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Abstract 

A traditional obstacle in the use of multiple representations is the need to maintain trace-

ability among the representations in the face of evolution. The introduction of software archi-

tecture, and architecture-based development, has brought this need to architectural descrip-

tions and corresponding source code. Specifically, the task is to relate versions of architec-

tural elements to versions of source code configuration items, and to update those relations 

as new versions of the architecture and source code are produced. We present ArchTrace, a 

new approach that we developed to address this problem. ArchTrace distinguishes itself by 

continuously updating traceability relations from architectural elements to code elements 

through a policy-based extensible infrastructure that allows a group of developers to choose 



a set of traceability management policies that best match their situational needs and/or work-

ing styles. We introduce the high-level approach of ArchTrace, discuss its extensible infra-

structure, and present our current set of ten pluggable traceability management policies. We 

conclude with a retrospective analysis of data collected from a twenty month period of devel-

opment and maintenance of Odyssey, a component-based software development environment 

comprised of over 50,000 lines of code. This analysis shows that our approach is promising: 

with respect to the ideal set of traceability links, the policies applied resulted in a precision of 

95% and recall of 89%. 

1. Introduction 

With the introduction of software architecture as a critical artifact in the software life cy-

cle, a new problem has emerged: traceability between an architectural description and its cor-

responding source code must be maintained as they each evolve over time. Software architec-

tures are currently used as a basis for run-time evolution (OREIZY et al., 1998; VAN DER 

HOEK, 2004), product selection in software product lines (BOSCH, 2000; CHEN et al., 

2003), new testing approaches (RICHARDSON and WOLF, 1996; MUCCINI and VAN DER 

HOEK, 2003), impact analyses (ZHAO et al., 2002), and numerous other activities that will 

not operate properly without a detailed and accurate mapping from an architectural descrip-

tion to relevant corresponding source code configuration items. 

The fact that both the architecture and the source code can – and do – evolve independ-

ently represents a significantly complicating factor. It may be feasible for a developer to spec-

ify a proper mapping once, but it is not reasonable to expect the developer to continuously 

maintain and evolve that mapping manually, especially not when the software system under 

development is of significant scale and undergoes numerous changes. 

Several different approaches already address the problem of maintaining traceability be-

tween an architectural description and corresponding source code configuration items. These 

approaches can be classified into two categories: equality by definition and after the fact re-

construction. Equality by definition refers to methods in which an architectural description 

and its source code configuration items are perfectly traceable because one is embedded in-

side the other. For instance, ArchJava (ALDRICH et al., 2002) and XDoclet (WALLS and 

RICHARDS, 2003) embed the definition of architectural elements in the source code. While 

this kind of solution is effective in maintaining 100% accuracy, it is not as realistic, as it is 

often the case that the architecture of a system is maintained in an architecture description 



that is separate from the source code, with different people using different tools and different 

notations maintaining the two. 

Data mining (SHIRABAD et al., 2001; YING et al., 2004; ZIMMERMANN et al., 2004), 

information retrieval (ANTONIOL et al., 2002; HUFFMAN HAYES et al., 2003; MARCUS 

and MALETIC, 2003; SETTIMI et al., 2004), and syntactic analysis (BRIAND et al., 2003) 

techniques fall into the category of after the fact reconstruction. This category encompasses 

techniques which (re)discover traceability links. These techniques tend to be generic in na-

ture, and do not take into account the special relationship between architecture and source 

code, nor do they leverage the structured way in which both tend to co-evolve. Because of 

their reliance on mathematical properties, and low tolerance for exceptions, their performance 

is suboptimal when applied to the problem of architecture-to-implementation traceability. 

In this paper, we present an alternative approach that falls in between equality by defini-

tion and after the fact reconstruction. This approach can be typified as instant update, and 

relies on two critical observations: (1) rather than reconstructing traceability links after some 

significant amount of time has passed, we continuously update the links in response to each 

and every change committed by a user, and (2) the specific update to be made is determined 

by an actively specified set of traceability management policies. The result is an approach that 

can be tailored to different user practices, takes advantage of the knowledge encoded in the 

policies regarding architectural and source code evolution, and accommodates the incorpora-

tion of new policies. 

We have implemented this approach in an extensible infrastructure, ArchTrace, which we 

explicitly designed to support policy-based traceability management between evolving archi-

tectural descriptions and evolving source code configuration items. ArchTrace operates 

through triggers that it inserts into external systems, most notably in the environment used to 

evolve architecture – typically an architectural design environment – and in the environment 

used to evolve source code configuration items – typically a Configuration Management 

(CM) system. These triggers monitor changes made by users to the architecture description or 

configuration items, and fire when those changes are committed. Upon firing, ArchTrace runs 

any applicable policies to update traceability links, as depicted in Figure 1. As an example, 

when a developer checks in a modification to a source file, ArchTrace runs a policy that adds 

a traceability link from the corresponding architectural element to the new version of the 

source file and another policy that removes the traceability link to the old version. 



An important aspect of ArchTrace is that it is pluggable with respect to the set of trace-

ability management policies that it uses. At this moment in time, we have implemented ten 

such policies, but other policies can easily be coded and used. For instance, current policies 

focus on tracing components, connectors, and interfaces, but we can extend the set of avail-

able policies to additionally trace other, perhaps more fine-grained elements. 

 

Figure 1: ArchTrace context.   

We note that, while our goal is to investigate a new technique for automatically maintain-

ing traceability of evolving architecture-to-implementation links, we do not directly compete 

with data mining, information retrieval, and syntactic analysis techniques. Rather, we see our 

work as an exploration of a complementary technique – one that eventually may very well 

make use of these other techniques in providing its functionality. This is illustrated by our 

evaluations of ArchTrace. We performed a retrospective analysis of ArchTrace as applied to 

20 months of data regarding the development of Odyssey (WERNER et al., 2003), a compo-

nent-based software development environment consisting of over 50,000 lines of code cover-

ing about 20 components. Initial results were promising, but they improved some when we 

incorporated an extra policy based on straightforward data mining to help in establishing an 

initial set of traceability links. 

The rest of this paper is organized as follows. Section 2 presents a motivating example to 

ground the ensuing discussion. Section 3 introduces the high level approach underlying 

ArchTrace, which is followed by a discussion of its implementation in Section 4. Section 5 

evaluates the approach. Section 6 discusses related work and we conclude the paper in Sec-

tion 7 with an outlook at our future work.  
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2. Motivating example 

In this section, we provide an example that we will use throughout the paper to describe 

the features of ArchTrace. The example concerns a word processing application, the architec-

ture of which is shown on the left hand side of Figure 2. This architecture has three compo-

nents (Print, Toolbar, and Display), one connector (Bus), and two interfaces (Input and Out-

put). All architectural elements exist in a single version and the source code that implements 

these architectural elements is organized into three directories: Model, View, and Controller. 

These directories contain, respectively: Printer.java and Action.java; EditingWindow.java; 

and CommandDispatcher.java, BusFacade.java, Input.java, and Output.java, as shown on the 

right hand side of Figure 2.  

 

Figure 2: Starting situation for our example scenario. 

Figure 2 also shows that the Print component and Input interface are immutable, as they 

were already committed and can no longer be changed (unless, of course, new versions are 

created). Further, the Print component is implemented by Printer.java and Action.java; the 

Toolbar component by Action.java and CommandDispatcher.java; the Display component by 

EditingWindow.java; the Bus connector by Action.java and BusFacade.java; the Input inter-
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face by Input.java; and the Output interface by Output.java. Note that the source files that 

implement the Print component and Input interface are immutable already. 

The first step of our scenario consists of an architectural change, namely to create version 

2.0 of the Print component. As a result, the new version inherits the traceability links of the 

previous version, which is expected since at this point nothing else has happened. Dashed 

lines represent these new traceability links in Figure 3. 

 

Figure 3: Situation after Print version 2.0 is created. 

The second step consists of a series of changes to the code: (1) checking out Action.java, 

(2) modifying the checked out copy, (3) moving it to the Controller directory, and (4) in the 

process of checking in the new version, changing its name to Command.java. The set of 

traceability links now needs to be updated to reflect these changes. Specifically, architectural 

elements that used to link to version 1 of Action.java should now link to Command.java, 

which is version 2 since it represents an evolutionary step from Action.java. However, we 

should take into account the immutable state of the first version of the Print component. As 

an immutable version, its traceability links should not be updated to allow history to remain 

intact. Figure 4 shows the resulting set of traceability links. Three links, from the Print com-

ponent (version 2.0), Toolbar component (version 1.0), and Bus connector (version 1.0), were 
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redirected from Action.java to Command.java, and one traceability link, from version 1 of the 

Print component, was kept to point to Action.java due to immutability restrictions.  

 

Figure 4: Situation after Action.java is checked out, modified, moved, renamed to Com-

mand.java, and checked in. 

The final step consists of two interrelated changes to the architecture and source code: (1) 

a new version of the Input interface is created as the result of a check out, modification, and 

check in, and (2) the Input.java file is checked out, modified, and checked in. Again, the set 

of traceability links must be updated to reflect these changes, with the result shown in Figure 

5. It is important to note that these updates must be independent of the order in which the two 

changes are committed (i.e., regardless of whether the architectural change is checked in first 

or whether the source code change is checked in first, the set of traceability links that eventu-

ally results must be exactly the same).  

It is worth noting that, for illustration purposes, the example intentionally presents a sim-

ple scenario. However, it provides concrete situations in which evolution of traceability links 

is difficult, even with automated tools: source-code elements being moved and renamed, 

traceability links being updated selectively due to immutability, and interrelated modifica-

tions requiring consistent results regardless of the order of commits.  
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Figure 5: Situation after Input and Input.java are updated jointly. 

3. Approach 

The goal of ArchTrace is to support the evolution of traceability links; we are explicitly 

not concerned with establishing the links in the first place. While our framework does support 

the incorporation of data mining and other policies for the purposes of creating an initial set 

of links (we illustrate one such example in Section 4), we have concentrated on the evolution 

of traceability links since this is a difficult, unaddressed, yet important property in the face of 

architecture-based development (MEDVIDOVIC and ROSENBLUM, 1997). Generally 

speaking, the problem that we address in this paper can be stated as follows: given an initial 

set of established traceability links, and given that both an architecture and its implementation 

can evolve independently, how can traceability links be updated with the addition of new 

links, removal of existing links, and changes in existing links to ensure that each architectural 

element is at all times accurately linked to its corresponding source code configuration items, 

and vice versa? In essence, we want to find an automated way of evolving traceability links as 

an architecture and/or implementation change.  
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In support of this goal, we have designed our approach to consist of the following fea-

tures: (1) a policy-based infrastructure, allowing the matching of policies to work practices; 

(2) policies that specifically take advantage of their knowledge of architectural and source 

code artifacts to make educated guesses on what to do upon architectural or source code 

change events; (3) policies that, when appropriate, request human input – but do so far less 

often than just maintaining all links manually; (4) policies that act as either rules, deciding 

upon actions to take, or constraints, limiting the kinds of actions that can be taken; and (5) a 

result that maintains a N-M bidirectional mapping, allowing both architectures and source 

code to evolve independently while maintaining full navigation from architecture to source 

code, and vice versa. 

The philosophy behind our approach is that it is worth to evolve traceability links con-

tinuously, during the evolution of architectures and their implementation. Whereas existing 

approaches are forced to, in essence, rediscover all of the links after an architectural element 

or source code configuration item has changed, we stay in lockstep with the modifications 

and update the set of links as soon as a new (architectural or source code) element is checked 

into the respective repository, as shown in Figure 6.  

 

Figure 6: Traceability links evolution via policy triggering. 

In response to new “check in” events, multiple policies may be triggered. Policies are in-

tentionally simple, each capturing one small aspect of traceability link evolution that matches 

potential actions that a user may take. For instance, a policy that deals with checking in a new 

architectural element, a policy that deals with removing a source code configuration item, a 

policy that suggests establishing traceability links to the most recent version of a source code 

configuration item, etc. Policies, thus, have a separate responsibility. But, because execution 

of one policy can result in the triggering of one or more other policies, the result is a set of 

closely collaborating policies that together are responsible for appropriately updating trace-
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ability links. Usually, then, multiple policies are involved when a developer checks in an ar-

chitecture or a set of source code configuration items. Such updates can be implemented us-

ing three individual policies: a policy to verify whether an element is immutable, a policy to 

create new traceability links to the latest versions of the source code elements, and a policy to 

remove old traceability links. 

Policies can be enabled and disabled individually. This is to support different work prac-

tices and different CM systems. Some developers establish certain practices on how to evolve 

their artifacts, and different CM systems establish different procedures (CONRADI and 

WESTFECHTEL, 1998). Rather than attempting to build a single all-encompassing solution, 

we adopt a pluggable infrastructure that supports the addition of new policies through the 

programmatic interface of ArchTrace.  

Our approach distinguishes four classes of policies: architectural element evolution poli-

cies, implementation evolution policies, pre-trace policies, and post-trace policies. Architec-

tural element evolution policies fire when an architect makes modifications to an architecture, 

and implementation evolution policies fire when the source code evolves.  

Pre-trace policies operate just before a new link is added or an old one is removed, acting 

as constraints. Their primary task is to detect the introduction of inconsistencies between the 

traceability link that is added or removed and the set of already existing traceability links. 

Should such inconsistencies arise, pre-trace policies can veto additions or removals, prohibit-

ing actions from completing. An example of such a pre-trace policy is a policy that prohibits 

updating a traceability link from a version that resides in the main line of development (trunk) 

to a newly branched version; this kind of update would lead to inconsistent mixing of trunk 

and branch versions of source code in the same architecture. 

Post-trace policies are executed after the creation or removal of traceability links has ac-

tually been completed. This allows the definition of policies that update additional traceability 

links when traceability links are added or removed. For example, when an architectural ele-

ment needs to be updated with a newer version of a source code configuration item, an im-

plementation element evolution policy adds the link, but a post-trace policy is responsible for 

removing the old link. This, in turn, may trigger other policies, in effect creating a rolling set 

of policies of different types that are executed. For instance, execution of a post-trace policy 

may lead to the addition of even more traceability links. If this occurs, all pre-trace policies 

will be triggered again to verify if the suggested traceability links are appropriate. Note that 



post-trace policies can only execute if all pre-trace policies have approved the suggested 

changes by other policies, and will only execute after a change has been made. Unlike pre-

trace policies, post-trace policies cannot “rollback” the addition or removal of traceability 

links. Another example of a post-trace policy is a policy that removes an existing traceability 

link from a source code configuration item when a new traceability link is established to the 

directory that contains the source code: this existing traceability link would be redundant. 

We observe that it is possible for pre-trace policies to not just act as constraints, but also 

to enact rules that establish or remove traceability links. Post-trace policies, on the other hand, 

cannot act as constraints, as the execution of a set of policies is stateless – a policy executed 

after some set of other policies is not aware of the links that were added or removed by these 

other policies and, therefore, cannot roll back to a previous state. 

Policies may request assistance from users; they are not meant to operate automatically 

and be “hidden” at all times. Rather, when it is pertinent that a user chooses one of two 

courses of action, or when additional human input is needed, a policy can leverage the inter-

face of ArchTrace to obtain the information it needs. While, in our experience, it is relatively 

rare that interaction with users is necessary, it is critical to support this functionality. Should a 

“wrong” decision be made by a policy at some critical juncture, the set of traceability links 

can become significantly out of sync over time with those that actually should exist. Rather 

than guessing an alternative, it is better to request user assistance. Note that the reason that it 

is relatively rare for policies to need human input is because the users are involved in the se-

lection of the policies that are activated in the first place: they already have selected a set of 

policies that describes how they operate and wish to be supported. An example of an interac-

tive policy is a policy that detects the existence of a newer version of a source code file when 

a traceability link is being established to an older version. This may indicate that a user is 

working with older code on the main trunk, which generally is an undesirable situation, but at 

times may be necessary. 

It is important to note that we designed our approach to be compatible with collaborative 

development. Because the CM system is responsible for resolving conflicts, perhaps with the 

help of the user performing some merges, traceability links simply evolve based on what is 

eventually checked in and do not interfere or cause problems when multiple users are in-

volved in modifying the architecture and source code base. 



Another important aspect of our approach is that it is designed to be independent of spe-

cific tools that are used. Architects can have their own tool to evolve architectures, such as 

ArchStudio (DASHOFY et al., 2002), and implementers can have their own tools to do their 

work, such as the Eclipse IDE (ECLIPSE FOUNDATION, 2007) and Subversion (COLLINS-

SUSSMAN et al., 2004). All our approach needs to operate are notifications about check in 

events, and access to the respective repositories to obtain, if needed, additional information 

with which policies can make their decision. 

Clearly, underneath any approach like ours has to be an infrastructure for actually captur-

ing and storing the links that trace architectural elements to their source code configuration 

items. This infrastructure must support fine-grained links in order to allow the mapping of 

individual architectural elements to (sets of) individual source code configuration items, and 

vice versa. Additionally, it must support versioning in order to distinguish different versions 

of architectural elements and different versions of source code configuration items, as each 

have their own sets of associated traceability links. This kind of infrastructure is readily avail-

able in the form of hypermedia and hypertext versioning systems (WHITEHEAD, 2000), and 

we describe in the next section how we built a straightforward incarnation of such an infra-

structure ourselves. 

Finally, we note that our approach does not necessarily prescribe any particular policies 

that it must or must not include; users are free to use whichever policies they desire. Nonethe-

less, certain policies are commonplace and including them as a standard part of the imple-

mentation of our approach – as described in Section 4 – clearly provides advantages in terms 

of reuse and examples of how policies are constructed and combined. 

4. Implementation 

ArchTrace is implemented in the Java language and is available at 

http://www.cos.ufrj.br/~murta/ArchTrace. The current implementation assumes the use of 

xADL 2.0 (DASHOFY et al., 2001) to describe software architectures and Subversion  to 

store source code configuration items.  

4.1. Overall architecture 

Figure 7 presents the ArchTrace architecture. It consists of six components, four of which 

standard (shown as solid grey boxes) and the other two custom (shown as patterned boxes). 

The custom components depend on the particular architecture evolution environment and CM 



system used. As stated, we rely on xADL 2.0 and Subversion, but because the Architecture 

Connector and Repository Connector components are designed with abstract interfaces, the 

rest of ArchTrace is independent of the details of those two components. 

 

Figure 7: ArchTrace architecture. 

Connector components insert tool-specific listeners. Upon receiving events (illustrated us-

ing dashed lines), they pass those on to the generic Event Listening component, which is re-

sponsible for interpreting the data contained in the events and invoking the appropriate part of 

the Policy Triggering component to begin the updating of traceability links. 

The Policy Triggering component coordinates which specific policies are executed at 

what time in order to manage the set of traceability links and evolve them by adding and re-

moving links. As discussed in Section 3, this kind of coordination is necessary because a pol-

icy may recursively trigger the execution of other policies, resulting in them together perform-

ing relatively complex tasks. For instance, in the case of the one of the examples in Section 2, 

renaming and moving of a source file, a policy that updates the architectural element with the 

new link will trigger another policy that removes the older traceability link. Moreover, the 

policy that removes the older traceability link may trigger a third policy that prohibits this 

removal when the architectural element is marked as immutable. 

Actions that result in changes to the set of traceability links are actually enacted by the 

Traceability component. Since traceability links are typically stored either in the architecture 

description, such as xADL 2.0 or UniCon (SHAW et al., 1995), or in the CM system (by 

checking in a description of an architecture with the source code), this component is respon-

sible for actually supporting the creation, removal, and querying of traceability links. It inter-
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acts with both the Architecture Connector and Repository Connector components to build 

upon their generic interfaces and operate independently. 

 

Figure 8: ArchTrace policy activation and deactivation.   

Finally, the Policy Manager component is responsible for managing which policies are 

active at what time. During bootstrap of ArchTrace, this component loads all policies, instan-

tiates them, and allows the user to activate and deactivate specific policies, as shown in 

Figure 8. Here is where the pluggability of ArchTrace comes into play: when new policies are 

created, these new policies, once loaded by this component, will integrate as any of the ten 

policies that we already built: they can be enabled, disabled, executed, and triggered by other 

policies. 



 

Figure 9: ArchTrace screenshot. 

It should be noted that, while ArchTrace typically operates in the background, it is possi-

ble for architects or developers to query ArchTrace at any time in the software development 

lifecycle to visualize the traceability links among architectural elements and their implemen-

tation. Shown in Figure 9, ArchTrace allows exploration of the set of links: one can see all 

the links for a given architectural element or choose a file for which one wants to know to 

which architectural elements it belongs. An example of impact analysis activity using 

ArchTrace user interface consists on selecting a source code (right hand side of Figure 9) and 

visualizing all architectural elements that are related to this source code. Moreover, it is pos-

sible to select some of these architectural elements (left hand side of Figure 9) and see all 

source code configuration items that implement them. An additional possibility is to use other 

tools of ArchStudio, such as Ménage (GARG et al., 2003), to perceive the relationships 

among components, connectors, and interfaces and use this knowledge to guide new queries 

in the ArchTrace user interface. 



4.2. Traceability links schema 

As mentioned before, ArchTrace uses xADL 2.0 to describe software architectures. Spe-

cifically, our work relies on the xADL 2.0 Implementation Schema, which defines an abstract 

element that is a placeholder for data that relates to the implementation of architectural ele-

ments. We have extended this abstract schema with a concrete schema that adds traceability 

to source code stored in configuration management repositories, as shown in Figure 10. Spe-

cifically, we support the tagging of architectural elements with a series of configuration items. 

 

Figure 10: ArchTrace schema. 

Our schema consists of an element named ConfigurationManagementImplementation, 

which is composed of a set of ConfigurationItem elements. Each ConfigurationItem is repre-

sented by the tuple (name, version, repository) where name is the name of the configuration 

item, version is the selected version of the configuration item, and repository is the configura-

tion management repository address where the configuration item version is stored. For ex-

ample, the traceability links of component Print version 2.0, as presented in the example of 

Figure 4, can be described via our schema using the information shown in these two tuples: 

(“Model/Printer.java”, 1.0, svn://server/src) 

(“Controller/Command.java”, 2.0, svn://server/src) 

4.3. Architecture and repository connection 

As mentioned before, ArchTrace abstracts its interaction with specific architecture devel-

opment environments and configuration management systems through a generic layer. This 

generic layer has to be specialized for each concrete kind of architecture development envi-
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ronment or CM system. This specialization occurs via the creation of a new architecture or 

CM repository connector. However, ArchTrace imposes some restrictions to which these con-

nectors should adhere. 

In the case of a new kind of architecture development environment, its architecture con-

nector must implement the ArchConnector interface, which details three main functionalities: 

(1) translation between the general model of architecture used by ArchTrace, which consists 

of components, connectors, and interfaces, and the specific architectural model of the envi-

ronment, which may similarly consist of components, connectors, and interfaces, but also can 

be as varied as packages and dependencies, workflow and services, CORBA components and 

IDL interfaces, and so on; (2) management (add, remove, and query) of traceability links for a 

given architectural element; and (3) emission of change events from the architecture devel-

opment environment to trigger the policies of ArchTrace.  

In the case of a new kind of CM system, the CM repository connector must implement the 

CMConnector interface, which details two main functionalities: (1) translation between the 

general model of a CM repository adopted by ArchTrace, which consists of configurations 

and configuration items, and the specific CM model of the CM system (e.g., file-oriented or 

object-oriented) and (2) emission of change events from the CM system to trigger the policies 

of ArchTrace.  

ArchTrace policies, thus, do not need to directly manipulate the architectural elements or 

their code base as stored in the CM repository. Instead, they can rely on the ArchTrace API, 

which is composed of the classes Architecture and ArchitecturalElement for interacting with 

architectures and the classes Repository, Configuration, and ConfigurationItem for interacting 

with CM repositories. 

4.4. Policies API 

Each ArchTrace policy is implemented as a Java class that follows a specific interface 

provided by ArchTrace. Every policy must provide a short description and the rationale be-

hind the policy. Moreover, a method called “execute” should be implemented. The arguments 

of this method vary depending on the type of policy. The pre-trace and post-trace policies 

receive the traceability link that is being added or removed, as well as the action that informs 

the policy as to whether the traceability link is being added or removed. An architectural ele-

ment evolution policy receives a pointer to an architectural element and an indication as to 

what happened to that element (i.e., was it added, removed or changed?). Finally, an imple-



mentation evolution policy receives a pointer to a configuration item and, once again, an indi-

cation as to the specific action that took place (i.e., was it added, removed or changed?). Us-

ing this information, as well as the querying capabilities of the Traceability component listed 

in Figure 7, policies should have sufficient information to make their decisions. If that is not 

the case, they can use the user interface of ArchTrace to request additional information from 

the user. Figure 11 summarizes the API provided by ArchTrace for policies construction. 

 

Figure 11: Policies API. 

4.5. Built-in policies 

We have implemented an initial set of ten policies. Table 1 presents a list of the policies 

together with their motivation and related policies (“REL” column). We developed the poli-

cies based on informally observing ourselves and other developers in action. In addition, dur-

ing the design of ArchTrace, we simulated a set of hypothetical scenarios in which different 

changes were made to an architecture and its implementation, and observed the effects these 

changes should have had on the traceability links among the elements. These scenarios in-

cluded the creation of new versions of architectural elements, the creation of new versions of 

source code, the renaming and moving of source code, the structuring of source code in a 

composite way, and the initial establishment of traceability links using existing techniques. 

From these collective experiences, we devised the ten policies presented here, as these pro-

vide basic support for some of the most common scenarios.  



Table 1: ArchTrace built-in policies 

  

As a first observation, we noted that, when a new version of a source file is available, it is 

necessary to use this version for architectural elements that are under development. This led 

us to create three different atomic policies: addition of new traceability links when new ver-

sions of source files are available (policy 10), removal of old traceability links when new 

traceability links are created (policy 6), and denial of traceability links creation and removal 

to immutable architectural elements (policy 2). Together, these policies ensure traceability 

ID TYPE DESCRIPTION REASONING REL 

1 

Pre-trace 

(interactive 

constraint) 

Suggests the creation of trace-

ability links to the most recent 

configuration item version if a 

traceability link is created to an 

older version. 

Sometimes, especially when the configuration 

item versions have different names or paths, 

traceability links are mistakenly established to 

older versions of the configuration item because 

the user does not know that there are newer ver-

sions available. 

 

2 

Pre-trace 

(automatic 

constraint) 

Denies creation or removal of  

traceability links on immutable 

architectural elements. 

Usually, it is not desirable to evolve traceability 

links of architectural elements that are marked as 

“immutable” because they are considered stable. 

10 

3 

Pre-trace 

(automatic 

constraint) 

Denies creation of  traceability 

links to more than one version of 

the same configuration item. 

Some programming languages do not support 

more than one version of the same configuration 

item to be included in the same runtime environ-

ment. 

6,10 

4 

Pre-trace 

(automatic 

constraint) 

Denies creation of  traceability 

link to sub configuration items if 

the composite configuration item 

is already traced. 

If a composite configuration item (i.e., directory) 

is linked from a given architectural element, it is 

redundant to have traceability links to its parts 

(i.e., subdirectories and files). 

7 

5 

Pre-trace 

(automatic 

constraint) 

Denies removal of traceability 

links to source code in the trunk 

when a commit is performed in a 

branch. 

Commits in branches should not interfere with the 

main line of development. 

 

6 

Post-trace 

(automatic rule) 

Removes traceability links from 

old configuration item versions 

when a traceability link is created 

to a newer version. 

Some programming languages do not support 

more than one version of the same configuration 

item in the same runtime environment. 

3,10 

7 

Post-trace 

(automatic rule) 

Removes traceability links from 

sub configuration items if a trace-

ability link is created to the com-

posite configuration item. 

If a composite configuration item (i.e., directory) 

is linked from a given architectural element, it is 

redundant to have traceability links to its parts 

(i.e., subdirectories and files). 

4 

8 

Post-trace 

(interactive rule) 

Suggests related traceability links 

when a traceability link is cre-

ated. 

Usually, architectural elements that have trace-

ability links to a given configuration item also 

have traceability links to other configuration 

items. Data-mining techniques can be used to 

detect these related traceability links, avoiding 

incomplete traces. 

 

9 

Architectural 

Element  

Evolution 

(automatic rule) 

Copies all existing traceability 

links to the new version of the 

architectural element when it is 

available. 

Typically, new architectural element versions 

start out with the same traceability links as those 

of the previous version the version from which 

they were originated. 

 

10 

Implementation 

Evolution 

(automatic rule) 

Updates traceability links when a 

new version of a configuration 

item is available. 

This represents natural evolution of the imple-

mentation of architectural elements. 

2,3,6 



links are updated to newer versions, but that the links of immutable architectural elements are 

kept untouched. 

Another common pattern that we observed was that, when a new version of an architec-

tural element is created, it should inherit all traceability links from its ancestor. This led us to 

policy 9, which copies all traceability links from the previous version of an architectural ele-

ment when a new version is created.  

In addition, depending on the combination of the policies described above, a given archi-

tectural element may have traceability links assigned to more than one version of the same 

source code. This situation should be avoided depending on the underlying programming lan-

guage (i.e., compiling and running a system with two files in which the same Java class is 

defined is prohibited by the language); this led us to create policy 3. Additionally, when a 

source code configuration item undergoes a name or path change, users that are not aware of 

the new name or path change may erroneously establish traceability links to older versions of 

the source code. In the example of Figure 4, Action.java was renamed to Command.java. In 

this scenario, the user is warned by policy 1 if they try to establish a traceability link to Ac-

tion.java, but can use the interface of ArchTrace, shown in Figure 12, to nonetheless establish 

the link.  

 

Figure 12: ArchTrace suggestion based on history analysis. 

Because most CM systems allow hierarchical organization of source files, a potential re-

dundancy emerges when both the container and the contained are linked. To avoid this situa-

tion, both proactively and passively, we implemented policies 4 and 7. The policies simply 

link to the container, indicating that it and all of its contents belong to a particular architec-

tural element. 



An additional issue that we addressed is branching. While architectural branches are han-

dled correctly just with policy 9, at the source code level some side effects take place when 

Policy 10 is used: inadvertent removal of traceability links to the main line of development 

(trunk) because generally policy 6 will also be in use. Therefore, we included in our standard 

set of policies a pre-trace policy (policy 5) that denies removal of traceability links to source 

code for which a new traceability link is added to a branch. It is worth to note that policy 5 is 

automatic at this moment, always denying the removal of a trunk traceability link in response 

to commits on branches.  

Finally, we observe our discussion of Section 1 on data mining. We see data mining 

(SHIRABAD et al., 2001; YING et al., 2004; ZIMMERMANN et al., 2004) and other exist-

ing techniques for traceability detection (ANTONIOL et al., 2002; BRIAND et al., 2003; 

HUFFMAN HAYES et al., 2003; MARCUS and MALETIC, 2003; SETTIMI et al., 2004) as 

complementary to our approach. In order to demonstrate this, we implemented policy 8 to 

show the feasibility of integrating data mining into our technique. This policy uses association 

rules (AGRAWAL and SRIKANT, 1994) to suggest new traceability links based on similarity 

to previously created sets of traceability links. Particularly, when a new architectural element 

is created that must be linked to existing source code configuration items, the developer has 

to create these traceability links one by one if the artifacts are scattered over different directo-

ries. If, however, the set of manually created links is similar to an existing set of links to some 

degree (i.e., above some threshold), then the policy will automatically suggest to include the 

rest of the traceability links of the existing set. Its user interface is shown in Figure 13. This 

policy is particularly useful when a new architectural element is created and initial traceability 

links need to be established. 

 

Figure 13: ArchTrace suggestion based on data mining. 



4.5.1. Policy implementations 

In this section, we detail some of our policies. The main purpose is twofold: (1) to illus-

trate how small in footprint policy implementations can be, and (2) to show how policies in-

teract with the ArchTrace API to gather the necessary information for accomplishing their 

tasks. 

Figure 14 presents the implementation of the execute method of policy 2. Each policy has 

3 methods, as shown in Figure 11, but the other two of them are boilerplate (getDescription 

and getRationale). As this is a pre-trace policy, its main purpose is to prevent a certain situa-

tion from occurring, in this case the creation or removal
1
 of traceability links on immutable 

architectural elements. Accordingly, the policy throws an exception if this is an immutable 

architectural element that is inputted via its parameters. This exception is handled by the Pol-

icy Triggering component, shown in Figure 7. The goal of this exception is to notify the Pol-

icy Triggering component to rollback the traceability creation or removal event. This is the 

way pre-trace policies indicate to ArchTrace that a proposed traceability link should not be 

established. 

 

Figure 14: Policy 2 algorithm. 

Figure 15 presents the implementation of the execute method of policy 9, which is respon-

sible for copying all traceability links from a base version of an architectural element to its 

new version. This policy, thus, only deals with actions of the type ADD_ACTION, and then 

loops over all base versions of the architectural element (there may be more than one base 

version if the architectural element is the result of a merge operation), retrieves all traceability 

links of each such base version, creates corresponding traceability links for the new version, 

                                                 

1 Currently, ArchTrace supports no other actions beyond adding or removing traceability 

links, so the check is technically superfluous, but for future extensibility reasons and clarity 

we incorporated it in the code of the policy. 

1 public void execute(Trace trace, byte action) throws TraceAbortedException { 

2   if ((action == ADD_ACTION) || (action == REMOVE_ACTION)) { 

3     if (trace.getArchitecturalElement().isImmutable()) { 

4       throw new TraceAbortedException("Immutable architectural elements can 

5                                              not have their traces changed."); 

6     } 

7   } 

8 } 



and reports its activities to the user. It is worth noticing that this policy does not throw an ex-

ception because is not a pre-trace policy (it cannot act as a constraint). 

 

Figure 15: Policy 9 algorithm. 

Finally, Figure 16 presents the algorithm of policy 5. This algorithm automatically denies 

the removal of traceability links from source code configuration items in the main line of de-

velopment if a commit is performed to a branch. Again, this is a pre-trace policy, so it checks 

for the particular situation to occur and throws an exception if it does.   

 

Figure 16: Policy 5 algorithm. 

Overall, we note that the implementation of policies can be quite straightforward. None of 

our policies exceeds 150 total lines of code, and the essence of each policy is typically im-

plemented in at most a few dozen lines of code. This is an artifact of the policy-based nature 

of ArchTrace, as well as the generic interfaces that abstract from the specifics of the architec-

ture development environments and CM systems that are used. 

4.6. Policy triggering example 

We now revisit the example of Section 2 to describe ArchTrace’s handling of the trans-

formation from the initial scenario, shown in Figure 2, to the final scenario after the changes, 

in Figure 4. 

After the first action is performed by the developer, namely the creation of a new version 

of the Print component, ArchTrace receives an architectural evolution event. This event trig-

gers policy 9, which is responsible for copying all traceability links from the first version of 

1 public void execute(Trace trace, byte action) throws TraceAbortedException { 

2   if (action == ArchTracePolicy.REMOVE_ACTION) { 
3     ConfigurationItem ci = trace.getConfigurationItem(); 

4     if (ci.getLatestVersion().isBranch()) { 

5       throw new TraceAbortedException("Traces to configuration items in the 

6                                     trunk should persist after branching."); 

7     } 

8   } 

9 } 

1  public void execute(ArchitecturalElement ae, byte action) { 

2    if (action == ADD_ACTION) { 

3      for (ArchitecturalElement ancestry : ae.getAncestries()) { 

4        for (Trace trace : TraceManager.getInstance().getTraces(ancestry)) { 
5          ConfigurationItem ci = trace.getConfigurationItem(); 

6          Trace newTrace = new Trace(ae, ci); 

7          if (ae.getArchitecture().addTrace(newTrace)) { 

8            GUIManager.getInstance().addPolicyMessage(newTrace + " added."); 
9          } 

10       } 

11     }  

12   } 

13 } 



the Print component to the second version of the same component. After the execution of 

policy 9, both versions of the Print component have equivalent sets of traceability links. 

However, the first version is immutable, meaning that its traceability links will never change. 

On the other hand, the second version may have its traceability links evolved in the future. 

Figure 3 shows the scenario after the execution of policy 9. 

The developer performs a second action, which consists of first changing the code of Ac-

tion.java, then moving it to the Controller directory, and finally changing its name to Com-

mand.java. When this overall change is committed, an event is sent to ArchTrace, which trig-

gers policy 10, creating a new traceability link from the Toolbar component (version 1.0) to 

Command.java (version 2.0). However, the execution of policy 10 triggers policy 6, which is 

responsible for removing the old traceability link from the Toolbar component (version 1.0) 

to Action.java (version 1.0). 

Policy 10 is triggered three additional times for the same event. The second triggering of 

policy 10 tries to create a traceability link from the Print component (version 1.0) to Com-

mand.java (version 2.0). However, policy 2 denies the creation of this traceability link be-

cause the Print component (version 1) is marked as immutable. The third triggering of policy 

10 creates a traceability link from the Print component (version 2.0) to Command.java (ver-

sion 2.0). This is allowed by the pre-trace policy 2, which is triggered, but does not undertake 

action since version 2.0 of the Print component is not immutable. Because the action is al-

lowed, the creation of this traceability link triggers post-trace policy 6, which removes the old 

traceability link from the Print component (version 2.0) to Action.java (version 1.0). Finally, 

the fourth triggering of policy 10 creates a new traceability link from the Bus connector (ver-

sion 1.0) to Command.java (version 2.0). However, the execution of policy 10 triggers policy 

6 again, which is responsible for removing the old traceability link from the Bus connector 

(version 1.0) to Action.java (version 1.0). This behavior is allowed by the pre-trace policy 2, 

because version 1.0 of the Bus connector is not immutable. 

The third action concerns the interrelated evolution of the Input interface and Input.java 

source code. We stipulated in Section 2 that ArchTrace must behave in the same way inde-

pendent from the order of commit. Suppose that the architecture is committed first. In this 

case, ArchTrace receives an architectural element evolution event. This event triggers policy 

9, which is responsible for copying all traceability links from Input interface version 1.0 to 

the new, second version of the interface. This results in a traceability link from Input interface 



version 2.0 to Input.java version 1.0. Then, the source code commit triggers policy 10, creat-

ing a new traceability link from Input interface version 2.0 to Input.java version 2.0. How-

ever, the execution of policy 10 triggers policy 6, which is responsible for removing the old 

traceability link from the Input interface version 2.0 to Input.java version 1.0. Policy 10 is 

additionally triggered to evolve traceability links of Input interface version 1.0, but this action 

is prohibited by policy 2 due to the immutability of version 1.0. 

Now suppose that the source code is committed first. ArchTrace receives an implementa-

tion evolution event. This event triggers policy 10 first, which is responsible for evolving the 

existing traceability links of Input interface 1.0 to the new version of the source code. How-

ever, this action is prohibited by policy 2 due to immutability of Input interface version 1.0. 

Thus, at this stage no new links are created. When the architectural change is committed, it 

triggers policy 9, which is responsible for copying all traceability links from Input interface 

version 1.0 to the new, second version of the same interface. Still, this does not result in the 

creation of links, because the triggering of policy 9 triggers policy 1, which recognizes that a 

newer version of Input.java is available (version 2.0). It, thus, suggests the establishment of 

the traceability link to Input.java version 2.0. As one can see, through a difference sequence 

of policies, the same results are applied as when the architectural change was committed first. 

5. Evaluation 

To evaluate the effectiveness of ArchTrace and its current set of policies, we executed a 

retrospective study of an existing system. This kind of study, in which we replayed past data 

from a real development project to simulate an actual development effort involving “live” 

developers, allowed us to analyze how our tool would perform without having to actually put 

the research tool into prolonged use. In fact, we could simulate in two weeks a two-year ef-

fort. The system under study, named Odyssey, is a software development environment being 

developed at the Federal University of Rio de Janeiro since 1997. 

To perform the study, we gathered the Odyssey versioning data produced during the pe-

riod of July 9, 2003 until March 1, 2005. We used and reorganized the data to replicate the 

original check-ins that took place, and then replayed those check-ins anew into a CM reposi-

tory instrumented with ArchTrace. The result was that, during playback, we received all the 

events that would have taken place had ArchTrace been used in the first place, allowing us to 

reproduce the original scenario of development and maintenance, covering both major archi-

tectural changes and a host of source code changes. This strategy made it possible to look 



back in time and understand whether our policies would have operated properly in establish-

ing and evolving the right set of traceability links. 

The next sections detail our planning of the retrospective study, our preparation of the en-

vironment for the study, the mechanism we used to gather statistics, the execution of the 

study, and the qualitative and quantitative analysis of the results that we obtained. 

5.1. Study planning 

The study consists of four steps. The first step consists of the initial detection of the 

proper traceability links between the Odyssey architecture and its source code on July 9, 

2003. This initial set of traceability links was manually identified by Odyssey developers by 

examining the architectural definition and its realization as components, connectors, and in-

terfaces in the source code.  

The second step is the evolution of the traceability links during 20 months of Odyssey de-

velopment and maintenance. Replaying the set of check-ins that were originally performed in 

this period of development and maintenance, the initial set of traceability links was trans-

formed, step-by-step, as triggered by each check-in, into a new set of traceability links. This 

evolved set of traceability links is named Te. 

The third step consists of the detection of the traceability links that should exist on March 

1, 2005 among the Odyssey architecture and source code. This set of ideal traceability links, 

named Ti, was manually created by Odyssey developers by examining the actual architecture 

as evolved over the period of time and identifying the source files that implement each archi-

tectural element.  

Finally, the fourth step consists of the comparison of the set of ideal traceability links (Ti) 

with the set of actual traceability links produced by ArchTrace (Te). This comparison illus-

trates the effectiveness of the ArchTrace policies in evolving traceability links.  

Below, we discuss each of these steps in more detail. 

5.2. Environment preparation 

Table 2 shows some Odyssey statistics. We note that the system is non-trivial, consisting 

of over 2700 files, and that the study also represents a significant set of data with a total num-

ber of commits during the study period of 307 and a total number of revisions to individual 

artifacts (both architectural and at the implementation level) of close to 8500. 



Table 2: Odyssey statistics 

Files 2703 Repository size 40158 KB 

Revisions 8463 Total commits 307 

Unique tags 13 First revision date July 9, 2003 

Unique branches 7 Last revision date March 1, 2005 

 

At the beginning of the playback, we turned on all policies except 1, 3, 5 and 8. Policy 5 

is designed to work with branches, but the case study involved only development on the main 

trunk. Policy 3 is not designed to operate together with policies 6 and 10, as the effect is ei-

ther preventive (policy 3) or proactive (policies 6 and 10), and we chose a proactive approach 

(others may choose a more cautious route, in just using policy 3). Policy 1 and 8 are designed 

to operate in an interactive manner, at times requesting user input. We turned off any policies 

involving interactivity to avoid ourselves giving potentially “better” input than original de-

velopers would have given; our results, thus, form a lower bound of what theoretically can be 

achieved. 

5.3. Statistics gathering 

This retrospective study aims to analyze different statistics gathered from the ArchTrace 

execution. To allow this automatic gathering, we implemented a statistics gathering aspect 

(KICZALES et al., 1997) and weaved it into ArchTrace. The aspect is composed of 19 point-

cuts that collect the following 27 metrics for each of the 307 configurations: the configuration 

number, author, and date; the number of configuration items added, removed, and modified; 

the number of executions of each policy; the number of traceability links added and removed 

manually; the number of traceability links added and removed automatically; the number of 

traceability link additions and removals lost; the number of indirect traceability links added 

and removed manually; the number of indirect traceability links added and removed auto-

matically; and the number of indirect traceability link additions and removals lost.  

In this context, indirect traceability links are traceability links implicitly detected when a 

given traceability link is established to a composite artifact. For example, if a traceability link 

is established to a directory, all files and subdirectories inside this directory are also implicitly 

linked (even though no links exist since our policies handle this recursive traceability). The 

effect of losing a traceability link to a composite artifact, then, can have significant effects on 



the functioning of the policies. Hence, we monitored both direct and indirect links in our 

study. 

5.4. Study execution 

Execution of the study comprised two major steps: (1) playback of existing check-ins and 

(2) analysis of lost traceability links. The first step is performed through a tool that we explic-

itly wrote to submit, check-in by check-in, the accumulated version history of Odyssey, 

shown in Figure 17. The tool simply goes through each check-in, recreates a workspace, 

populates it with the known changes, and commits the workspace. The tool pauses after each 

step, waiting for manual confirmation that it is okay to move to the next check-in in order to 

provide time for the analyses in step two. 

 

Figure 17: Incremental check-in playback. 

The second step is performed after each individual check-in has been performed and 

ArchTrace has responded by evolving the traceability links. We then manually checked if 

there were any lost traceability links. We kept track of two kinds of lost traceability links: lost 

additions (i.e., traceability links that ideally exist, but were not added by ArchTrace), and lost 

removals (i.e., traceability links that ideally do not exist, but were not removed by 

ArchTrace). 

It is important to reiterate that the kinds of changes that we replayed were both at the 

source code level and the architectural level. Though architectural changes took place less 

frequently (as one would expect in any kind of project), the architecture of Odyssey went 

through three major releases: 1.0.0, 1.1.0, and 1.2.0. With each release, we checked in the 

architectural elements, triggering architectural element evolution policies. Generally, we al-



lowed ArchTrace to update the traceability links itself, except one time when the architecture 

evolved with the addition of four new components. An initial set of traceability links was 

established manually at that time for those components. 

5.5. Qualitative analysis 

During the 20 months of Odyssey development and maintenance, 77 versions of 21 archi-

tectural elements were created. Moreover, 3031 configuration items were added, renamed, or 

moved, 154 configuration items were removed, and 1563 modifications were applied to exist-

ing configuration items. Most configuration items were added in July 2003, as shown in 

Figure 18. This reflects the beginnings of our study. After November 2003, most activities 

were related to modifications of existing configuration items, with just a few configuration 

item additions and removals.  
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Figure 18: Configuration items evolution. 

The results of which policies were active during the study are shown in Figure 19. As ex-

pected, policies 2, 6, and 10 were used most often, as they represent responses to the normal 

evolution of configuration items (e.g., links from architectural elements are updated to reflect 

newer versions of the files). But several interesting events took place that led to the involve-

ment of other policies as well. First, during the initial detection of the proper traceability links 

between the Odyssey architecture and its source code on July, 2003, policy 8 was explicitly 

enabled to help with the otherwise manual effort of identifying an initial set of traceability 

links. While, as stated before, this problem is outside the scope of this paper, the use of policy 

8 illustrates that techniques such as data mining can be effectively incorporated in ArchTrace 

and can add value. After this initial phase, though, we disabled policy 8.  
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Figure 19: Execution of different policies. 

The second interesting even took place in November 2003, as indicated by the spike in the 

number of times policies were executed. At that time, a major reorganization of the Odyssey 

source code was performed. This significantly affected the names of packages and the loca-

tions of existing classes. Policies 6 and 10 dealt with this situation by updating traceability 

links to reflect the new organization of the source code. Figure 19 shows that only policies 6 

and 10 were needed to support the reorganization, and Figure 20 shows that those two poli-

cies automatically added and removed many traceability links while only losing a few. 
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Figure 20: Traceability links evolution. 

Policy 9, which is responsible for copying existing traceability links to new versions of 

architectural elements, was triggered on May, August, and September, 2004, meaning the 

three updates to the Odyssey architecture. Policy 2 was frequently triggered to deny the evolu-

tion of traceability links related to immutable architectural elements, since those are now 

checked in, frozen, and should no longer change.  



5.6. Quantitative analysis 

To conclude the study, we compared the set of traceability links evolved by ArchTrace 

(Te) with the set of ideal traceability links detected by Odyssey developers (Ti). Te comprises 

222 traceability links and has coverage of 638 artifacts. On the other hand, Ti comprises 235 

traceability links and has coverage of 691 artifacts. 

Figure 21 presents the summative results of the analyses, illustrating that, at the end of the 

20 month evolution, the set of traceability links evolved by ArchTrace (Te) has 12 out of date 

traceability links, affecting 113 artifacts. Moreover, 13 traceability links were lost (|Ti-Te|), 

affecting 53 artifacts due to the fact that some of the lost links pointed to compound artifacts 

(i.e., directories). Overall, ArchTrace correctly identified 89% of the ideal set of traceability 

links and traced 76% of the source code to corresponding architectural elements in the con-

text of the Odyssey project. 

 

Figure 21: Quantitative analysis summary. 

To put these figures in perspective, we borrow two metrics from the information retrieval 

field (BAEZA-YATES and RIBEIRO-NETO, 1999): precision (the fraction of retrieved 

documents which are known to be relevant) and recall (the fraction of known relevant docu-

ments which were effectively retrieved). These two metrics apply here in the sense that we 

can use precision to show the percentage of actually identified traceability links that are cor-

rect (|Ti∩Te|÷|Te|=95%; showing that 5% of the traceability links that were found are inaccu-

rate) and recall to show the percentage of ideal traceability links that were actually identified 

(|Ti∩Te|÷|Ti|=89%; showing we missed merely 11% of the traceability links that should have 

been found).  

Coverage (artifacts)
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Traceability Links
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Correctly Evolved 210 89% 525 76%

Out of Date 12 5% 113 16%
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5.7. Threats to validity 

Despite our best efforts to create an experiment free of bias, there are some aspects of the 

study that may have affect the general applicability of our results. Here, we discuss the main 

threads to validity. 

First, we observe that the study was performed over a relatively stable system and only in-

cluded data covering activities that took place after Odyssey development had been in pro-

gress for several years. It is unclear how the current set of policies would perform on a new 

project in which rapid growth in the number of artifacts and constant reorganization may take 

place, especially if the project is agile in nature. Additional study of our policies in such set-

tings, and potential development of additional policies, is necessary to broaden our results to 

such projects. 

Second, the study is retroactive in nature. On the one hand, this is a strength, as it ana-

lyzes an actual sample of a development project without interference of the researchers. On 

the other hand, the developers were not exposed to the benefits and potential drawbacks of 

ArchTrace, and hence their behavior in evolving the artifacts may not accurately reflect what 

they would have done had ArchTrace been available. A second study with developers actively 

using ArchTrace is necessary to understand whether or not our results hold, particularly as to 

whether developers are capable of selecting the “right” policies.  

Third, two of the researchers were involved in the development of Odyssey and were re-

sponsible for establishing the initial and ideal sets of traceability links. We therefore turned 

off all interaction of the policies with the researchers, so not to provide better input than other 

developers would have provided. By the same token, wrong guidance by actual developers 

could have seriously hampered effective operation of ArchTrace. Again, further study with 

interactive policies and developer responses is needed. 

Finally, a threat exists in that our policies thus far do not exercise all scenarios of software 

evolution. Specifically, we do not cover branching. We believe this is not a serious threat, as 

an informal examination of this problem gives us confidence we can develop additional poli-

cies that will appropriately address branching. Thus, not covering branching is a limitation of 

the policies thus far, and not of the approach. 

5.8. Final remarks 

The data shows that ArchTrace largely operated correctly, even during the reorganization 

of Odyssey. Traceability links to one directory were lost, however, during this step. This 



problem occurred because of an interesting situation: a directory was erroneously deleted dur-

ing the reorganization and had to be reintroduced some revisions later. Not surprisingly, this 

is a situation with which ArchTrace currently cannot deal. We note, however, that the trace-

ability links of the old versions were fully available, so it would be easy for the developer to 

reestablish them by hand. Another option would have been to create a new implementation 

evolution policy that detects when a user tries to remedy an erroneous deletion and then 

automatically reinserts the previously existing links.  

At other times, some traceability links were lost when new artifacts were introduced com-

pletely out of context of the existing artifacts. In this situation, data mining policies are also 

not useful because brand new artifacts do not have historical information to be analyzed. A 

possible solution to address this problem is the construction of a policy that employs informa-

tion retrieval techniques (DE LUCIA et al., 2004) or syntactical analysis (BRIAND et al., 

2003) to detect traceability links. These techniques do not depend on the history of an artifact, 

so they have the potential to enhance the current set of policies. 

It is important to note the interplay between pre-trace and post-trace policies. It would be 

possible to implement the same kind of functionality using only pre-trace or only post-trace 

policies, but doing so would lead to much duplication and context checking across policies. 

Particularly, each of our pre-trace policies would need to be replicated in every existing post-

trace policy, or each of the post-trace policies actions would need to be selectively included in 

some of the pre-trace policies, neither of which is a desired solution. The approach of separate 

pre-trace and post-trace policies, which dynamically collaborate as needed, is a more elegant 

solution that integrally promotes reuse and separation of concerns.  

6. Related work 

Some approaches integrally combine the architecture definition with the source code, 

avoiding the need for traceability links. For instance, ArchJava (ALDRICH et al., 2002) en-

hances the Java programming language with special keywords to integrate an architecture 

description inside  the source code. Similarly, XDoclet (WALLS and RICHARDS, 2003) 

uses source code annotations to define EJB components. Clearly, these kinds of approaches 

have their value. However, many situations require architectural representations separate from 

the source code (OMMERING et al., 2000; KRUCHTEN, 2001). In these situations, our ap-

proach represents an important contribution.  



In the traceability research area, existing approaches are mainly concerned with traceabil-

ity detection. For instance, De Lucia et al. (2004) employ information retrieval techniques to 

detect traceability links from source code to use cases and test cases. While useful in and of 

themselves, for our problem they are inadequate. At best, it is necessary to rerun the entire 

algorithms to redetect proper traceability links. Because this ignores any previous informa-

tion, the results obtained are typically not as strong as one would with ArchTrace. Nonethe-

less, we view this technique complementary to ArchTrace and believe this kind of approach 

can be used together with ArchTrace, helping to detect initial traceability links that will sub-

sequently be evolved using ArchTrace.  

Work in the consistency checking research area helps to detect inconsistencies among dif-

ferent software representations. Reiss (2002), Nentwich et al. (2003), and Abi-Antoun et al. 

(2005) map specific representations of software artifacts into a generic representation: rela-

tional database, XML, and tree structured data, respectively, and then allow the construction 

of syntactical constraints among these representations, such as well-formedness rules and 

direct transformations. ArchTrace differs from these approaches. First, ArchTrace is a proac-

tive tool, which evolves traceability links due to changes in software artifacts, not only report-

ing but also trying to avoid possible inconsistencies. Moreover, ArchTrace uses the history 

dimension to detect the evolution of traceability links over time. Finally, ArchTrace deals 

with architectural elements, which are coarse grained and cannot have all their traceability 

links directly detected via syntactical constraints. Nevertheless, we once again believe that 

these approaches can work together with ArchTrace, reporting syntactical inconsistencies 

between architectural elements and source-code elements, i.e., helping to detect when the 

automated policies may have done something wrong. By utilizing these techniques in some 

constraint policies, thus, we believe our approach can be made more powerful. 

The research area of hypertext can be useful as an infrastructure for our work. This re-

search area contributes mechanisms to manage the versioning of links among objects, such as 

Chimera (ANDERSON et al., 1994) and Molhado (NGUYEN et al., 2004). Instead of storing 

the links in xADL 2.0, we could store them in a hypertext tool. However, by themselves these 

tools are not sufficient to address our problem as they lack the policy-based enactment that is 

at the heart of ArchTrace. 



7. Conclusions 

This paper has presented a new approach for managing the evolution of traceability links 

between a software architecture and its implementation. Existing traceability approaches have 

focused on creating one-time snapshots of traceability links. While useful, the next problem is 

to evolve these snapshots. This is the focus of the work presented here: policy-based evolu-

tion of traceability links. The idea is that, by staying in lockstep with architectural and source 

code changes, it is much easier to solve small incremental problems of maintaining traceabil-

ity. Through its policies, this is exactly what ArchTrace does – and it achieves high-quality 

results in both precision and recall. 

While promising as a new kind of technique for managing the evolution of traceability 

links, our work to date also highlights that additional work remains to be done. First and 

foremost, we recognize that achieving 100% precision and 100% recall is the ultimate result 

to be achieved by ArchTrace. This, however, may or may not be unrealistic. On the one hand, 

no set of policies can anticipate every single potential change made in every single situation 

by every single developer. On the other hand, however, this is perhaps also not needed: it is 

merely necessary to be able to match as closely as possible the working style and conventions 

of a group of developers. This is a much smaller problem, and becomes one of having a suffi-

ciently broad set of policies available and providing developers strong guidance in selecting 

the policies appropriate for them. Through the building of a policy portfolio and further em-

pirical studies, both retroactive and active (i.e., in a live development setting), we plan to 

build an understanding of whether ArchTrace can be made an effective and reliable solution 

for traceability management in the face of evolution and indeed provide the necessary guaran-

tee that its resulting sets of traceability links do not contain false positives or false negatives. 

Another focus of our future work concerns conflicting policies. Currently, the user is re-

sponsible for ensuring they choose a set that does not conflict. If they happen to choose a con-

flicting set of policies, ArchTrace cannot guarantee its results and may even exhibit race con-

ditions or infinite loops. To address this issue, we plan to research the use of meta-policies, 

which act as arbitrators, and build analyses that can determine, at the moment of their activa-

tion, whether policies conflict. 

An additional issue that we would like to address is branching. Policy 5 was designed to 

avoid interference of versioning actions on branches with respect to the main line of devel-

opment. This, however, represents merely a first step. While we can support keeping branches 



isolated, we still need to support the creation of branches and the explicit merging of branches 

into the main line of development. 

Finally, we mention that the long-term goal of our work is not just to maintain traceability 

links, but to put these traceability links to good use. While an accurate trace is of help to hu-

mans in understanding the system at hand, it is also a first step towards automation of various 

processes at the architectural level of abstraction. Our specific efforts will focus on architec-

ture-based build and release mechanisms, allowing a developer to drive the build and release 

process from the architectural specification. In today’s world of component-based software 

development, these two processes are particularly critical and suited for a new architectural 

slant. 
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