
Examining Software Design from a General Design Perspective

Alex Baker and André van der Hoek
Institute for Software Research & Department of Informatics

University of California, Irvine
Irvine, CA 92697-3440 USA
{abaker,andre}@ics.uci.edu

ISR Technical Report # UCI-ISR-06-15

October 2006

Abstract

Our community’s understanding of software design
has certainly improved over the years, as have our
approaches and our ability to design high-quality soft-
ware. But compared to other design disciplines, the
software design field is unable to objectively answer
some fundamental questions about where it stands.
Through a new, interdisciplinary framework, we place
software design in a general design perspective, exam-
ine existing conceptual points of view and technical
contributions, and suggest promising research direc-
tions. In so doing, we learn that we can and must treat
software design as an inherent design discipline, that
the field’s successes to date have been in line with such
a view, and that the framework can serve as a basis for
engaging in the discussion necessary to answer the
questions that have remained elusive to date.

1. Introduction

Design has long been recognized as having a criti-
cal role in software engineering. With the ever-
increasing complexity of the software systems we de-
velop, this role has certainly not diminished. A high-
quality design can make the difference between a
software system that is successfully developed, de-
ployed, and used, and one that fails utterly somewhere
along the way.

Given this critical role, it is no surprise that the
software engineering literature contains a multitude of
proposals and opinions regarding design approaches,
modeling notations, evaluation techniques, tools, and
other innovations. But, to date, these contributions
have been discussed in a disjointed, piecemeal fashion.
Notations have been debated in terms of expressive-
ness and verifiability, analysis algorithms in terms of

properties that are guaranteed and algorithmic com-
plexity, and design environments in terms of feature
lists. Such criteria are vital to advancing each of these
research topics, but we observe that the field as a
whole lacks the ability to put all these topics and con-
tributions in a shared understanding of software de-
sign.

What are the critical factors at play in software de-
sign? How do these factors influence our approaches?
Where does our field excel and where do our efforts
fall short? What should our basic research goals be?
Answering these questions is difficult. Part of the
problem is that when one considers software design in
terms of a particular process model, project size, or
language, this drastically shapes the concept of soft-
ware design one is likely to have.

We wish to describe the fundamental nature of soft-
ware design unburdened by the assumptions of indi-
vidual research contributions. We do not want to as-
sume that software design is a phase, or in the code, or
to be expressed formally. Rather, we wish to tackle
software design’s essential nature. To do so, we have
taken the drastic step of removing ourselves from the
concept of software entirely, and have built an inter-
disciplinary framework that defines design in terms of
factors that underlie all design disciplines. We recog-
nize that software is different from teacups, cars, and
billboards, but that does not mean the field can just
ignore the fundamental nature of design. Rather, it
must explicitly embrace it, understand how software
represents a unique challenge, and work towards ad-
dressing this challenge from a design perspective.

In this paper, we derive our framework and use it to
explain the challenges inherent to designing software.
This understanding is then used to evaluate our field’s
ability to meet the needs of a designer, in terms of its
current languages, tools, and shared knowledge. Based

on this evaluation, we make several suggestions of
new research directions for improving software design.

The key lesson we learn is that we can and must
treat software design as an inherent design discipline.
Doing so allows us to explain the field’s contributions
in terms of core design concerns, lay out an agenda for
future research, and use our framework as a basis for
the discussion necessary to answer the aforementioned
vital questions on which agreement has been elusive.

2. Our Framework

Our framework describes design as an information-
based process, but in order to explain design in this
way, we must first adopt a concept of the design prod-
uct itself. In this section, we discuss the design product
and process, and then present a brief discussion of how
they can be used to explain communication among
teams, stakeholders, and design communities.

2.1 Design – The Product

A design product is typically envisioned as a tangi-
ble artifact that is the result of a design process: a blue-
print, sketch, mock-up, or any other form of expression
that shows the intent of the designer. This, generally, is
the view in software as well, with the design document
being the predominant example.

General design theory has instead adopted more ab-
stract models that resolve around the notion of a design
space [1]. Each state in this space represents one par-
ticular design, with certain properties distinguishing it
from other states representing other designs. A design
may be complete or incomplete, and can be tangible or
purely mental. A design process is described in terms
of the designer adjusting the design, and thereby mov-
ing from state to state and exploring the design space.
Of course, the notion of a design space is entirely hy-
pothetical, as it would be impossible to ever articulate
all of the designs that would theoretically populate it.

But what do individual states capture? We consider
a given design to be an abstraction that constrains a set
of possible outcomes. A vague design describing a few
features allows for countless possible realizations of
those features. But as a design becomes more precise,
some of these realizations are excluded, until a rela-
tively small subset of outcomes are described.

The goal of the designer is to create a design that
describes only outcomes that are feasible and desir-
able. Certain designs may not be feasible due to limita-
tions of the materials they describe (i.e., we can design,
but not build, a skyscraper resting atop a narrow pole).
In addition, the design must describe a desirable out-

come that adds value in the eye of its beholders (i.e.,
we only want skyscrapers that can survive the effects
of earthquakes and wind). Desirability stems from cus-
tomers, who set up goals for what they want, as well as
designers, who typically have their own sense of ap-
preciation for certain outcomes.

Figure 1 illuminates this discussion. In the space of
all conceivable outcomes (C, containing every out-
come we could ever imagine, whether it can be real-
ized or not), a designer has a notion of which are gen-
erally feasible (F) and desirable (D) outcomes, the lat-
ter being rooted in their experience and broad knowl-
edge of what the field considers “good” and “bad”. In
addition, the customer has a concept of what is desir-
able (D) for this project. Working in the hypothetical
design space, the designer converges on a particular
design state (), which maps onto a set of still-
possible outcomes (SP) that all fit the given abstrac-
tion. A successful design, then, is a state in the design
space that describes only outcomes that are feasible,
and that both the customer and the designer consider
desirable.

It is important to note that a design rarely describes
a single outcome; even a very precise design usually
allows for some variation in the ways that it might be
realized. But as long as each resulting outcome re-
mains within the boundaries of feasibility and desir-
ability, the design is sufficient. When a design allows
for interpretations that would prove impossible mid-
way through the implementation process, or that would
prove distasteful upon completion, the design must be
refined to exclude such outcomes, if it is to be consid-
ered “successful”. Of course, predicting whether this is
the case or not can be very difficult.

This concept of abstractions of outcomes also ap-
plies to the goals that a customer sets as input to the
design project. Although a specific outcome is usually
envisioned, a goal statement generally is imprecise and
describes not a single outcome, but criteria describing
the set of desirable outcomes. Through these examples,
we can see the importance of describing our outcomes
in terms of sets. Because design is an information-
based process, designers are not employed to create
concrete realizations, but rather abstractions, descrip-

Figure 1. Design Space and Outcome Sets.

tions of them that will ensure their success.
As a designer moves through the design process,

the set of still possible outcomes changes constantly.
While much of the design process is about finding the
choices that cause a design to fit inside the sets of de-
sirable and feasible outcomes, these latter spaces are
not necessarily static themselves. The invention of new
materials, for instance, broadens the set of feasible
outcomes. As another example, a goal that is impossi-
ble to attain may need to be broadened through discus-
sion with the customer. A designer, thus, has several
avenues available when trying to find a successful de-
sign.

2.2 Design – The Process

A design process is usually considered some kind of
phase in a larger endeavor. A canonical example is the
architecture design process as the precursor to the con-
struction of a new building, but we can also consider
the artist who mentally organizes a plan for their next
sculpture or a fashion designer sketching a new tux-
edo.

As with our treatment of the design product, we
find a need to step back from the notion of the design
process as a phase. Instead, siding with general design
theory, we choose to begin discussion of the design
process as a mental process. Faced with the task of
finding a successful design, what is it that actually
takes place inside the head of a single designer?

Naturally, the answer to this question involves some
kind of exploration of the design space, as discussed
by Newell and Simon [1] or Smithers and Troxell [2].
This exploration is characterized as one of information
manipulation, with three different kinds of information
involved: knowledge, goals, and ideas [3]. Knowledge
is preexisting information that a designer brings to the
table when faced with a design problem, including
their experiences, judgment, results, and insights. In
some cases, knowledge is factual, revolving around
specific rules for achieving feasible and desirable out-
comes under certain conditions. But knowledge can
also be very intuitive, as with the designer’s sense of
aesthetics: their feelings about what kinds of outcomes
are desirable and how to achieve them. But the impor-
tant distinction is that a designer’s knowledge exists
independent from the design projects they undertake.

The second kind of information is the goal, which
frames and guides the problem to be addressed. A goal

is generally unique for a given design project; if it
were not, an existing solution could be reused, and
design itself would be unnecessary. A goal directly
connects to the notion of desirability and may shift in
response to fluctuations in a customer’s preferences
and priorities.

The form of the design itself is captured by the third
form of information: ideas. Ideas are specific notions
that together define one or more states in the design
space. Ideas can take all sorts of forms, including
vague intuitions, firm decisions, relations among ideas,
thoughts on possible directions, preferences, and ra-
tionale. The general process via which ideas coalesce
into a single, coherent design has been documented as
one of divergence, transformation, and convergence
[4]. When ideas are generated, organized, and used,
they can be considered cuts across the design space,
criteria that include some outcomes and exclude oth-
ers.

But mental exercises alone are insufficient for a
typical design process. Simon recognizes designers’
needs to externalize their thoughts, and discusses the
ways that this can aid mental processes [3]. Schön ob-
serves the phenomenon of a reflective conversation
with materials, which he informally describes as an
externalized form of a design “talking back” at its de-
signer, giving insight into the outcomes it describes
[5]. And, unsurprisingly, communication is an integral
part of the design process, whether it pertains to ab-
sorption of the initial goal, learning from the literature,
or discussing a design problem with others. Any such
interaction uses a representation, which is defined as a
concrete expression of mental forms of information.
Such expressions often will concern ideas, but they
may equally describe knowledge or goals.

The design process, thus, consists of a constant in-
terplay among these four types of information to cre-
ate, modify, and purge information, as needed. This
interplay transpires through individual design activi-
ties, which a designer undertakes to find a successful
design in the design space. Activities can be purely
mental, as when a designer remembers, weighs alterna-
tives, or makes a personal decision, but can also in-
volve tangible aspects, as when the designer creates a
sketch, absorbs the experience of sitting in a clay
mock-up of a car, or performs research by looking at
buildings that have a purpose similar to the one to be
designed.

The
of infor
as it pe
Countle
gorized
informa
up new
literatur
ceiving
adjust th
ing a sc
desirabl

All i
edge, go
kind of
familiar
use spec
use of P
designer
bolic ei
convent

Not a
On the c
many w
idea “I
bally, w
out). A
are simi
among o

The
designer
This co
for man
creating
howeve
many di
creating
graphic
automat
hancem

2.3 Tea

Thus far, our framework has concerned a lone de-
signer; but design does not take place in isolation. A
designer may be part of a broader design team, involv-
ing multiple stakeholders (forming a community of
interest [6]), and a designer is generally part of one or
more design communities (forming communities of
practice). Each of these provides a context in which a
designer must communicate with others.

Figur We consider any information exchange among mul-

e 2. Design as Information Manipulation.
view of activities manipulating the four kinds
mation constitutes the basis of our framework
rtains to the design process (see Figure 2).
ss activities are possible, but these can be cate-
according to the interactions between the four
tion types. For instance, certain activities build
 knowledge (e.g., generalizing ideas, reading
e), others put this knowledge to use (e.g., con-
ideas, evaluating alternatives), and yet others
e goal (e.g., reading a customer memo, build-

ale model to see if the planned design shape is
e).
nformation, regardless of whether it is knowl-
al, idea, or representation, is stored in some
language. The reader of this paper is likely

 with English, and design disciplines frequently
ialized languages, such as graphic designers’
antone codes to describe colors, or software
s’ use of UML. Languages need not be sym-

ther, and may rely on visual or gesture-based
ions.
ll information is stored in the same language.
ontrary, ideas take on many forms and employ
ays of being stored (e.g., one might express the
want to use red and blue in this painting” ver-
hile using a sketch to plan the painting’s lay-
designer’s knowledge and the project’s goals
larly stored in different languages, including,
thers, text, images, charts, and symbols.

final part of our framework is tools, which aid
s in their interactions with representations.
ncept includes familiar tools such as scalpels
ipulating clay models or drawing tables for
 blueprints. With the advent of computers,
r, software has taken on a significant role in
sciplines. Software tools now not only help in
 representations (e.g., CAD/CAM diagrams,
designs), but also in interpreting them (e.g.,

ed analyses, search features or image en-
ent tools).

m, Stakeholders, and Community

tiple people as communication through a shared repre-
sentation. That is, for two or more people to communi-
cate some knowledge, ideas, or goals, it is necessary
for such mental information to be expressed in a tangi-
ble form. Such a representation may be an elaborate
document, but may also involve sketches, formal pres-
entations, spoken words, scribbles, or gestures.

Our framework sheds light on several difficulties
inherent to communication. First, few representations
are complete and accurate with respect to the mental
thoughts they are meant to express. In general, a repre-
sentation is an abstraction, subject to (re)interpretation
by its recipient. It is the hope of the designer that a
recipient interprets the material in a way that is close
enough to their intention [7]. This depends to a large
degree on whether those communicating share com-
mon ground, allowing them to fill the gaps in their
communication with shared assumptions [8]. If goals,
ideas, and knowledge are similar enough, low-
precision representations might be sufficient. Fischer,
for one, addresses how communities grow a shared
context [9].

Another issue regards the choice of language. A
representation’s ability to convey thought is deter-
mined by the language used and that language’s com-
patibility with the languages of the thoughts them-
selves. For example, if a designer wants to convey a
vision of an elegant water pitcher, a sketch’s visual
language would be appropriate, whereas a prose de-
scription would be unwieldy. The language must also
provoke the recipient’s thoughts in a useful way; a
mathematical description of the pitcher’s curves might
be accurate, but could be difficult to understand
(unless the recipient had a strong grasp of the equa-
tions used).

2.4 Discussion

By necessity, the description of our framework has
been terse. Books have been written on topics to which
we can only devote a few lines and entire research
areas have emerged to study topics such as knowledge
representation, effective communication, or creative
thought. We have attempted to cite key contributions

to the general design literature to provide a starting
point for those interested in more in-depth pursuits.

The primary message to take away from this section
is that our framework provides a mechanism for bring-
ing together existing design theory in a perspective that
spans design disciplines. Each discipline must address
the same product, process, and communication factors,
in a manner suitable for its particular domain.

We must also remember that while the design proc-
ess is essential, we should not lose sight of the design
product defined in Section 2.1. The materials available
to a discipline determine the space of its feasible out-
comes, while a community’s knowledge can build up a
concept of the kinds of designs that tend to be desir-
able. Both these have a strong influence on how the
design process can proceed. Software is no exception.

3. Tensions

Before we apply our framework to software design,

it is useful to examine the framework from the per-
spective of tensions: elements in the framework that
must serve multiple roles. As an example, a representa-
tion might be made by a designer to quickly make note
of something they do not want to forget. In such a
case, simplicity of creation is of the utmost importance
to avoid interrupting the thought process. But if a rep-
resentation is meant to illustrate a complex mechanical
design, then faithfulness to reality becomes a dominant
concern. A representation for communication might
instead demand precision and understandability.

The implication is that different representations
(and thus different languages) are needed to support
these roles. Similar tensions govern the other elements
of our framework. We recognize the following as the
primary roles they must serve:
• A goal constrains desirable outcomes.
• A goal guides generation of ideas.
• Knowledge informs outcome feasibility.
• Knowledge informs outcome desirability.
• Knowledge guides generation/evaluation of ideas.
• Knowledge guides creation of representations.
• Ideas constrain still possible outcomes.
• Ideas shift goals.
• Ideas build knowledge.
• Representations record personalized information.
• Representations communicate information.

There is one additional role to discuss. Consider a
graphic designer who sketches a logo, views the
sketch, and then redraws it to hone in on the desired
effect. In this case, the representation is not simply
embodying an idea, but providing insight into the out-

comes that the idea leads to. This feedback is described
by Schön as a reflective conversation with materials
[5], where a representation can provide insight beyond
that possessed by the initial creator. Ideally, the de-
signer will engage in “reflection in action”, consider-
ing the representation without interrupting the creative
process. This requires that the sketch, model, or proto-
type provide feedback in a form that is compatible with
the language of the designer’s goals, guiding him or
her intuitively.

Returning to the roles and inherent tensions, the un-
derlying issue is one of language. A given language
can be precise, robust, nuanced, or easy to express, but
rarely does a single language possess all of these quali-
ties. Thus, when a given type of information must be
used for several purposes there is a difficult decision to
be made. Do we use the same language for multiple
purposes, when it does not necessarily meet the needs
of each? Or do we use a multitude of languages, and
accept the burden of translating among them? A rich
portfolio of languages with carefully considered trade-
offs, as well as tools for understanding and translating
them, stands to advance any design field.

4. Software as a Unique Design Discipline

While Sections 2 and 3 introduce design factors that
are common, most disciplines also give rise to unique
challenges because of intrinsic difficulties exhibited by
their context. In this section, we use our framework to
highlight three such difficulties for software.

4.1 Large Space of Feasibility

In most design fields, the real-world properties of
materials that are available to realize designs (i.e.,
building materials, art supplies) constrain possible out-
comes significantly. It is impossible to have two parts
in the same place; a brick cannot just float in space;
and ink can only lead to certain effects on paper.

But software is virtual, and does not play by physi-
cal rules (other than needing to be run on a computer).
The only constraints on it come from the programming
languages used, which tend to be Turing complete and
thus provide few constraints of their own. In terms of
our framework, software design is faced with an enor-
mous space of feasibility that does little to constrain
still-possible outcomes. The success of a design is
therefore determined almost solely by the space of
desirable outcomes, which leads us to the next point.

4.2 Goal Specificity

A designer is usually given broad authority with re-
spect to a particular design project. Constraints are
applied, but these tend to be more guiding in nature
(e.g., “we need a new building with 200 two-bedroom
apartments” or “we need a new movie set representing
a 1960s street”). While a designer needs to be keenly
aware of these objectives, and generally will use early
mock-ups and models to verify whether their plans
resonate with the customer, they have a great degree of
freedom in organizing the design and its details.

Initially, it seems like this could be true for software
as well. An initial conversation between a designer and
customer lays out a broad vision for what the software
is to do. But, because software must fit into an existing
environment (Brooks’ conformity [10]), this vision has
to be augmented with numerous details regarding how
the software is to fit the existing manual and automated
processes, as well as overarching business practices.

Put in terms of our framework, project desirability
is governed by a set of very precise criteria that estab-
lish a tiny, idiosyncratic set of desirable outcomes.
Combined with a large space of feasible outcomes, the
designer must find the proverbial needle in an enor-
mous haystack.

4.3 Language Gap

In most design fields, design decisions can be read-
ily correlated to their outcomes. An architect deciding
to add an archway draws the archway on paper or
models it in the mock-up. Remove a note from a score,
and it is visibly gone. There is a one-to-one correspon-
dence between these decisions and the effects they will
have.

Software design, however, experiences a significant
language barrier. The designer’s languages, involving
software architectures, class diagrams, and the like, do
not readily translate into outcome-level changes. When
a designer adds a component, it is not immediately
clear how this addition alters the space of still-possible
outcomes. And when one considers software design
languages more closely tied to outcomes, such as user
interfaces drawings and behavior specifications, the
opposite effect occurs: while decisions now clearly cut
the space of still-possible outcomes, it is not clear how
these relate to a class diagram or implementation plan.

This difficulty is related to Brooks’ concept of in-
visibility [10], but our framework grounds this in a
broader design perspective. The language of desirabil-
ity (often English, use cases, or scenarios) is drastically
different from the language of feasibility (program-
ming languages) and translating between them is ardu-
ous. This, then, results in little support for Schön’s
reflective conversation with materials and also hinders

Norman’s concept of using design languages to com-
municate with the user [11]. Our goals are unable to
serve their role of guiding our ideas and representa-
tions.

4.4 Summary

However brief, this discussion reveals software de-
sign to be a very difficult design discipline. Of course,
this has been observed before. However, the strength
of our discussion is that it grounds these observations
in general design theory. In this paper’s remaining
sections, we will similarly ground specific software
research contributions, allowing us to explain how they
relate to software’s unique challenges.

5. High-Level Approaches

When our community talks about design, it is often
discussed in terms of its role in the software life cycle.
While our framework does not address lifecycles di-
rectly, since it focuses on the individual designer, it
has a lot to say about the consequences of such
choices.

Consider the ubiquitous waterfall model. It directly
prescribes a “design phase”, and regards this phase as
containing most, if not all, of the process’ design
thinking. The goal is articulated in a detailed require-
ments document, and the result of the design process is
to be a plan for implementation. Purists, indeed, think
of the requirements as an abstract specification of
“what is needed”, pushing all consideration of “how
can it be realized” into the design phase.

In many ways, the waterfall model focuses on span-
ning the software language gap. It starts with a precise
representation of a goal, which is translated over mul-
tiple languages before arriving at a final outcome. The
representations used are often passed between devel-
opers, and because of the goal specificity of software,
the languages used must be extremely precise. The
emphasis throughout the process, and thus throughout
the design process as well, is therefore on the faithful
recreation of the ideas of a previous representation.

One effect of this approach can be found in the de-
sign process’s goals. In Section 3, we explained that a
goal both “constrains desirable outcomes” and “guides
generation of ideas”. While a requirements document
constrains, it is intentionally bereft of inspirations for
how design should proceed, providing little support for
creative design. Representations are similarly focused,
emphasizing their “document goals, knowledge and
ideas” role, rather than supporting intuitive reflection
in action. The waterfall model is not all bad; it is able

to translate goals into outcomes under software’s
uniquely difficult circumstances. But its approaches
are often stifling to the creativity of design.

Agile methodologies’ perspective on design can
best be summed up by the phrase “the design is in the
code” [12]. Such approaches advocate the rapid crea-
tion and evolution of code, treating it not as just the
material in which the final program is implemented,
but also as the representation in which programmers
(each of whom is also a designer) express their design
ideas. Unlike the waterfall model, agile approaches
primarily use a single language, rather than translating
between several.

Placing agile methodologies in our framework, we
observe that the message of the approach (“freely play
with code structures”, “goals are broad understandings
of user needs”, “incremental releases for frequent de-
signer-user contact”) in theory is in line with our
framework’s concepts of idea generation and reflective
conversations with materials. But we see that, in prac-
tice, these benefits are stifled by the use of code as a
design representation. Programming languages are
intended for implementation, and are not well-suited
for communicating ideas between designers, nor re-
cording ideas for one’s personal use. Furthermore,
without an intermediate means for organizing one’s
thoughts, the language gap between a designer’s goals
and representations of ideas for meeting them can be
daunting.

We can analyze other life cycle approaches in simi-
lar ways. The Structured Analysis and Design method
[13] provides an interesting example in its choice of
language: Data Flow Diagrams smoothly span re-
quirements, design, and database-based implementa-
tions. Open Source strongly emphasizes communica-
tion, with e-mail, bug, and repository archives provid-
ing representations of ideas and goals via a multitude
of informal languages. The Problem Frames approach
[14], meanwhile, focuses on connecting context-driven
goals to high-level designs through shared knowledge.

Space prohibits us from discussing these ap-
proaches in more detail. But the message of this sec-
tion remains: choosing a given approach has drastic
consequences for many aspects of the design process.
Even though different life cycle models seem to pre-
sent completely disparate definitions of design, their
perspectives can actually be precisely expressed and
compared in terms of the tradeoffs that our framework
describes. By leveraging the roles identified in Section
3, we can discuss them from a common basis and en-
gage in objective comparisons of relative strengths and
weaknesses.

We can also observe that no life cycle approach has
been designed explicitly with a total design perspective

in mind. It is compelling to envision such an approach.
Some have put forward a notion of programming as
design [12, 15]; architecture has been proposed as sup-
planting requirements [16]; and some have put for-
wards the beginnings of such a vision [17]. There are
many signs that the role of design in software devel-
opment may be broader than the community had first
supposed.

6. Analysis and Agenda

The ideas, goals, and representations of a design

project are specific to a particular customer’s needs.
But languages, tools, and knowledge span projects,
and can be developed by a design community to shift
the kinds of activities that are possible. In this section,
we examine the progress of software design in terms of
these categories and suggest several promising re-
search directions. Some of these suggestions are
unique, while others have been proposed before (for
example, [18, 19]) but we provide new insight by pre-
senting each in terms of our framework. We note we
provide only a small subset of possible suggestions,
ones we deem most important. Others can be derived
from our framework in similar fashion.

6.1 Software Design: Knowledge

A designer’s knowledge will fundamentally shape
the decisions that they make. By building and sharing
design information via research and trade magazines,
conferences, web sites, and other educational venues, a
community can improve the knowledge of its design-
ers, and therefore the practice of its discipline.

But because of software’s large space of feasibility,
there are few rules, facts, or guidelines that can be uni-
versally applied. Knowledge is usually described in the
context of a sub-domain defined in terms of the im-
plementation technique used. For example, heuristics
such as coupling and cohesion, database normal forms,
and information hiding each serve as knowledge about
how to design at the implementation level, given a
particular approach to programming a solution.

There are also examples of early steps towards di-
viding our knowledge according to the way that the
software will be used, as opposed to implemented.
Product line architectures are promising in this regard.
They describe a family of programs, all of which have
a strong overlap in their desired qualities, and promote
design decisions to be made at the goal level, in terms
of features and options. Meanwhile, domain architec-
tures have been developed for avionics systems [20]

and HCI researchers have begun to develop their own
pattern language [21].

But in some ways, these approaches do not go far
enough. The needs of different software systems are
often so varied that there is little to relate them in terms
of shared desirability, or shared possible outcomes. For
example, there is little outcome-level knowledge that
can be applied to the creation of both a document proc-
essing program and an immersive game. But within
each of these categories there are consistently desirable
qualities for its designers to strive for, and each should
have its own set of principles, patterns, and frame-
works to describe how to achieve them.
Research Direction 1: We should focus on desirabil-
ity-based sub-domains, thus supplementing our exist-
ing, discipline-spanning knowledge and tools.

Another obstacle to broadly applicable knowledge
is software’s goal specificity. Because subtle details
can determine whether a given outcome is desirable, it
can be difficult to find an existing solution that meets a
project’s needs. Many aspects of software knowledge
address this by considering the problem at a high level
of abstraction, and allowing the designer to fill in the
necessary details to make the knowledge “fit”.

For example, architectural styles do not provide the
designer with a complete solution, but rather a frame-
work in which a project’s specific needs can be met on
an architectural level. This helps provide some struc-
ture on the otherwise vast space of feasible software
designs. Design patterns work similarly, though at a
lower level of abstraction, allowing class-level design
to adjust for the project’s needs. In addition, each pat-
tern has a description of the situations in which it
should be used, and a set of patterns is usually in-
tended for a given programming language paradigm. In
this way, patterns work within feasibility spaces.

These contributions perform admirably in overcom-
ing software’s difficulties, but each is very formal,
providing advice in terms of rules and structures. Prin-
ciples and patterns can be useful, but require very con-
scious application to a situation. An important element
of knowledge, as mentioned in Section 2, is aesthetics,
which can instead provide intuitive guidance during
idea generation, reflective conversations with materi-
als, and communication about design decisions.

In most fields, continued exposure to design solu-
tions (such as famous buildings or well-designed prod-
ucts) allows designers to gain a sense of the space of
desirable outcomes, and thereby a sense of good de-
sign decision-making. But because of the language gap
in software, it is difficult to trace the security, speed, or
stability of a high-quality piece of software back to the

design decisions one would make in order to emulate
it.

Thus, a software sense of aesthetics has to operate
at a different level, and we will need to develop a feel-
ing for intuitively evaluating artifacts at the level of
our decision-making. This means evaluating and de-
bating class-level diagrams, architectural drawings,
and other documents, rather than simply the final pro-
grams that have been created. This is not easy, espe-
cially because aesthetics are intuitive, not coded, but a
strong sense of aesthetics has proven key to shared
knowledge and improved design quality in other fields.
Research Direction 2: Our community must begin to
develop a sense of software aesthetics.

6.2 Software Design: Languages

Over the course of a given project, a variety of lan-
guages will be needed to allow a designer’s representa-
tions to serve the variety of roles demanded of them.
Unfortunately, software engineering’s languages fall
short in some regards.

Software’s main strength in this regard is in com-
municating concepts unambiguously. UML and formal
architectural description languages (ADLs) have rigid
syntax, reducing their ambiguity. In agile approaches,
even programming languages take on the role of de-
sign languages, being used to communicate certain
implementation-level ideas unambiguously. Given that
we have little shared knowledge that can span all of
software design, such precision can be helpful.

But precision is not always desirable, and in fact
can be arduous to specify. Two of a representation’s
roles are recording information for one’s own use and
communicating with others. In the former case, scant
precision is needed, and in the latter, shared knowledge
can be used to fill in missing details. But the majority
of software design research has focused on symbolic
languages, which require great precision.

Analog languages [22] (such as sketches or scale
models) can be used at varying levels of detail and are
vitally important to design. The use of pseudocode and
whiteboard sketches is prevalent, but we have scarcely
studied the ways in which such approaches are used,
nor have we attempted to investigate and develop addi-
tional such languages. And while there is little need for
full standardization, helpful conventions and guide-
lines should be researched. Such work will provide us
with flexibility in our exploration and communication.
Research Direction 3: We must investigate ways to
provide and effectively support decidedly less formal,
analog design languages.

Design languages fall into a spectrum, addressing
goals, ideas, or a little of both. They might describe a
desired outcome; they might describe a feasible way to
achieve it. It is important, however, that they continue
to work towards addressing the language gap, in one
way or another.

An intriguing notion is to avoid putting the respon-
sibility of reducing the language gap on design lan-
guages, but to attempt to address it at the level of our
materials: our programming languages. If these lan-
guages were constructed so they were better suited to
design processes (i.e., defined a clearer space of feasi-
bility that was more easily carved with design deci-
sions), design would be simplified. Fourth generation
languages allow for some of this effect in the database
domain; we should explore other languages as well.
Research Direction 4: We need to become involved in
the definition of new programming languages so they
better suit our needs as a design discipline.

6.3 Existing Points of View: Tools

Tools serve two main roles in the design process:
supporting the creation of representations and support-
ing their interpretation. Software design finds its crea-
tion activities reasonably well supported; a variety of
design tools, such as Rational Rose or TogetherJ, allow
models to be created graphically. Some tools may al-
low designs to be derived from source code via reverse
engineering or support aspect-oriented design.

But the true strength of software’s tools lies in their
ability to assist in interpretation of design representa-
tions. Automated analysis tools can evaluate a design
and provide insight into their goal-level qualities. Crit-
ics, such as those employed in ArgoUML [23], take
this idea a step further and analyze design representa-
tions in real time. They then provide advice to the de-
signer about improving the design, as expressed in
terms of tool-level actions. From the perspective of our
model, critics and intelligent agents [24] can almost be
considered as co-designers, employing the knowledge
and goals that they have been configured with, and
interpreting representations accordingly.

In these tools we can see the hints of software ap-
proaching a true reflective conversation with materials,
but so far, research advances have fallen short. In par-
ticular, a candidate tool must provide feedback about
the qualities of the design that is: (1) presented in real-
time, and (2) presented in a form that can be inter-
preted without interrupting the process of creation.
Modern critics come close to achieving this, but fail on
the second criteria. When a designer must stop their

creative thought to read and interpret advice about
their design, they are unable to reflect-in-action.

We propose researching tools that create “active”
representations that change their appearance to reflect
the qualities they posses. For example a visual design
tool might adjust the colors of diagrammatic elements
based on their role in the design. Alternately, the ap-
pearance of the lines connecting elements could
change to illustrate their emerging relationships. Feed-
back of this kind could be selectively ignored, but
would allow the designer to focus on areas whose ap-
pearance reflected qualities they deemed undesirable.

Such a tool might even instead utilize a physical
metaphor, causing elements to shrink, stretch, or attract
each other according to design’s high-level properties.
Concepts such as coupling, cohesion, or the number of
functions in a class might be represented by physical
concepts such as tension, hardness, or weight. Based
on these attributes, the design would be modified by a
“physic engine”, providing the designer with real-time
feedback through analogous, familiar phenomena.

Countless possible variations of active representa-
tions of this kind exist, and only experimentation will
help us to understand which are helpful and which are
not. But if the feedback can be sufficiently intuitive
and unobtrusive, we see great potential for this ap-
proach.
Research Direction 5: We should develop tools that
truly support a reflective conversation with materials
through real-time, integrated feedback.

Software-based tools can also support a representa-
tion’s communication role, acting simultaneously as a
speaker and interpreter of design languages. CSCW
researchers have made numerous interesting advances
in communication tools, creating some that can support
collocated as well as remote collaboration [25], or pro-
viding technological support for gesture interpretation
[26]. But while this community has recognized the
value of face-to-face, simultaneous communication
[27], the software community has seen little tool sup-
port for it. Given the endorsement such communication
draws in the general design literature [8], we should
encourage more co-located design.

For example, simply working with others at a
whiteboard is a vital design activity [28] and there are
increasingly opportunities for tool support via elec-
tronic whiteboards. For example, a program that al-
lows designers to intuitively organize multi-modal
sketches could serve to support collective brainstorm-
ing. Or, by allowing multiple designers to independ-
ently modify a design on different parts of a board, and
then compare and reconcile the differences among

them, conversation about ideas and assumptions might
be spurred.
Research Direction 6: We should develop tools that
support face-to-face design collaboration, perhaps
utilizing new and emerging hardware options.

7. Discussion and Conclusions

It is difficult to evaluate a research contribution

such as ours; the benefits provided by our work cannot
be measured in terms of productivity increases, feature
lists, or user survey results. Instead, we must ask
“Does our work provide a useful perspective on soft-
ware design and ways to improve it?” We believe our
framework does exactly so by presenting beginning
answers to the fundamental questions posed in our
introduction.

We asked about the critical factors at play in soft-
ware design and find they can be described as the ele-
ments of our model: knowledge, goals, ideas, and rep-
resentations, plus activities, languages and, tools. By
considering these factors in terms of software’s spe-
cific needs, as we did in Sections 4, 5, and 6, we gain
valuable insight into software’s nature as a design
field.

We also explained some of software’s strengths and
weaknesses by discussing existing software design
contributions and using our framework to describe
their roles. We have shown that seemingly disparate
advances serve to address common concerns, such as
gathering feedback about the outcomes of our designs
or guiding us towards more effective solutions.

Finally, we suggested directions for further re-
search. While we cannot yet be certain of their value,
given the theoretical basis and the fact that advancing
in software design research to date correlate with the
lessons of our framework, we have great confidence in
their potential.

In many ways, software design has made important
progress. We are addressing software’s unique diffi-
culties, and our languages, tools, and representations
serve certain roles effectively. But, for our discipline to
mature, we must begin to focus our efforts on those
areas in which software designers are ill-supported.
This will require principled research and debate into all
factors surrounding the software design task.

It is very important to note, though, that we do not
consider the answers provided in this paper to be de-
finitive, nor final. We have presented a new framework
for discussing design, one that itself must be consid-
ered, debated, and refined. Further, lone researchers
cannot determine the state of software design, nor its
directions forward. Rather, we hope we have provided

the community with a seed for extensive debate. It is
only through presentation, evaluation, and refinement
of explanations of software design that we can advance
our understanding of its nature, and of its practice.

8. Acknowledgments

Effort partially funded by the National Science
Foundation under grant numbers CCR-0093489, DUE-
0536203, and IIS-0205724. We thank the anonymous
reviewers of a previous version of this paper.

9. References

[1] A. Newell and H. A. Simon, "GPS: A Program that
Simulates Human Thought," in Computers and Thought,
McGraw-Hill, NewYork, NY1963.
[2] T. Smithers and W. Troxell, "Design is Intelligent Be-
haviour, but What's the Formalism?," AI EDAM, vol. 4, pp.
89--98, 1990.
[3] H. A. Simon, The Sciences of the Artificial, 3rd Ed., MIT
Press, 1996.
[4] J. C. Jones, Design Methods. John Wiley and Sons, New
York, Inc., 1970.
[5] D. A. Schon, The Reflective Practitioner: How Profes-
sionals Think in Action, Basic Books, 1983.
[6] G. Fischer, "Communities of Interest: Learning through
the Interaction of Multiple Knowledge Systems," Proceed-
ings of User Modeling 2001.
[7] M. Stacey and C. Eckert, "Against Ambiguity," Com-
puter Supported Cooperative Work, vol. 12, 2003.
[8] H. Clark and S. Brennan, "Grounding in Communica-
tion," in Perspectives on Socially Shared Cognition. Ameri-
can Psychological Association, 1991.
[9] G. Fischer and J. Ostwald, "Knowledge Communication
In Design Communities," in Barriers and Biases in Com-
puter-Mediated Knowledge Communication. Springer, New
York, NY.
[10] F. Brooks, The Mythical Man-Month. Addison-Wesley,
Reading, MA, 1995.
[11] D. A. Norman, The Design of Everyday Things. Basic
Books, NewYork, NY, 2002.
[12] K. Beck, Extreme Programming Explained. Addison-
Wesley, Reading, MA, 1999.
[13] T. Demarco and P. J. Plauger, Structured Analysis and
System Specification, Prentice Hall, 1979.
[14] M. Jackson, Problem Frames: Analyzing and Structur-
ing Software Development Problems. Addison-Wesley Pro-
fessional, Reading, MA, 2000.
[15] A. F. Blackwell, C. Britton, and e. al., "Cognitive Di-
mensions of Notations," Cognitive Dimensions, 2000.
[16] R. N. Taylor, "Requirements Engineering is SO Twen-
tieth Century,” Keynote at STRAW, 2001.
[17] T. Winograd, Bringing Design to Software. Addison-
Wesley Professional, Reading MA, 1996.
[18] T. Winograd, "From Programming Environments to
Environments for Designing," Communications of the ACM,
vol. 38, pp. 65 - 74, 1995.

[19] G. Fischer, A. Girgensohn, K. Nakakoji, and D. Red-
miles, "Supporting Software Designers with Integrated Do-
main-Oriented Design Environments," IEEE Transactions on
Software Engineering, vol. 18, 1992.
[20] D. C. Batory, Lou; Goodwin, Mark; Shafer, Steve,
"Creating Reference Architectures: An Example from Avion-
ics," Software Engineering Notes, 1995.
[21] J. O. Borchers, "A Pattern Approach to Interac-tion
Design," AI & Society, vol. 15, pp. 359-376, 2005.
[22] Ö. Akin, "Variants in Design Cognition," in Knowing
and Learning to Design, 2002.
[23] J. Robbins, Hilbert, D. and Redmiles, D., "Argo: A
Design Environment for Evolving Software Architectures,"
Nineteenth International Conference on Software Engineer-
ing, Boston, MA, 1997.
[24] T. Mandel, " Social User Interfaces and Intelligent
Agents," in The Elements of User Interface Design, Wiley,
1997.
[25] M. Roseman and S. Greenberg, "TeamRooms: Network
Places for Collaboration," Proceedings of the 1996 ACM
Conference on Computer supported Cooperative Work, Bos-
ton, MA, 1996.
[26] M. M. Bekker, J. Olson, and G. Olson, "Analysis of
Gestures in Face-to-Face Design Teams Provides Guidance
for How to Use Groupware in Design," Proceedings of DIST,
New York, 1995.
[27] ACM, "Workshop on Shared Environments to Support
Face-to-Face Collaboration," CSCW, 2000.
[28] S. W. Ambler and R. Jeffries, Agile Modeling, Wiley,
2002.

