1999): precision (the fraction of retrieved

documents which are known to be relevant) and recall (the fraction of known relevant docu-

ments which were effectively retrieved). These two metrics apply here in the sense that we

can use precision to show the percentage of actually identified traceability links that are cor-

rect (|Ti∩Te|÷|Te|=95%; showing that 5% of the traceability links that were found are inaccu-

rate) and recall to show the percentage of ideal traceability links that were actually identified

(|Ti∩Te|÷|Ti|=89%; showing we missed merely 11% of the traceability links that should have

been found).

Coverage (artifacts)

76%

8%
16%

Traceability Links

89%

5% 6%

% # %

Correctly Evolved 210 89% 525 76%

Out of Date 12 5% 113 16%

Lost 13 6% 53 8%

Total 235 100% 691 100%

Traceability Links Coverage (artifacts)

Correctly Evolved

Out of Date

Lost

5.7. Threats to validity

Despite our best efforts to create an experiment free of bias, there are some aspects of the

study that may have affect the general applicability of our results. Here, we discuss the main

threads to validity.

First, we observe that the study was performed over a relatively stable system and only in-

cluded data covering activities that took place after Odyssey development had been in pro-

gress for several years. It is unclear how the current set of policies would perform on a new

project in which rapid growth in the number of artifacts and constant reorganization may take

place, especially if the project is agile in nature. Additional study of our policies in such set-

tings, and potential development of additional policies, is necessary to broaden our results to

such projects.

Second, the study is retroactive in nature. On the one hand, this is a strength, as it ana-

lyzes an actual sample of a development project without interference of the researchers. On

the other hand, the developers were not exposed to the benefits and potential drawbacks of

ArchTrace, and hence their behavior in evolving the artifacts may not accurately reflect what

they would have done had ArchTrace been available. A second study with developers actively

using ArchTrace is necessary to understand whether or not our results hold, particularly as to

whether developers are capable of selecting the “right” policies.

Third, two of the researchers were involved in the development of Odyssey and were re-

sponsible for establishing the initial and ideal sets of traceability links. We therefore turned

off all interaction of the policies with the researchers, so not to provide better input than other

developers would have provided. By the same token, wrong guidance by actual developers

could have seriously hampered effective operation of ArchTrace. Again, further study with

interactive policies and developer responses is needed.

Finally, a threat exists in that our policies thus far do not exercise all scenarios of software

evolution. Specifically, we do not cover branching. We believe this is not a serious threat, as

an informal examination of this problem gives us confidence we can develop additional poli-

cies that will appropriately address branching. Thus, not covering branching is a limitation of

the policies thus far, and not of the approach.

5.8. Final remarks

The data shows that ArchTrace largely operated correctly, even during the reorganization

of Odyssey. Traceability links to one directory were lost, however, during this step. This

problem occurred because of an interesting situation: a directory was erroneously deleted dur-

ing the reorganization and had to be reintroduced some revisions later. Not surprisingly, this

is a situation with which ArchTrace currently cannot deal. We note, however, that the trace-

ability links of the old versions were fully available, so it would be easy for the developer to

reestablish them by hand. Another option would have been to create a new implementation

evolution policy that detects when a user tries to remedy an erroneous deletion and then

automatically reinserts the previously existing links.

At other times, some traceability links were lost when new artifacts were introduced com-

pletely out of context of the existing artifacts. In this situation, data mining policies are also

not useful because brand new artifacts do not have historical information to be analyzed. A

possible solution to address this problem is the construction of a policy that employs informa-

tion retrieval techniques (DE LUCIA et al., 2004) or syntactical analysis (BRIAND et al.,

2003) to detect traceability links. These techniques do not depend on the history of an artifact,

so they have the potential to enhance the current set of policies.

It is important to note the interplay between pre-trace and post-trace policies. It would be

possible to implement the same kind of functionality using only pre-trace or only post-trace

policies, but doing so would lead to much duplication and context checking across policies.

Particularly, each of our pre-trace policies would need to be replicated in every existing post-

trace policy, or each of the post-trace policies actions would need to be selectively included in

some of the pre-trace policies, neither of which is a desired solution. The approach of separate

pre-trace and post-trace policies, which dynamically collaborate as needed, is a more elegant

solution that integrally promotes reuse and separation of concerns.

6. Related work

Some approaches integrally combine the architecture definition with the source code,

avoiding the need for traceability links. For instance, ArchJava (ALDRICH et al., 2002) en-

hances the Java programming language with special keywords to integrate an architecture

description inside the source code. Similarly, XDoclet (WALLS and RICHARDS, 2003)

uses source code annotations to define EJB components. Clearly, these kinds of approaches

have their value. However, many situations require architectural representations separate from

the source code (OMMERING et al., 2000; KRUCHTEN, 2001). In these situations, our ap-

proach represents an important contribution.

In the traceability research area, existing approaches are mainly concerned with traceabil-

ity detection. For instance, De Lucia et al. (2004) employ information retrieval techniques to

detect traceability links from source code to use cases and test cases. While useful in and of

themselves, for our problem they are inadequate. At best, it is necessary to rerun the entire

algorithms to redetect proper traceability links. Because this ignores any previous informa-

tion, the results obtained are typically not as strong as one would with ArchTrace. Nonethe-

less, we view this technique complementary to ArchTrace and believe this kind of approach

can be used together with ArchTrace, helping to detect initial traceability links that will sub-

sequently be evolved using ArchTrace.

Work in the consistency checking research area helps to detect inconsistencies among dif-

ferent software representations. Reiss (2002), Nentwich et al. (2003), and Abi-Antoun et al.

(2005) map specific representations of software artifacts into a generic representation: rela-

tional database, XML, and tree structured data, respectively, and then allow the construction

of syntactical constraints among these representations, such as well-formedness rules and

direct transformations. ArchTrace differs from these approaches. First, ArchTrace is a proac-

tive tool, which evolves traceability links due to changes in software artifacts, not only report-

ing but also trying to avoid possible inconsistencies. Moreover, ArchTrace uses the history

dimension to detect the evolution of traceability links over time. Finally, ArchTrace deals

with architectural elements, which are coarse grained and cannot have all their traceability

links directly detected via syntactical constraints. Nevertheless, we once again believe that

these approaches can work together with ArchTrace, reporting syntactical inconsistencies

between architectural elements and source-code elements, i.e., helping to detect when the

automated policies may have done something wrong. By utilizing these techniques in some

constraint policies, thus, we believe our approach can be made more powerful.

The research area of hypertext can be useful as an infrastructure for our work. This re-

search area contributes mechanisms to manage the versioning of links among objects, such as

Chimera (ANDERSON et al., 1994) and Molhado (NGUYEN et al., 2004). Instead of storing

the links in xADL 2.0, we could store them in a hypertext tool. However, by themselves these

tools are not sufficient to address our problem as they lack the policy-based enactment that is

at the heart of ArchTrace.

7. Conclusions

This paper has presented a new approach for managing the evolution of traceability links

between a software architecture and its implementation. Existing traceability approaches have

focused on creating one-time snapshots of traceability links. While useful, the next problem is

to evolve these snapshots. This is the focus of the work presented here: policy-based evolu-

tion of traceability links. The idea is that, by staying in lockstep with architectural and source

code changes, it is much easier to solve small incremental problems of maintaining traceabil-

ity. Through its policies, this is exactly what ArchTrace does – and it achieves high-quality

results in both precision and recall.

While promising as a new kind of technique for managing the evolution of traceability

links, our work to date also highlights that additional work remains to be done. First and

foremost, we recognize that achieving 100% precision and 100% recall is the ultimate result

to be achieved by ArchTrace. This, however, may or may not be unrealistic. On the one hand,

no set of policies can anticipate every single potential change made in every single situation

by every single developer. On the other hand, however, this is perhaps also not needed: it is

merely necessary to be able to match as closely as possible the working style and conventions

of a group of developers. This is a much smaller problem, and becomes one of having a suffi-

ciently broad set of policies available and providing developers strong guidance in selecting

the policies appropriate for them. Through the building of a policy portfolio and further em-

pirical studies, both retroactive and active (i.e., in a live development setting), we plan to

build an understanding of whether ArchTrace can be made an effective and reliable solution

for traceability management in the face of evolution and indeed provide the necessary guaran-

tee that its resulting sets of traceability links do not contain false positives or false negatives.

Another focus of our future work concerns conflicting policies. Currently, the user is re-

sponsible for ensuring they choose a set that does not conflict. If they happen to choose a con-

flicting set of policies, ArchTrace cannot guarantee its results and may even exhibit race con-

ditions or infinite loops. To address this issue, we plan to research the use of meta-policies,

which act as arbitrators, and build analyses that can determine, at the moment of their activa-

tion, whether policies conflict.

An additional issue that we would like to address is branching. Policy 5 was designed to

avoid interference of versioning actions on branches with respect to the main line of devel-

opment. This, however, represents merely a first step. While we can support keeping branches

isolated, we still need to support the creation of branches and the explicit merging of branches

into the main line of development.

Finally, we mention that the long-term goal of our work is not just to maintain traceability

links, but to put these traceability links to good use. While an accurate trace is of help to hu-

mans in understanding the system at hand, it is also a first step towards automation of various

processes at the architectural level of abstraction. Our specific efforts will focus on architec-

ture-based build and release mechanisms, allowing a developer to drive the build and release

process from the architectural specification. In today’s world of component-based software

development, these two processes are particularly critical and suited for a new architectural

slant.

Acknowledgments

This work was sponsored in part by NSF grants CCR-0093489 and IIS-0205724, and

CAPES grant BEX0323/04-7. We wish to thank the students at UC Irvine and COPPE/UFRJ

for their contributions.

References

ABI-ANTOUN, M., ALDRICH, J., GARLAN, D., SCHMERL, B., NAHAS, N., 2005,

"Semi-Automated Incremental Synchronization between Conceptual and Implementation

Level Architectures". In: Working IEEE/IFIP Conference on Software Architecture

(WICSA), pp. 265-268, Pittsburgh, PA, USA, November.

AGRAWAL, R., SRIKANT, R., 1994, "Fast Algorithms for Mining Association Rules in

Large Databases". In: International Conference on Very Large Data Bases (VLDB), pp.

487-499, Santiago de Chile, Chile, September.

ALDRICH, J., CHAMBERS, C., NOTKIN, D., 2002, "ArchJava: Connecting Software Ar-

chitecture to Implementation". In: International Conference on Software Engineering

(ICSE), pp. 187-197, Orlando, USA, May.

ANDERSON, K.M., TAYLOR, R.N., WHITEHEAD, E.J., 1994, "Chimera: hypertext for

heterogeneous software environments". In: Conference on Hypertext and Hypermedia, pp.

94 -107, Edinburgh, Scotland, September.

ANTONIOL, G., CANFORA, G., CASAZZA, G., DE LUCIA, A., MERLO, E., 2002, "Re-

covering Traceability Links between Code and Documentation", IEEE Transactions on

Software Engineering (TSE), v. 28, n. 10 (October), pp. 970-983.

BAEZA-YATES, R., RIBEIRO-NETO, B., 1999, Modern Information Retrieval, ACM

Press.

BOSCH, J., 2000, Design and Use of Software Architectures: Adopting and Evolving a

Product-Line Approach, Addison Wesley.

BRIAND, L.C., LABICHE, Y., O'SULLIVAN, L., 2003, "Impact Analysis and Change Man-

agement of UML Models". In: International Conference on Software Maintenance

(ICSM), pp. 256-265, Amsterdam, Netherlands, September.

CHEN, P., CRITCHLOW, M., GARG, A., WESTHUIZEN, C., VAN DER HOEK, A., 2003,

"Differencing and Merging within an Evolving Product Line Architecture". In: Interna-

tional Workshop on Product Family Engineering, pp. 269-281, Siena, Italy, November.

COLLINS-SUSSMAN, B., FITZPATRICK, B.W., PILATO, C.M., 2004, Version Control

with Subversion, O'Reilly.

CONRADI, R., WESTFECHTEL, B., 1998, "Version Models for Software Configuration

Management", ACM Computing Surveys, v. 30, n. 2 (June), pp. 232-282.

DASHOFY, E., VAN DER HOEK, A., TAYLOR, R.N., 2001, "A Highly-Extensible, XML-

Based Architecture Description Language". In: Working IEEE/IFIP Conference on Soft-

ware Architectures (WICSA), pp. 103-112, Amsterdam, Netherlands, August.

DASHOFY, E., VAN DER HOEK, A., TAYLOR, R.N., 2002, "An Infrastructure for the

Rapid Development of XML-Based Architecture Description Languages". In: Interna-

tional Conference on Software Engineering (ICSE), pp. 266-276, Orlando, FL, USA,

May.

DE LUCIA, A., FASANO, F., OLIVETO, R., TORTORA, G., 2004, "Enhancing an Artefact

Management System with Traceability Recovery Features". In: International Conference

on Software Maintenance (ICSM), pp. 306-315, Chicago, IL, USA, September.

ECLIPSE FOUNDATION, 2007, "Eclipse IDE". In: http://www.eclipse.org, accessed in Sep-

tember 29, 2007.

GARG, A., CRITCHLOW, M., CHEN, P., VAN DER WESTHUIZEN, C., VAN DER

HOEK, A., 2003, "An Environment for Managing Evolving Product Line Architectures".

In: International Conference on Software Maintenance (ICSM), pp. 358-367, Amsterdam,

Netherlands, September.

HUFFMAN HAYES, J., DEKHTYAR, A., OSBORNE, J., 2003, "Improving Requirements

Tracing via Information Retrieval". In: International Conference on Requirements Engi-

neering (RE), pp. 138-147, Monterey, USA, September.

KICZALES, G., LAMPING, J., MENDHEKAR, A., MAEDA, C., LOPES, C., LOINGTIER,

J.-M., IRWIN, J., 1997, "Aspect-Oriented Programming". In: European Conference on

Object-Oriented Programming (ECOOP), pp. 220-242, Jyväskylä, Finland, June.

KRUCHTEN, P., 2001, The Rational Unified Process: An Introduction, Addison-Wesley.

MARCUS, A., MALETIC, J.I., 2003, "Recovering Documentation-to-Source-Code Trace-

ability Links using Latent Semantic Indexing". In: International Conference on Software

Engineering (ICSE), pp. 125-135, Portland, OR, USA, May.

MEDVIDOVIC, N., ROSENBLUM, D.S., 1997, "Domains of Concern in Software Architec-

tures and Architecture Description Languages". In: Conference on Domain-Specific Lan-

guages, pp. 199-212, Santa Barbara, USA, October.

MUCCINI, H., VAN DER HOEK, A., 2003, "Towards Testing Product Line Architectures".

In: International Workshop on Testing and Analysis of Component Based Systems, pp.

111-121, Warsaw, Poland, April.

NENTWICH, C., EMMERICH, W., FINKELSTEIN, A., ELLMER, E., 2003, "Flexible Con-

sistency Checking", ACM Transactions on Software Engineering and Methodology

(TOSEM), v. 12, n. 1 (January), pp. 28-63.

NGUYEN, T.N., MUNSON, E.V., BOYLAND, J.T., 2004, "The molhado hypertext version-

ing system". In: Conference on Hypertext and Hypermedia, pp. 185-194, Santa Cruz,

USA, August.

OMMERING, R.V., LINDEN, F.V.D., KRAMER, J., MAGEE, J., 2000, "The Koala Com-

ponent Model for Consumer Electronics Software", IEEE Computer, v. 33, n. 6 (March),

pp. 78-85.

OREIZY, P., MEDVIDOVIC, N., TAYLOR, R.N., 1998, "Architecture-Based Runtime

Software Evolution". In: International Conference on Software Engineering (ICSE), pp.

177-186, Kyoto, Japan, April.

REISS, S.P., 2002, "Constraining Software Evolution". In: International Conference on Soft-

ware Maintenance (ICSM), pp. 162-171, Montreal, Canada, October.

RICHARDSON, D.J., WOLF, A.L., 1996, "Software Testing at the Architectural Level". In:

International Software Architecture Workshop (ISAW), pp. 68-71, San Francisco, USA,

October.

SETTIMI, R., CLELAND-HUANG, J., KHADRA, O.B., MODY, J., LUKASIK, W.,

DEPALMA, C., 2004, "Supporting Software Evolution through Dynamically Retrieving

Traces to UML Artifacts". In: International Workshop on Principles of Software Evolu-

tion (IWPSE), pp. 49-54, Kyoto, Japan, September.

SHAW, M., DELINE, R., KLEIN, D.V., ROSS, T.L., YOUNG, D.M., ZELESNIK, G., 1995,

"Abstractions for Software Architecture and Tools to Support Them ", IEEE Transactions

on Software Engineering (TSE), v. 21, n. 4 (April), pp. 314-335.

SHIRABAD, J.S., LETHBRIDGE, T., MATWIN, S., 2001, "Supporting Software Mainte-

nance by Mining Software Update Records". In: International Conference on Software

Maintenance (ICSM), pp. 22-31, Florence, Italy, November.

VAN DER HOEK, A., 2004, "Design-Time Product Line Architectures for Any-Time Vari-

ability", Science of Computer Programming, v. 53, n. 3 (December), pp. 285-304.

WALLS, C., RICHARDS, N., 2003, XDoclet in Action, Manning Publications.

WERNER, C.M.L., MANGAN, M.A.S., MURTA, L.G.P., SOUZA, R.P., MATTOSO, M.,

BRAGA, R.M.M., BORGES, M.R.S., 2003, "OdysseyShare: an Environment for Collabo-

rative Component-Based Development". In: IEEE Conference on Information Reuse and

Integration (IRI), pp. 61-68, Las Vegas, USA, October.

WHITEHEAD, E.J., 2000, An Analysis of the Hypertext Versioning Domain, Ph.D. thesis,

University of California, Irvine, USA.

YING, A.T.T., MURPHY, G.C., NG, R., CHU-CARROLL, M.C., 2004, "Predicting Source

Code Changes by Mining Change History", IEEE Transactions on Software Engineering

(TSE), v. 30, n. 9 (September), pp. 574-586.

ZHAO, J., YANG, H., XIANG, L., XU, B., 2002, "Change impact analysis to support archi-

tectural evolution", Journal of Software Maintenance: Research and Practice, v. 14, n. 5

(September), pp. 317-333.

ZIMMERMANN, T., WEISGERBER, P., DIEHL, S., ZELLER, A., 2004, "Mining version

histories to guide software changes". In: International Conference on Software Engineer-

ing (ICSE), pp. 563-572, Edinburgh, Scotland, May.

