
Framing Software Design with the Design Diamond
Alex Baker and André van der Hoek

Institute for Software Research & Department of Informatics
University of California, Irvine

Irvine, California 92697-3440, U.S.A.
+1 949 824 6326

{abaker, andre}@ics.uci.edu
ISR Technical Report # UCI-ISR-06-11

July 2006

ABSTRACT
Software engineering researchers and practitioners have long had
an uncertain and uneasy relationship with design. It is acknowl-
edged that software design is critical and major strides have been
made in advancing the discipline, but we all are keenly aware that
something “just is not quite right” and that design remains one of
the least-understood aspects of software engineering. This paper
contributes the DESIGN DIAMOND, a new framework that examines
software design from the novel perspective of the individual soft-
ware designer. Taking this perspective turns the DESIGN DIAMOND
into an unbiased instrument to view software design and allows us
to compare the ways in which software design is typically posi-
tioned, evaluate the field’s contributions to date in supporting the
practice of software design, and lay out a comprehensive research
agenda for improving the state of the art.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques –
computer-aided software engineering; D.2.9 [Software Engineer-
ing]: Management – life cycle; D.3.2 [Programming Languages]:
Language Classifications – design languages.

General Terms
Design.

Keywords
Design, software, software design, design diamond.

1. INTRODUCTION
Design has long been recognized as having a critical role in soft-
ware engineering. With the ever-increasing size and complexity
of the software systems we develop today, this role has certainly
not diminished. The quality of a design can make the difference
between a software system that is successfully developed, de-
ployed, and used, and one that fails utterly somewhere along the
way.
Given this critical role, it is no surprise that the software engineer-
ing literature is brimming with a multitude of proposals and opin-
ions regarding design approaches, modeling notations, evaluation
techniques, and other innovations, experiences, and ideas. To
date, though, this otherwise healthy debate largely has taken place
without a proper frame of reference. Granted, it is certainly possi-
ble to discuss modeling notations in terms of expressiveness or
verifiability. Similarly, one can contrast design environments in
terms of the features supported or design metrics in terms of the

concerns addressed. But once one crosses such individual “pillars
of knowledge”, our overall understanding of software as a design
problem, and consequently our ability to effectively reason about
any solutions, becomes much murkier.
What are the factors at play in software design? How do these
factors influence our current approaches? As a field, where are we
excelling and where are our efforts falling short? What are the
most promising avenues for improving software design? Are our
contributions all working towards a common goal, or are there
differences that render some approaches and ideas essentially
incompatible? What, in fact, should be our goals?
All of these are critical questions that demand answers. Many
such answers have indeed been provided, but they have typically
been rooted in highly individual perspectives of an ideological,
theoretical, or practical nature. The result is a melee of facts,
opinions, and beliefs, some of which agree, others of which ve-
hemently disagree, some of which offer valuable wisdom, others
of which miss the boat completely. While this works to some
degree in slowly advancing our understanding of software design
and improving our ability to practice it, it is not a sign of a mature
discipline and not the most productive way of moving forward.
To promote effective discourse and attain measurable progress,
the discipline of software design reach a state in which one can
position, relate, and judge individual contributions to its literature
within a common understanding of software design’s nature.
As a first step into this direction, this paper contributes the DESIGN
DIAMOND, a novel framework that offers a new, holistic perspec-
tive on software design. The DESIGN DIAMOND identifies seven
dimensions of concern (domain of materials, domain of use,
knowledge, ideas, representation, activity, goal) and four types of
relationships (manipulates, informs, captures, and enhances) that,
together, define the elementary forces at work in a design process.
We identified these forces based on a deep exploration of design
as it is practiced across a variety of disciplines consulting numer-
ous texts from a variety of design fields (e.g. [1, 2, 13, 16, 25]).
As such, the DESIGN DIAMOND distinguishes itself from previous
attempts at characterizing software design as follows:

• It is design centric, not software centric. We want to ensure
that our notion of software design is aligned with other no-
tions of design. That is not to say that software should be de-
signed in the same way as automobiles or teacups. Rather, it
is to say that many of the forces at work when software is
designed are the same forces that are at work when other
products are designed. Only when we first recognize these
forces can we support them according to the unique needs of
software.

• It is designer centric, not lifecycle or artifact centric. One
challenge of discussing software design is that its role is de-
fined differently in different software lifecycle models. Each
model delineates its own design tasks, its own inputs to be
utilized, and its own design artifacts to be created. If one
model’s assumptions are adopted, the conclusions drawn
may not apply to projects that utilize other models. Accord-
ingly, we will decline allegiance to any particular lifecycle
model or design artifact here, and instead attempt to consider
the essential act of designing a software solution. In particu-
lar, we will seek to understand the needs of software design-
ers themselves, and the challenges inherent to solving soft-
ware problems. This lifecycle-neutral perspective will give
our observations the widest possible scope, and allow us to
comment on the lifecycles themselves in an objective way.

An important contribution is that the DESIGN DIAMOND embraces
existing general design theories. These theories are represented as
facets in the DESIGN DIAMOND, covering relevant subsets of the
dimensions of concern and their relationships. Throughout the
paper, these facets will be the primary vehicle through which we
will study the DESIGN DIAMOND.
As with any framework, the value of the DESIGN DIAMOND lies in
its application. Our model provides some degree of insight
through its identification of design dimensions and their relation-
ships, but we must also recognize the opportunity for analyzing
software design in detail and deriving recommendations for fur-
ther research. This paper, then, is organized in two halves. The
first half introduces the DESIGN DIAMOND, its structure, and its
relationship to general design theories. The second half applies it
in three different ways. Particularly, we use it to: (1) examine
current choices of positioning design in the software development
process, (2) evaluate existing approaches’ ability to support soft-
ware design, and (3) identify promising research directions for
advancing the discipline.

2. DEFINING DESIGN
In any profession where creative thought is needed to devise solu-
tions to problems, design occurs. An architect may be tasked with
designing a building, or a fashion designer with the year’s fall
wardrobe. Beyond such obvious examples though, whether con-
sciously undertaken or resulting as a side effect of a broader goal,
design permeates much of human endeavor. A department store
manager must design schedules, organizing the time constraints of
various employees and devising an optimal set of shifts. And the
layout of such a store’s merchandise must be designed to maxi-
mize purchases, while also accommodating fire exits, advertise-
ment visibility, and the store’s aesthetic.
But given this breadth of endeavors, what exactly is design?
Many definitions have been put forward, some of which we list
here:

• “The imaginative jump from present facts to future possibili-
ties” (Page [17]).

• “The optimum solution to the sum of true needs of a particu-
lar set of circumstances” (Matchett [14]).

• “Initiating change in man-made things” (Jones [10]).

• “To conceive or plan out in the mind” (Merriam-Webster).

It is interesting to observe that, while these definitions all aim to
define the same term and have similar undertones, they really are
not all that similar in their meaning. Careful study of the defini-
tions reveals that each illustrates a different aspect of design, as
rooted in the perspective taken by each author. This indicates that
design indeed is a multi-dimensional concept. We therefore re-
frain from adopting a particular definition of design in this paper,
preferring to let our DESIGN DIAMOND and its explanation deline-
ate what we consider design and what we do not consider design.
This decision is not meant to diminish the value of the definitions
provided above. On the contrary, each has provided important
insight into an aspect of design, and has helped to guide the con-
struction of our model.
Nonetheless, the word “design” is used throughout this paper and
must exhibit a clear meaning. Our use will be threefold:

• The activity. “Design” may refer to the act of designing, the
endeavor that designers undertake.

• The artifact. “Design” may refer to the tangible artifact that
is the result of a design process.

• The discipline. “Design” may refer to the broader notion of
design as a field of study with its practices, understandings,
and conventions.

Where the context of our use of “design” may be ambiguous, we
will affix the appropriate term to clarify its intended meaning.

3. THE DESIGN DIAMOND
To create the DESIGN DIAMOND, we began with a conceptual step
back. Instead of immediately delving into software design, we
spent over a year studying design literature that explicitly was not
related to software. We examined general design theories, design
principles in various fields, design approaches in other fields,
numerous examples of specific designs and properties of those
designs, and generally attempted to reach both a broad coverage
of the many sides of design. Only then did we return to the soft-
ware design literature at large.
Throughout, we identified essential differences among the various
design domains, as well as common themes, shared concerns,
applicable metaphors, and several other kinds of evidence that
would help us understand the nature of design. The result was a
broad set of individual observations, to be put together in one
form or another. By organizing these observations, we gradually
converged on the DESIGN DIAMOND that is presented in this paper.
We note that, because of the process followed, the DESIGN DIA-
MOND is not specific to software. In fact, we believe it can be used
to study any kind of design. But we will not defend or further
justify the DESIGN DIAMOND’S generality here, instead focusing
on its use to help study and understand software design itself.
Figure 1 illustrates the DESIGN DIAMOND in its entirety. It consists
of seven dimensions of concern (domain of materials, domain of
use, knowledge, ideas, representation, activity, and goal) and four
types of relationships (manipulates, informs, enhances, and cap-
tures). These dimensions and relationships, together, form the
basis with which we define the elementary forces at work in a
design process. In the remainder of this section, we discuss first
these seven dimensions of concern and then the four kinds of
relationships that tie these dimensions of concern together.

3.1 Dimensions of the DESIGN DIAMOND
The DESIGN DIAMOND considers design from the perspective of an
individual software designer. By being neutral with respect to the
particular development approach to be followed and the design
artifacts to be created, the DESIGN DIAMOND allows us to under-
stand how these factors influence the actual task of designing. We
should also note that designer to designer communication is not
addressed directly as a dimension in our model. Rather, as we
discuss in Section 4, we consider communication to be a facet of
our model, which involves several other basic elements of design.
Below, we precisely define each dimension of concern, provide
an intuitive explanation, and include a few examples of the kinds
of elements one typically will find in that dimension.

• Goal (GL): objectives that frame a design problem. Any de-
sign process starts with an initial goal that frames the prob-
lem to be addressed. Such a goal may be intentionally vague,
incredibly precise, singular, composed of numerous sub-
goals, explicitly written down, hidden in unstated expecta-
tions, driven by external parties, or set by a designer them-
selves. The canonical example for software design is a re-
quirements document, but other examples include a contract,
an open source developer setting a goal for themselves to
improve the structure of an existing piece of code, or an ex-
pectation that a newly designed and implemented web appli-
cation indeed leads to increased sales.

• Activity (ACT): acts that contribute to the crafting of a de-
sign solution to a design problem. A design does not appear
out of the air, but is the result of actions that the designer un-
dertakes to progress towards a desired design solution. Such
actions may include brainstorming, creating a UML class
diagram, evaluating a prototype, starting over, sitting and
pondering, generating alternatives, or performing research in
the problem domain. Note that not every action directly re-
sults in a design artifact; many actions are peripheral and
serve to prepare the designer for other, more concrete, tasks.

• Ideas (ID): individual understanding of a design problem
and its solution. Throughout the design process, the designer
builds up and refines an understanding of the design problem
and its solution. This understanding is intangible, consisting
of some set of ideas existing inside the mind of the designer.
These ideas can be vague intuitions, firm decisions, relations
among ideas, thoughts on possible directions, rationale, pref-
erences, facts, recall of previously-visited alternatives, and

so on. A software designer’s ideas might resemble “we
should use a pipe and filter architecture on this project”,
“that proposed solution will not scale up”, “the customer said
this, but from user studies I know that it is not quite true” or
more abstract mental images of the program’s eventual op-
eration.

Figure 1. The DESIGN DIAMOND.

• Representation (REP): expression of an understanding of a
design problem and its solution. A representation gives form
to an understanding that a designer has of a design problem
and its solution. That is, it takes the intangible ideas and ex-
presses them in some kind of design notation, broadly de-
fined to include forms such as a sketch, a memo, a diagram,
a whiteboard drawing, a narrative, a sequence chart, a spo-
ken conversation, or a high-level architectural description.
The ways in which a given idea can be expressed vary
greatly depending on the notation chosen, as different nota-
tions can be more or less suited to specific design situa-
tions.TP

1
PT

• Knowledge (KN): individual wisdom about design problems
and their solutions. In addressing a particular problem, a de-
signer draws upon and is guided by their experiences, judg-
ments, results, and insights that they have amassed over
time. As compared to ideas, which only relate to the design
problem at hand, knowledge represents the broader wisdom
that a designer possesses about designing in a given general
context. Examples of knowledge include familiarity with
some architectural style, the experience of designing multi-
ple large databases and the intangible intuitions and insights
that come with that experience, and knowing that a certain
design structure is suitable for software that needs to be
highly reliable.

• Domain of Use (DOU): collective wisdom about design
problems and their solutions. An individual seeking to im-
prove their knowledge of design can often do so by studying
the collective wisdom of a design field. All software design-
ers have knowledge that may benefit others and ideally that
knowledge should be readily available for others to utilize.
This collective wisdom is generally not reported in “raw”
form, but typically is summarized, coalesced, and organized
in books, catalogues, standards, educational materials, con-
ferences, folklore, online resources, and so on. Examples are
the OSI seven layer network model, the Design Patterns
book [7], and the numerous, collected rules to keep in mind
when designing user interfaces [23].

• Domain of Materials (DOM): collective wisdom about the
resources available to implement design solutions. Designers
cannot work purely in terms of abstract ideas, but always
must keep in mind the materials which will be used to realize
their design. A building designer uses their knowledge of
materials such as steel, wood, concrete, and bamboo in de-
signing a house. Analogously, software designers should
consider the available resources for implementing a design,

1 “Representation” sometimes is used in the literature to refer to a

design notation. In this paper, we use the convention that a rep-
resentation is a specific design expression (i.e., a UML dia-
gram, a conversation, a sketch) in a given generic design nota-
tion (i.e., UML, English language, paper and pencil).

such as programming languages, web protocols and standard
tools, user interface generators, and databases.

3.2 Relationships in the DESIGN DIAMOND
In constructing the DESIGN DIAMOND, it rapidly became clear to
us that the individual dimensions of concern were related to each
other in a variety of different ways. These relationships have been
distilled down to the four described here, which together help
shed light on the forces at work when one designs.

3.2.1 The Manipulates Relationship
Whenever design progress is made, some sequence of actions is
responsible. The manipulates relationship of the DESIGN DIAMOND
(shown in Figure 2a) indicates where the effects of this process
are felt. The first two such relationships are straightforward: our
ideas and representations are continuously manipulated through-
out the entire design process to record our progress as intangible
thoughts and tangible expressions, respectively. The third rela-
tionship, from Activities to Goal, corresponds to the augmenta-
tions, shifts, refinements, and even outright restatements of the
initial goal that one set out to satisfy. Enacting such shifts may be
difficult if the initial goal was set by another party, but such oc-
currences nonetheless take place.

3.2.2 The Informs Relationship
The informs relationship, shown in Figure 2b, illustrates the flow
of information that helps a designer in performing their tasks. The
six arrows can be partitioned into a group of four direct influences
and a group of two indirect influences. The direct influences all
effect the activity dimension (from Goal, Knowledge, Ideas, and
Representation, respectively), representing the four sources that
shape a designer;s next steps. First, the designer clearly must keep
their overall goal in mind; after all, this represents the impetus for
designing in the first place. Second, the designer is guided,
whether consciously or unconsciously, by their amassed knowl-
edge and experience. This permeates one’s thinking process, and
thoughts from the past often become interwoven with ideas re-
garding the current project. Third and fourth, any ideas and repre-
sentations that are generated over the course of a project play a
vital role in informing the activities that will be taken next.
The two indirect informs relationships represent the individual
designer’s process of learning from the Domain of Materials and
the Domain of Use. Because of this learning, the decisions that
the designer makes will be influenced, indirectly, by the commu-
nity’s concept of good practices and judgment. In this way, the
work of the community as a whole can often achieve a level of
consistency and quality, built on the strength of its shared do-
mains.

3.2.3 The Captures Relationship
The captures relationship, shown in Figure 2c, explains where and
how project-specific dimensions are obligated to one another and
how these obligations create challenges within the design process.
The first relationship, from Ideas to Goal, reflects that most ideas
that are generated by a designer must, in one way or another,
address the goals that they set out to achieve. The second relation-
ship, from Representation to Ideas, reflects that any design ex-
pression must be faithful to the ideas in the designer’s head. To-
gether, these two relationships highlight one of the traditional
difficulties in software engineering: a final representation of a

design must be in accordance with its goals, but this is a two-step
process, with ideas being generated in between. Often, this is a
source of serious inconsistencies.
The third and final captures relationship is from Representation to
the Domain of Materials. This relationship states that, in order for
a design to eventually be successfully implemented, it must be
faithful to the materials that are used in the design. If the design
makes assumptions that are not accurate (for instance, that a Java
interpreter will be able to execute a module at a certain speed or a
module can be implemented in a certain way), the design will be
of limited value to those tasked with implementing it.
The two captures relationships originating from the Representa-
tion dimension indicate another fundamental tension that under-
lies software design: the closer a design notation allows a de-
signer to approximate the final implementation in its representa-
tion, the more difficult it usually is to verify whether the design
adheres to its stated goals. Conversely, the closer the design is to
its high-level goals, the more difficult the translation step to an
actual implementation will be. Because of the large cognitive
distance between the goals of a software project and its imple-
mentation, this is a significant problem, as reflected in the regular
use of multiple design notations (e.g., first modeling an architec-
ture and then refining it into UML).

3.2.4 The Enhances Relationship
The previous three types of relationships have illustrated ways in
which an individual design project is influenced. Shown in Figure
2d, the enhances relationship complements these three types of
relationships by explaining how experience gained during the
design process filters back “up” for later use. This begins when-
ever a designer performs an activity, since they may learn some-
thing that has applications beyond the design problem at hand. It
continues when the build-up of a designer’s internal knowledge
culminates in insights that are useful to the rest of the community.
In such cases, a developer may take explicit action to publicize
their knowledge and make it flow up to the Domain of Materials
or Domain of Use. This reverse learning process is a critical proc-
ess for our community and we return to the topic in Section 4.
It is worth noting that there is not a similar arrow connecting Rep-
resentation to Knowledge or Ideas to Knowledge. Such learning is
highly dependent on the activity undertaken. A project’s UML

Figure 2. Four Types of Relationships.

diagrams do not directly contribute to a designer’s broader knowl-
edge, but they inform an activity such as “reading”, “discussing”
or “reflecting”, through which the actual learning occurs..

4. DESIGN THEORY: FACETS
The broad field of design has been studied by a number of authors
in the hopes of establishing general theories of design. While such
theories are not abundant, there are several well-known, important
generalizations that apply to software design as readily as to other
sorts of design. In this section, we introduce these theories and
show how they are captured by the DESIGN DIAMOND as facets,
each of which pertains to a subset of the dimensions and relation-
ships that define the DESIGN DIAMOND. These facets are depicted
in Figure 3 below, where the dimensions and relationships that are
most relevant to each facet are highlighted.
The Reflective Conversation with Materials facet and the Activity
Type facet describe existing theories outright. Additional applica-
ble theories and ideas were grouped together into three other fac-
ets: Pure Thought, Team Communication, and Community.
Below, we discuss each of the facets, beginning with the thoughts
in the head of an individual designer and then moving outwards,
exploring an individual’s use of representations, team communi-
cation, and finally the growth of design communities. Each facet
is explained generally; we defer most comments about software to
Section 6, where we use the facets to evaluate software directly.

4.1 Pure Thought
The Pure Thought facet, shown in Figure 3a, describes the most
primal of design activities, the purely mental generation, organi-
zation and evaluation of ideas [10]. Nearly every established de-
sign activity recommends the use of a representation, other peo-
ple, and outside sources of knowledge. Underlying these activi-
ties, however, is a cycle of thought that is subconsciously fueled
by a designer’s own knowledge and understanding of the project’s
goals. This cycle, in essence, represents the creative aspects of
design as it is here that new thoughts are born, existing ideas re-
fined, and old ideas retired as needed. We note also that this proc-
ess distinguishes strong designers from weak designers: the strong
designer is capable of generating and understanding ideas much
more quickly than a weaker colleague.
The most powerful external influence on a designer’s thoughts,
however, is a project's goals. If these goals are well-formed, con-
cise, and intuitive, a designer is more likely to be able to make
useful intellectual progress towards a design solution.

4.2 Reflective Conversation with Materials
A designer can rarely work out an entire design in their mind and
then simply commit it to paper and call their job done. The com-
plexity, scale, and unpredictability involved are all factors that
may require a designer to record their ideas along the way. The

act of recording helps the designer to internalize understanding
[6] and creates a record for later consideration. This, in turn, al-
lows them to move on to other ideas and lines of thinking, without
trying to keep the entire problem and solution in their head [24].
But beyond acting as a simple repository of ideas, representations
can help to generate new ideas. This facet draws its name from
the work of Donald Schön, who described the way that designers
can create a representation, observe it, and gain a new understand-
ing of the design problem and solution [21]. For example, a
graphic designer might create a sketch of a logo and evaluate
what aspects of it “work”. Based on such observation, a de-
signer’s ideas about the design problem or solution may shift, and
an updated representation might be created. Schön calls this inter-
play a reflective conversation with materials; its place in the DE-
SIGN DIAMOND is shown in Figure 3b.
The choice of design notation is critical to this process, in two
different ways. First, a design notation must be simple and fast
enough to use, so a designer can enter a state of flow, as described
by Csikszentmihalyi [4]. Schön described this ideal design state
as one of reflection in action, when the creation of a design and
thought about it are intertwined.
While remaining easy to use, a design notation should also estab-
lish a connection to its Domain of Materials, when possible. Such
a connection allows the designer to create a representation, imag-
ine the final product that it suggests, and adjust the representation
accordingly. Establishing this connection while maintaining ease
of use creates a difficult tension, but is important for a design
field to address. Furthermore, because the needs of a designer will
change over the course of a design process, it is important that a
field reach beyond a single design notation and provide an appro-
priate variety of notations that can be used as needed.

4.3 Team Communication
While the previous two facets dealt with a single person’s journey
towards a design solution, design is often a collaborative activity.
The Team Communication facet, shown in Figure 3c, focuses on
the sharing of ideas among designers. This sharing does not occur
directly, but through intermediate representations such as spoken
words, sketches, prototypes, and full-size models. Considerations
for choosing a means of communication are similar to those pre-
sented in the Reflective Conversation with Materials facet. A
representation must effectively reflect the ideas that the designer
has in mind and it must be easy enough to create so that the ideas
can be intuitively expressed. Of course, the recipient also needs to
be able to understand the ideas being represented effectively, and
without undue frustration.
The difficulty of achieving this understanding largely depends on
the knowledge that is shared by the communicating designers. If
two designers have no common background, no shared knowledge
of the product, and do not know each other personally, a great

Figure 3. The Design Diamond’s Facets.

deal of detail must be specified in a representation if an idea is to
be correctly conveyed. But if there is extensive shared back-
ground between them, details can be abstracted away, correct
assumptions made, and the design ideas much more easily com-
municated. The effect of such shared knowledge can be profound.
For example, an email reading “ObjectManger is now a god
class” may suffice in situations where a shared understanding
exists, but otherwise a full and carefully-explained class diagram
might be needed.
Finally, we note that the activity that guides the use of a represen-
tation can strongly affect its usefulness in communicating ideas.
For example, if the creator of a diagram is present when it is be-
ing used, a discussion can serve to clarify ambiguities. Or if a
representation is being created by several people at once, their
shared familiarity with the intermediate forms they create can
help them to understand it when it is passed around in an evolved
form later.
As with the Reflective Conversation with Materials facet, the
Team Communication facet introduces a tradeoff. When commu-
nicating, one must consider the recipient of those ideas as well as
the nature of the ideas themselves. An appropriate representation,
and thereby an appropriate design notation in which to express it,
should be selected from a well-developed suite of alternatives.

4.4 Activity Type
A different way of examining design is provided by Jones, who
describes design in terms of divergence, transformation, and con-
vergence [10]. Divergent activities revolve around gaining an
understanding of the problem, generating ideas, and exploring the
solution space. Once the solution space has been explored, trans-
formative design seeks to understand it. This may involve synthe-
sizing basic ideas into higher-level principles about the design at
hand. Finally, convergence focuses on using this understanding to
make actual decisions, choose between alternatives and generally
hone in on a final design. It should be noted that the ordering of
these categories is not absolute. A design process might, and most
often will, consist of many iterations, some with “mini” iterations
within. Or the process might simply flit capriciously between
divergent, transformative, and convergent tasks.
Shown in Figure 3d, the Activity Type facet illustrates the chang-
ing roles of ideas, representation, and activity as a design process
progresses. During divergent tasks a creative flow of ideas is es-
sential. Easily-created representations are desirable, even if they
are not tightly bound to the final product. And when one is com-
municating with others during a divergent task, every detail of an
idea need not be conveyed, as long as the kernel of the idea is
present. Brainstorming activities, for example, place an emphasis
on lightweight communication with others [11].
Transformative tasks involve bringing order to the design project,
finding patterns and breaking design problems into sub-problems.
This may involve the use of matrices of design considerations, the
writing of specifications, or simply conversations about the design
problem. In these cases, one must carefully select the design nota-
tion to be used such that the appropriate level of abstraction can
be achieved and pertinent elements of the design can be empha-
sized. Through such approaches, the patterns that a designer is
seeking can more easily emerge.
Finally, convergent tasks involve the resolution of final design
decisions, helping to hone in on an optimal (or at least desired)

solution. Sometimes the effects of the design decisions are very
tightly interwoven, such that their combined result can be difficult
to predict. In these cases, representations with a high degree of
fidelity to the final product can be useful for understanding which
solutions are effective, even at the cost of ease of creation. Formal
proofs, systematic testing, and checklists represent examples of
useful convergent tools [10].

4.5 Community
The final facet, Community, is shown in Figure 3e and represents
processes that happen outside of an individual design process, but
which are vital to the success of a designer nonetheless. Virtually
every design process involves some element of uniqueness, but
there is also a current of recurring dilemmas, common situations,
and general wisdom which can help a designer in their everyday
tasks. As discussed in Section 3.1, this wisdom resides in the Do-
main of Materials and the Domain of Use. With both domains, the
challenge lies in the discovery, accumulation, and dissemination
of information, which can be arranged on a scale of specificity.
Very specific insight may be extremely helpful, but only in lim-
ited situations. Moreover, a sea of detailed nuggets of insight can
be very difficult to navigate; even if useful advice exists, it may
be impossible to find. On the other hand, broadly applicable rules
can be widely used, but risk being too general to be truly useful,
and are subject to exceptions or oversimplifications.
An entire paper could be dedicated to the nuances of growing
community knowledge, but from the designer’s perspective, it is
important that the information that they need can readily be dis-
covered and accessed. Moreover, they should have the opportu-
nity to contribute their own knowledge to that of the community,
so to not just be a beneficiary but a contributor as well.

4.6 Summary
Examining the five facets side-by-side, it becomes clear that there
is tremendous pressure on the approaches and technologies that
one uses to design. Representations and activities fulfill multiple,
roles that vary widely, and sometimes conflict. Ideas are crucial,
but are dependent on an intricate interplay of goals, knowledge,
activities, and a reflective conversation with materials. The Do-
main of Materials and Domain of Use can be of tremendous
value, but are difficult to construct. Other such tensions and
forces abound. It is no surprise, then, that software design is such
a challenging venture.
This does not mean, however, that we cannot make progress as a
discipline. Quite the contrary, it is our belief the DESIGN DIAMOND
helps us identify where we have done well, where we have fallen
short, and how to approach the way forward. We do so in the next
sections, first using the DESIGN DIAMOND to position current ap-
proaches to software design and then using it to highlight promis-
ing avenues of research that address some of our pertinent needs.

5. POSITIONING SOFTWARE DESIGN
One of the reasons that our field has so much difficulty discussing
software design is a lack of consensus about what the phrase “de-
sign” means in a software context. Different tools, lifecycles, and
philosophies imply different “design activities”, different “design
products” and different roles for design-oriented thought. But
without a common framework, it is difficult to clearly contextual-
ize and articulate these difficulties. In this section, we illustrate

how the DESIGN DIAMOND helps do so. Particularly, we will ex-
amine several leading perspectives on how software design fits in
the overall lifecycle. This is by no means intended as an exhaus-
tive examination of the field, or as a way of supplanting existing
design perspectives. Rather, we want to show how the DESIGN
DIAMOND provides a context in which different perspectives can
be considered. This will give us the means to point out each per-
spective’s focus and clarify the ways in which they agree and
differ.

5.1 Waterfall Model
The Waterfall model presents a good starting point for our discus-
sion as it directly prescribes a “design phase”, and regards this
design phase as containing most, if not all, of the process’s design
thinking. The design problem is articulated in a detailed require-
ments document, and the result of the design process is expected
to be a plan for implementation. Purists, indeed, think of the re-
quirements as a complete, abstract specification of “what is
needed”, push all consideration of “how can it be realized” into
the design phase, and consider the rest “the rote task of program-
ming out the design”.
From the perspective of the DESIGN DIAMOND, the Waterfall mod-
el primarily addresses the “captures” relationships. Its recommen-
dations serve to ensure that the large cognitive distance between
the expression of a goal as a requirements document, and the re-
alization of the goal in some set of programming languages and
tools from the Domain of Materials, is bridged. One of its
strengths is that it advocates using a separate design notation to
express design ideas. Because it is a high-level approach, the
Waterfall model does not specify many detailed design activities
to be performed, but it does draw attention to the need for verifi-
cation of each step along the way, explicitly calling out the role of
the “captures” relationships of the DESIGN DIAMOND.
Paradoxically, the Waterfall model both recognizes and disre-
gards the role of the more creative aspects of design. On one
hand, the original concept of the waterfall model strove to reserve
a phase for creatively working out a solution to a software prob-
lem, unburdened by the constraints of information gathering and
implementation details. But in several ways, the waterfall model’s
positioning of design impedes creativity. First, a major weakness
lies in the way that goals are presented. In order for the Pure
Thought facet to be successful, the goal must be something that a
designer can keep in mind, on a subconscious level, while making
design decisions. A requirements document is often too complex
from this perspective, requiring a great deal of scrutiny to under-
stand.
A closely-related problem is that the basic, fundamental goals of a
project are settled upon before designers are ever involved. The
reality is that countless functionality-level design decisions reside
in a requirements document. This is only exacerbated by the well-
known problem of changing requirements. Because designers are
not in touch with the actual needs of the user, and only receive an
abstracted piece of documentation, subtle shifts can have ex-
tremely unpredictable consequences.

5.2 Agile Methodologies
Agile methodologies’ perspective on design can best be summed
up by the phrase “the design is in the code” [3]. Such approaches
advocate the rapid creation and evolution of code, treating it not

as just the material in which the final program is implemented,
but also as the representation in which programmers (each of
whom is also a designer) express their ideas. The main advantage
of this perspective is that the gap between the chosen design nota-
tion and the Domain of Materials disappears, since the two are
equal by definition. This code-centric approach is complemented
by a recommendation to refactor early and often, continuously
examining the structure of the code and improving it as needed. In
addition, most agile efforts tend to be guided by some additional,
informal design representations such as architectural sketches,
manifestos, and e-mail discussions regarding critical design con-
siderations.
From the perspective of the DESIGN DIAMOND, the message of the
Agile methodologies resonates well with the design theories we
have discussed. It is encouraged to “play with the code structure”.
Goals are meant to be broad understandings of user needs, not
long diatribes, thereby lending freedom to the creative designer.
Incremental releases fuel frequent designer-user contact to allow a
goal to grow in the mind of a designer. And, finally, pair pro-
gramming helps to share ideas among developers.
In practice, however, agile approaches do not pan out as well. As
code is written, it tends to become much more rigid than intended.
Although refactorings are frequently employed, major overhauls
are rare, stifling the creative aspects of the design process. Even
during early exploration, when little code has been written, code
remains a terrible design medium as compared to sketches on a
whiteboard. When coding, designers must adhere to the structural
considerations of a programming language, rather than being free
to express design ideas intuitively. Even though compilation and
execution of code allows for feedback, the time taken to compile
a program, see the results, and adjust the code is sufficient to
hinder creative thought, and to prevent Schön’s reflection in ac-
tion. Finally, code is encumbered with so much additional detail
that it is ill-suited to supporting the communication of high-level
design decisions; they simply disappear.
In general, unless several favorable conditions are met (for exam-
ple, a highly integrated team of expert coders, a great deal of
shared understanding, and a well-understood goal), Agile meth-
odologies pose some serious problems for design. That is not to
say the methodologies are altogether “bad”. Rather, it demon-
strates that Agile methodologies, as the Waterfall approach, only
partially meet the needs of a software designer.

5.3 Other Lifecycle Approaches
Space concerns prevent detailed analyses of additional life cycle
approaches, but we do wish to highlight some interesting points
with respect to a few of them.
First, the Structured Analysis and Design method [5] provides an
example of an interesting tradeoff in its choice of design notation.
For application domains in which information flow is a primary
concern, its Data Flow Diagrams are a medium that easily spans
from requirements to design to database-based implementations.
The Domain of Use, i.e., information-oriented applications, and
the Domain of Materials, i.e., databases, can be seen as providing
uniform guidance over the course of the project.
Open Source approaches provide a different lesson, one related to
the Community facet. Archives such as code repositories, mailing
lists, and bug trackers are viewed as a critical part of the learning
process in the open source community [9]. These sources of

knowledge are useful to those new to a project (influencing the
Team Communication facet), but also to those who wish to study
design structures that are used in other projects (thus forming a
Domain of Use). This approach to spreading knowledge is vital to
addressing some of the challenges inherent to open source.
Finally, the Rational Unified Process is a highly-modified version
of the Waterfall approach in which best practice recommendations
such as “visually model software”, “use component-based archi-
tecture”, and “develop software iteratively” complement the over-
all process [12]. When we consider these particular pieces of ad-
vice in terms of the DESIGN DIAMOND, we note that they empha-
size easily understood and easily manipulated design representa-
tions. Even though they may not have been explicitly devised as
such, they improve the practice of design in the RUP.

5.4 Summary
High-level approaches and lifecycle models are intended to struc-
ture the overall process of software development, and are not
necessarily meant to provide specific design guidance. But their
designation of a general role for design tasks nevertheless exerts a
strong influence on software engineers’ ability to design, as well
as the tools needed to do so.
For example, the large cognitive gap between a project’s goal and
its implementation is a major design challenge. In response, the
Waterfall model advocates the use of specialized design notations
to be used in creating intermediate representations. If Structured
Analysis and Design is employed, chances are that databases are
required as a subset from the Domain of Materials, so that the
transition from design to implementation is fluid. And if an itera-
tive or Spiral model is followed, we must find an incremental
representation that can easily reach back to requirements and
forward to implementation; traceability is of pertinent concern.
Each of these strategies of reducing the cognitive gap is quite
different, but also quite natural when one understands the phi-
losophy behind each respective lifecycle approach.
As another example, each lifecycle approach must respect the
need to eventually hone in on a single design solution over the
course of a project. Positioning design as an intermediate repre-
sentation requires the use of validation to ensure that the represen-
tation adheres to the stated goals. Positioning design as being in
the code requires refactoring to change the current design to one
that is better. And positioning design within an overall iterative
lifecycle requires a strong core design that is enhanced at each
iteration.
We can now see how different approaches to software engineer-
ing must tackle many of the same problems. Previously their dif-
fering takes on design have prevented us from comparing their
seemingly disparate solutions, but by disentangling the notion of
design, the DESIGN DIAMOND helps to shed light on these and
other challenges.

6. THE WAY FORWARD
Now that we have explored some of the ways that software design
can be positioned, we turn our attention to how to use the DESIGN
DIAMOND to help advance the field. We will do so in terms of the
facets described in Section 4. For each facet, we explain to what
degree the needs of software design are met by current tools and
approaches, and what weaknesses remain. Based on this evalua-
tion, we will suggest several research directions that will stand to

improve software design.

6.1 Pure Thought
This is the most difficult facet for a community to support, since
the actual ideas that a designer generates from their activities
cannot be affected directly. But what activities the designer un-
dertakes and how they generate and evaluate ideas are influenced
by their internal knowledge and the goals they set out to achieve.
With respect to knowledge, we observe that effective designers
start with a vague concept of their design, and refine it as part of
their everyday design activities. But how does a designer know
which refinements to make, and therefore how to proceed with
improving the design? In most cases, precise metrics and formal
proofs are not the answer, but rather an internal sense of aesthet-
ics. This sense of aesthetics guides a designer on a subconscious
level, causing them to be drawn to appealing design refinements,
and to reject those that “seem wrong”.
This sense of aesthetics is vital in fields such as architecture and
fashion design, where students and professionals alike engage in
the frequent viewing, discussion, and appreciation of design ex-
amples in order to develop their own sense of design. Software
engineering has failed to embrace this way of thinking to date.
We do know that a designer concerned with software performance
values a design in a way very different from a designer who is
concerned with scalability, but there are not mechanisms in place
to understand, discuss, and develop these senses of aesthetics. To
some extent the responsibility for improving this kind of knowl-
edge lies with designers themselves, though we will make some
suggestions on this matter when we discuss the Community facet.
Suggestion 1: We must pursue the development of a sense of soft-
ware aesthetics. As with other fields, this sense of aesthetics must
allow for different views and criteria, and must serve to create
alternative “schools of software design appreciation”.
With respect to goals and the Pure Thought facet, two points are
important. First, a tome of requirements does not stimulate ideas;
on the contrary, it tends to severely restrict them and interrupt the
flow of creative thought because one must continuously verify if
the requirements are still met. We know of no other field that goes
in as much detail as software when it comes to requirements; it is
customary to provide broad guidelines rather than detailed scenar-
ios. Perhaps this is a sign that we have gone too far: should our
designers not be given the freedom to bring to bear their full abili-
ties in truly and creatively producing design solutions, rather than
searching for matches to a mountain of requirements?
Should one answer a resounding “no” to this question, our second
point brings to bear a slightly different argument. Specifically, we
believe that if one insists on detailed requirements, then a signifi-
cant portion of those should be treated as design decisions. We
contend that it is preferable that a requirements document ac-
knowledge explicitly that it has entered the realm of design deci-
sions, rather than pretend to remain an absolute statement of
needs. This point has significant depth: not every design decision
is immediately recognized as such, and we must take great care to
nonetheless deliver them to the designer as design choices.
Suggestion 2: It is critical to re-examine the traditional boundary
between requirements and design, and to re-examine our mecha-
nisms of specifying requirements. We must separate actual needs,
broad guidelines and visions, and design decisions already made.

6.2 Reflective Conversation with Materials
At its core, the Reflective Conversation with Materials facet states
that a representation must allow the designer to rapidly engage
with their design in progress and receive useful feedback on the
design’s current state. The subtle nature of the second half of this
point is perhaps best explained using an example: when a building
architect first sketches out their design and looks at it, they evalu-
ate it in terms of the final envisioned product: “is it too tall?”, “is
it elegant?”, “does it look like it will be structurally sound?”.
But it is much more difficult to look at, for example, a UML dia-
gram, and consider it in terms of its final software product. Only
an expert designer may be able to answer such questions as “is the
performance of this software as expected?”, “how does the soft-
ware scale?”, and “will it automate the company as it is meant to
automate?” simply by looking at a high-level diagram. Instead,
we usually evaluate the representation on its own, abstract terms,
asking questions such as “are all my classes connected?”, “is there
good cohesion and not too much coupling?”, “do I have an appro-
priate inheritance hierarchy?”.
Software architecture provides one possible avenue for improve-
ment. Its original vision [19] called for it to consist of elements,
form, and rationale, which together begin to support the needs of
reflective conversation nicely. In particular, a developed sense of
form would allow a sense of aesthetics about architectural dia-
grams to emerge, which would help guide designers in their work.
The way this vision has been realized by the community, how-
ever, has been through detailed, focusing on limited, structure-
oriented languages that are geared towards formal analyzability
and completeness. The designer, unfortunately, was largely ig-
nored. Other design notations display a similar trend, tying them-
selves tightly to implementation at the cost of helpfulness to the
designer.
Suggestion 3: We must pursue the creation of new design nota-
tions that provide feedback at the level of the software we are
designing. That is, we must create design notations, not pro-
gramming language abstractions.
This issue also arises in our automated design tools. On one hand,
such tools are indispensable, because they provide the necessary
analyses, simulations, and other mechanisms of feedback that we
must use in lieu of intuitive interpretation. On the other hand, the
interaction mechanisms promoted by the tools strongly focus on
achieving qualities such as completeness, consistency, and preci-
sion, which do little to guide the designer. Newer design tools
such as Argo/UML [20] and some software design sketching tools
[8] do better in beginning to support the design experience, but
we need to push further.
Suggestion 4: Our design tools must change from relatively pas-
sive tools that focus on helping a designer to precisely document
a design once it has been thought out, to tools that actively help a
designer think through and explore a design problem and solu-
tion; that is, tools that really help a designer design.

6.3 Team Communication
When we introduced this facet in Section 4.3, we identified three
main criteria for the successful communication of design ideas in
a design team: an appropriate activity structure, an effective rep-
resentation, and some degree of shared understanding.
With respect to activity, designers working in a group have a

natural tendency to adopt group-oriented behavior. They congre-
gate in meeting rooms, more explicitly state their assumptions,
use drawings and whiteboards to explain their point of view, etc.
We also see group-oriented behavior in the open source commu-
nity, where key architects of certain systems come together peri-
odically to assess the state of affairs [15]. And when one takes the
Agile view of design, pair programming is a form of design com-
munication. Short of forcing designers to communicate (which
pair programming does in a relatively friendly way), one can
suggest certain behaviors of social interaction, such as letting
everybody talk at a meeting or engaging in periodic reviews and
brainstorming. But this requires knowing what works and what
does not, something that our field does not currently possess.
Suggestion 5: We must engage in detailed empirical and analyti-
cal studies of software design teams in action to begin understand
their needs, behaviors, and patterns of success and failure.
In parallel, we can improve our design notations that team mem-
bers will use to communicate with one another. This is particu-
larly important when we consider that much design takes place in
meeting rooms. Considering the technology that is available, such
as electronic whiteboards, tablet PCs, and a wide variety of input
devices, it is now possible to display and edit software architec-
tures, pattern compositions, informal sketches, and the like di-
rectly in the meeting room.
However, most of our current design tools are not suited towards
creative group use, instead focusing on individuals documenting a
design. Most group-oriented tools, such as those that track design
rationale or manage reuse are more focused on communicating
finalized decisions than actually supporting a group as they de-
sign. We need tools that allow for quick exploration and expres-
sion of high-level ideas, articulation of decisions and assumptions,
analysis of alternatives, and simulation of designs in action.
Suggestion 6: We have to explore the development of design tools
and associated design notations that are specifically geared to-
wards interactive group use in early exploratory phases of design.
Finally, we must recognize the need for a shared understanding
between communication participants. Architectural styles [22]
and software design patterns [7] are powerful advances in this
regard, providing a higher-level language in which designers can
frame their problems and solutions. By alluding to a well-known
style or pattern, a software designer can convey concepts that
would take pages to describe in a rigorous document. The chal-
lenge lies in developing more of such useful concepts and dis-
seminating them so that they become widely understood, a con-
cept we will discuss further in Section 6.5.

6.4 Activity Type
The Activity Type facet describes design in terms of Jones’ cate-
gorization of divergent, transformative, and convergent activities.
We first note that, traditionally, software designers do not explic-
itly view or explore software design in terms of these activities. It
may be that their actions exhibit some resemblance, but we have
not yet turned to recognizing and utilizing this approach explic-
itly.
First and foremost, a radical thought is to consider these steps at
the process level: what if we treated the entire software develop-
ment process as a divergent, transformative, and convergent series
of activities? Requirements and architecture would serve as a

divergent stage of research and exploration, lower-level design as
a transformative stage, and code as a stage of converging upon a
single result. This unusual perspective has far-reaching conse-
quences. It certainly would require serious reconsideration of the
boundaries and approaches set forth by the traditional Waterfall
model. The foundations of Agile approaches would also be chal-
lenged, as code alone would be insufficient for meeting the needs
of all three activity types. Many of our design notations would
become irrelevant. But such an approach would remain true to the
DESIGN DIAMOND, giving us reason to believe that this may be a
plausible form of alternative lifecycle approach.
Suggestion 7: We should explore the entire software development
process as a design process, with the goal of understanding the
feasibility, realities, and consequences of adopting a lifecycle
approach based on divergence, transformation, and convergence.
Beyond such ambition, however, we can also look at the conse-
quences of adopting this view in the small, questioning, for exam-
ple, whether current software design tools and notations support
easy brainstorming (identified by Kelley as a cornerstone of idea
generation [11]) and whether we have the tools available to trans-
form these disconnected thoughts, establish evaluation criteria,
and settle upon a broad solution structure. In general, the answer
is “no”, though there are various existing tools and technologies
that show promise. Metrics can help to judge design structures,
while early aspects and multi-dimensional separation of concern
can serve to untangle representations. Hypermedia and other tech-
niques can also be used to track design changes.
The problem is that these approaches have not been presented in a
way that is conducive to the needs of a designer. Tools supporting
divergent thought must be intuitive and easy to use, while trans-
formative thought requires carefully chosen abstractions that can
draw the designer’s focus to certain aspects of the design. Con-
vergence cannot take place simply in terms of metrics and num-
bers, but must illustrate the differences and tradeoffs implied by
multiple possible designs. It is our hope that considering the chal-
lenges of software design in terms of this general theory will in-
spire new tools and technologies for software designers.
Suggestion 8: We should investigate when and where a diver-
gence-transformation-convergence approach would be compati-
ble with current approaches and devise tools, evaluation criteria,
and design notations that take advantage of these opportunities.

6.5 Community
As discussed in Section 4.5, the Community facet involves two
essential forces: the build-up of the Domain of Materials and Do-
main of Use and the dissemination of their collective wisdom to
individual designers.
With respect to the Domain of Materials, its primary constituents
are the programming languages and tools that are at our disposal
to implement a design. This includes programming and scripting
languages, databases, spreadsheets, generators, dynamic linkers,
network protocols and associated libraries, and so on. But it is not
just their availability that is important, it is also basic knowledge
about them, such as portability, speed, robustness, speed of pro-
gramming and adoption rate. Each of these facts has the ability to
influence the designer, presenting opportunities and imposing
constraints on the kinds of designs that are feasible.
The Domain of Materials for software design continues to evolve.

It is interesting to observe, however, that its evolution is driven by
language features for programming, not by a desire to improve
our ability to design. The result is that, from the perspective of
design, the Domain of Materials has not significantly improved.
Suggestion 9: We, as the software engineering community, need
to become strongly involved in the definition of new programming
languages and other materials so they better suit our needs as a
design discipline.
Our Domain of Use is relatively well established, with knowledge
of different architectural styles, design patterns, established sets
of design metrics, detailed studies of how users react to and en-
gage with different user interface paradigms, standards, and other
sorts of design knowledge and amassed experience. There is still a
strong need to build up our Domain of Use (for instance with the
sense of aesthetics mentioned in Section 6.1), as it still lacks the
quality and depth found in other disciplines. But a larger issue
looms. One of the strengths of other disciplines is that their Do-
main of Use consists of many different subdomains, each address-
ing a small set of targeted designs with specialized knowledge.
Software engineering has resisted doing so. We recognize the
difference between designing flight software or games, but our
research and literature do not yet reflect this recognition. Calls for
domain-specific approaches have been made before, we add ours.
Suggestion 10: We must actively pursue the construction of a
carefully-partitioned Domain of Use that provides greater guid-
ance in each of its subdomains.
Finally, we note that much of the progress that we suggest here
requires the dissemination of gathered wisdom to designers them-
selves, a challenge the community facet is meant to address.
Much of this dissemination is handled through conferences, jour-
nals and seminars, but education plays a unique role in this re-
gard, shaping the initial attitudes of future software designers.
Unfortunately, current approaches to teaching software design are
severely lacking. Students are often only exposed to design ideas
as part of a generic software engineering course, and even then
the focus is on notations, rather than design skills themselves.
Students do not receive the exposure to all of the necessary the-
ory, nor are they able to practice sufficiently.
Suggestion 11: We must elevate software design education to be a
primary concern in curricula and find ways of effectively deliver-
ing the theoretical aspects of design and fostering appropriate
practice.

6.6 Summary
In this section, we have provided a number of potential research
directions that we believe will improve our ability to design soft-
ware. Each of the suggestions finds its roots in the philosophy of
the DESIGN DIAMOND, keeping in mind design’s fundamental
dimensions of concern, interrelationships, and theories.
Altogether, our suggestions are at varied levels of detail, and in-
volve a range of activities and objectives. Together, they push us
towards a vision of design in which each of the fundamental
forces and tensions is addressed, or at the least understood so they
can be reckoned with.
Clearly, some of our suggestions have been made before (consider
Vincenti’s “normal design” [26] versus our “wisdom”, or Parnas’
early design observations [18] versus our call for design notations
instead of programming language abstractions). We consider this

an inherent strength of the DESIGN DIAMOND, since it confirms
such existing intuitions by situating them in a generic framework
that provides a design-oriented, explanation of their foresight.
Finally, the careful reader will note that quite a few of our sugges-
tions seem to focus on what could be misconstrued as the “softer,
non-engineering side of design”. We have two responses. First, to
date our field indeed has made its contributions from a more tech-
nical and analysis-focused perspective that is befitting its lineage
of engineering and mathematics. It is now time to balance this
focus with the more creative aspects of design. Second, address-
ing the theories of Pure Thought, Reflective Conversation with
Materials, and Activity Type by no means implies an abandoning
of technical and analysis aspect. Quite the opposite: without
proper technical and analysis support, the creative exploration of
software solutions would be a nearly hopeless endeavor. We
therefore remain strong proponents of an integrated approach that,
indeed, addresses all aspects of the DESIGN DIAMOND.

7. CONCLUSIONS
This paper makes two contributions to the discipline of software
design. First, it contributes the definition of the DESIGN DIAMOND,
a new framework that delineates software design from an inter-
disciplinary, designer-centric point of view. Second, it demon-
strates how application of the DESIGN DIAMOND sheds new light
on existing design perspectives, as well as on the field’s overall
research agenda.
The strength of the DESIGN DIAMOND lies in its neutrality; because
it examines design from the perspective of its fundamental dimen-
sions of concern and the different relationships that tie these con-
cerns together, it is able to clearly articulate the elementary forces
and tensions that underlie any kind of design process. A second
strength is that the structure of the DESIGN DIAMOND is organized
such as to capture established design theories in individual facets.
These facets group elements of the DESIGN DIAMOND to illustrate
the higher levels of concern expressed by the theories.
We raised a number of questions in the introduction. The DESIGN
DIAMOND is a vehicle to answer these questions objectively, as
have begun to do in this paper. While one still can express their
preferences and biases by favoring some parts of the DESIGN DIA-
MOND over others, the fact that the DESIGN DIAMOND exists forces
one to acknowledge the and make explicit these biases. Overall,
our hope is then that the DESIGN DIAMOND can become a mainstay
of the field and help channel discussions, debates, and future re-
search into productive and innovative directions.
Much work is to be performed, not just in addressing the concerns
and potential research directions raised by the framework, but
also in beginning and sustaining a broad theoretical discussion on
the nature of software design. Examining other disciplines, one
finds vocabularies, articulated theoretical models, shared values
on the interpretation and evaluation of alternative designs, proven
strategies and approaches, useful and effective tools, and other
signs of highly-engaged communities. For software design to
mature to a similar level, we must dare to step away from the
technical world in which we have preferred to engage. The DE-
SIGN DIAMOND is our first such step, and there are many left to be
taken.

8. ACKNOWLEDGMENTS
Effort partially funded by the National Science Foundation under
grant numbers CCR-0093489, DUE-0536203, and IIS-0205724.

9. REFERENCES
[1] Albrecht, D., Lupton, E. and Holt, S. Design Culture Now.

Princeton Architectural Press, New York, 2000.
[2] Alexander, C. The Timeless Way of Building. Oxford Uni-

versity Press, New York, 1979.
[3] Beck, K. Extreme Programming Explained: Embrace

Change. Addison-Wesley, Reading, MA, 1999.
[4] Csikszentmihalyi, M. Flow: The Psychology of Optimal

Experience. Harper Perennial, New York, New York, 1991.
[5] Demarco, T. and Plauger, P.J. Structured Analysis and Sys-

tem Specification. Prentice Hall, 1979.
[6] Eastman, C.M. New Directions in Design Cognition: Studies

of Representation and Recall. in Design Knowing and Learn-
ing: Cognition in Design Education, Elsevier Science, Am-
sterdam, 2000.

[7] Gamma, E., Helm, R., Johnson, R. and Vlissides, J. Design
Patterns Elements of Reusable Object-Oriented Software.
Addison Wesley Professional, Reading, MA, 1994.

[8] Hammond, T. and Davis, R., Tahuti: A Geometrical Sketch
Recognition System for UML Class Diagrams. in AAAI
Spring Symposium on Sketch Understanding, (2002).

[9] Hemetsberger, A. and Reinhardt, C., Sharing and Creating
Knowledge in Open Source Communities: The Case of KDE.
in The Fifth International Conference on Organizational
Knowledge, Learning and Capabilities, (2004).

[10] Jones, J.C. Design Methods. John Wiley and Sons, Inc, New
York, 1970.

[11] Kelley, T. The Art of Innovation. Doubleday, New York,
2001.

[12] Kruchten, P. The Rational Unified Process: An Introduction.
Addison-Wesley Professional, Reading, MA, 2000.

[13] Lidwell, W., Holden, K. and Butler, J. Universal Principles
of Design. Rockport Publishers, 2003.

[14] Matchett, E. Control of Thoughts in Creative Work. The
Chartered Mechanical Engineer, 14 (4).

[15] Mockus, A., Fielding, R.T. and Herbsleb, J.D., A case study
of open source software development: The apache server. in
International Conference on Software Engineering, (2000).

[16] Norman, D.A. The Design of Everyday Things. Basic Books,
2002.

[17] Page, J.K. Conference Report Building for People, Ministry
of Public Building and Works, London, 1965.

[18] Parnas, D. Software Fundamentals: Collected Papers by
David L. Parnas. Addison-Wesley Professional, Reading,
MA, 2001.

[19] Perry, D.E. and Wolf, A.L. Foundations for the Study of
Software Architecture. ACM SIGSOFT Software Engineer-
ing Notes, 17 (4).

[20] Robbins, J., Hilbert, D. and Redmiles, D., Argo: A Design
Environment for Evolving Software Architectures. in Nine-
teenth International Conference on Software Engineering,
(Boston, MA, 1997), ACM Press.

[21] Schön, D.A. The Reflective Practitioner. Basic Books, 1982.
[22] Shaw, M. and Garlan, D. Software Architecture: Perspec-

tives on an Emerging Discipline Prentice Hall, 1996.

[23] Shneiderman, B. Designing the User Interface. Addison
Wesley, Reading, MA, 1997.

[24] Suwa, M. and Tversky, B., External Representations Con-
tribute to the Dynamic Construction of Ideas. in Diagram-
matic Representation and Inference: Second International
Conference, (2002), Springer

[25] Tufte, E.R. The Visual Display of Quantitative Information.
Graphics Press, 2001.

[26] Vincenti, W.G. What Engineers Know and How They Know
It. John Hopkins, 1990.

