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ABSTRACT: 

 

Wavelets are powerful mechanisms for analyzing and 

processing digital signals.  The wavelet transform 

translates the time-amplitude representation of a 

signal to a time-frequency representation that is 

encapsulated as a set of wavelet coefficients.  These 

wavelet coefficients can be manipulated in a 

frequency-dependent manner to achieve various 

digital signal processing effects.  The inverse wavelet 

transform can then convert the manipulated wavelet 

coefficients back to the normal time-amplitude 

representation in order to yield a modified signal. 

 

After an overview of Fourier and wavelet transforms, 

the Haar wavelet and the Daubechies wavelet are 

described in this paper.  Several signal processing 

and musical applications of wavelets, including 

denoising, wavelet filtering, and data compression, 

are investigated.  A Java implementation of a 

wavelet-based effects processor is also presented. 
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AN INTRODUCTION TO WAVELETS 

 

From digital signal processing to computer vision, 

wavelets have been widely utilized to analyze and 

transform discrete data.  The concept of wavelets is 

rooted in many disciplines, including mathematics, 

physics, and engineering [1].  The 1980s witnessed a 

new wave of wavelet discoveries, like multiresolution 

analysis and orthonormal compactly supported 

wavelets.  These advances have revolutionized the 

field and have led to many novel applications of 

wavelets.  

 

A wavelet, which literally means little wave, is an 

oscillating zero-average function that is well 

localized in a small period of time.  A wavelet 

function, known as a mother wavelet, gives rise to a 

family of wavelets that are translated (shifted) and 

dilated (stretched or compressed) versions of the 

original mother wavelet [2].    

Wavelets have great utility in the area of digital 

signal processing.  A digital signal can be represented 

as a summation of wavelets that are fundamentally 

identical except for the translation and dilation 

factors (or coefficients).  Hence, a signal can be 

represented entirely by wavelet coefficients.  These 

coefficients provide important frequency and 

temporal information which can be used to analyze a 

signal.  Furthermore, the signal can be processed in 

the wavelet coefficient domain before being 

transformed back to the normal time-amplitude 

representation.  Thus, wavelets facilitate a unique 

framework for digital signal processing. 

 

FOURIER TRANSFORM 

 

Wavelet literature typically includes overviews of 

Fourier analysis and the Fourier transform [1][3], 

since the Fourier transform is a conceptual precursor 

to the wavelet transform.  Two centuries ago, Joseph 

Fourier showed that any periodic signal can be 

decomposed into a summation of sinusoids.   

 

The Fourier transform converts a signal into a 

frequency spectrum derived from the frequencies of 

the sinusoids.  The Fourier transform is presented 

below: 
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The exponential factor represents the sinusoidal 

component (via Euler’s Relation), f represents a 

particular frequency, and x(t) represents the input 

signal as a function of time [4].   Essentially, this 

integral is an inner product which correlates the input 

signal with the sinusoidal component.   A fast 

discrete method that computes the integral above is 

known as the Fast Fourier Transform. 

 

Due to the Heisenberg uncertainty principle, a 

fundamental tradeoff exists between frequency 

resolution and time resolution [4].  In the Fourier 

transform, a longer input time signal increases the 

accuracy of frequency information at the cost of 

losing temporal information.  While the Fourier 

transform is an excellent tool for spectral analysis, 



the Fourier transform is not capable of splitting the 

time-frequency tradeoff into fine levels of granularity 

based on frequency. 

 

WAVELET TRANSFORM 

 

The wavelet transform is a fine-grained approach that 

seeks to achieve an optimal balance between 

frequency resolution and time resolution.  At higher 

frequencies, the transform gains temporal 

information in exchange for a loss in frequency 

information, while at lower frequencies, the 

transform gains frequency information in exchange 

for a loss in temporal information.  This fine-grained 

approach in handling the tradeoff is useful for digital 

signal and music applications, since transients 

normally occur at high frequencies (thus needing a 

higher time resolution), and lower frequencies 

usually require a higher frequency resolution. 

 

Like the Fourier transform, the wavelet transform can 

be represented as an integral: 
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In the integral above, the input signal x(t) is 

correlated with the wavelet with translation 

parameter u and dilation parameter s [3].  This 

transform converts a signal into coefficients that 

represent both time and frequency information, with 

more time resolution at high frequencies, and more 

frequency resolution at low frequencies.  The dilation 

of the wavelet enables the fine-grained tradeoff to 

occur.  As with the Fourier transform, there are fast 

discrete ways of computing the wavelet transform. 

 

One fast way of computing a wavelet transform is 

with a cascade of filters [3].  The input signal is fed 

into two filters, H and G.  The filters produce two 

sets of coefficients which are both down-sampled by 

a factor of 2.  As shown in Figure 1, this procedure is 

recursively applied to the set of coefficient that 

comes out of the H filter.  One assumption of the 

wavelet transform is that the number of samples in 

the input signal is a power of 2.  If the number of 

samples is not a power of 2, the signal can be zero-

padded to achieve this criterion. 

 

 
Figure 1. Fast Wavelet Transform Using Filters 

 

HAAR WAVELET 

 

The Haar wavelet, which Alfred Haar discovered in 

1910, is both powerful and pedagogically simple.  

The basic Haar wavelet is a piecewise constant 

function that is defined as follows [5]: 
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Figure 2.  The Standard Haar Wavelet  

 

The Haar wavelet transform recursively replaces 

adjacent pairs of steps in the signal with a wider step 

and a wavelet [5].  A step φ is a function that is 1 in a 

continuous region and zero everywhere else. 

 

Consider a simple signal f of two samples: {7, 1}. 

The Haar wavelet transform calculates the average 

value coefficient, (7 + 1)/2, and the change 

coefficient (7-1)/2.  The average value is the 

coefficient for the wider step, while the change value 

is the coefficient for the standard Haar wavelet [5].  

The transform is presented below, and a graphical 

depiction is shown in Figure 3. 
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Figure 3.  Haar Wavelet Transform on Signal with 2 

Samples  

 

Consider another signal f that has 8 values: {3, -1, 4, 

8, 0, -2, 7, 1}. The Haar wavelet transform on this 

signal follows the procedure shown in Figure 1.  The 

wavelet transform needs to undergo log(8)=3 sweeps, 

with the recursion being applied to the average value 

coefficients.  Figure 4 details the derivation of the 

wavelet transform of signal f. 

 

 

 
Figure 4. Derivation of Haar wavelet transform 

coefficients, ordered from low to high frequencies 

 

One difference between the Fourier transform and the 

wavelet transform is that the frequency channels (or 

bins) of the Fourier transform are equally spaced, 

while the frequency channels of the wavelet 

transform are logarithmically spaced [4].   

 

In Figure 4, the frequency of the rightmost channel, 

which has coefficients of 2, -2, 1, 3, is twice as great 

as the frequency of the middle channel, which has 

coefficients of -2.5, -2.5.  Likewise, the frequency of 

the middle channel is twice the frequency of the 

lowest channel, which has a coefficient of 1.  The 

left-most result of the Haar wavelet transform, 2.5, is 

the average value of the whole signal. 

 

DAUBECHIES WAVELET 

 

Named after Ingrid Daubechies, the Daubechies 

wavelet is more complicated than the Haar wavelet.  

Daubechies wavelets are continuous; thus, they are 

more computationally expensive to use than the Haar 

wavelet, which is discrete [5]. 

 

 
Figure 5: Daubechies Wavelet 

 
The Daubechies 4 filter can be used to perform the 

Daubechies wavelet transform.  The inverse filter can 

then reconstruct the signal out of the wavelet 
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coefficients.  The following ‘lifted’ filter equations 

encapsulate the Daubechies wavelet transform [6]: 
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These equations are performed in sequential order for 

each iteration of the wavelet transform.  S stores the 

signal array, a stores the low-pass coefficients, and c 

stores the high-pass coefficients.  Succeeding 

iterations of the Daubechies wavelet transform would 

then apply these filter equations to the low pass 

coefficients.  This transform follows the same general 

process that was depicted in Figure 1. 

 

The implementation of the inverse Daubechies 

wavelet transform is straightforward.  The inverse 

algorithm can be achieved by reversing the order of 

the equations above and reversing the operations 

within those equations.  Thus, the signal S can be 

reconstructed from a and c coefficients. 

 

APPLICATIONS OF WAVELETS 

 

This section outlines several major applications of 

wavelets in signal processing.  A Java program called 

AWE (Art’s Wavelet Effects) has been implemented 

by the author in order to test the utility of wavelet 

transforms in signal processing.    

 

ANALYSIS & VISUALIZATION 

 

While excellent methods for spectral analysis already 

exist (like Fourier analysis), wavelets can also be a 

powerful tools for analyzing signals.  The wavelet 

transform facilitates multiresolution analysis, since 

the wavelet transform can be recursively applied to 

the signal to achieve any level of accuracy.  In 

essence, the wavelet transform allows for multiple 

perspectives on the signal, from a coarse-grained 

overview of the signal, to a detailed accurate view of 

the signal. 

 

The visualization of wavelet coefficients is an 

integral aspect of analyzing a signal.  There exist 

different ways to visually represent wavelet 

coefficients.  A time-frequency plane can be used to 

depict the distribution of energy among time and 

frequency [6].  This distribution of energy is 

determined by wavelet coefficients. 

 

AWE can visualize the wavelet transform 

coefficients in two different ways.  Like a spectrum 

plot, the first visualization simply graphs the wavelet 

transform coefficients in order from low to high 

frequencies, with logarithmically spacing.  One 

consequence of the logarithmic spacing is that the 

highest frequency occupies the entire right half of the 

plot.  The second visualization is similar in concept 

to the sonogram [4] and the time-frequency plane.  

The wavelet coefficients are mapped onto a triangular 

shape.  The apex of the triangle represents the 

coefficient for the lowest frequency, while the bottom 

of the triangle represents the coefficients for the 

highest frequency.  Each row in the triangle 

represents a different frequency channel. This 

triangular representation of the wavelet coefficients 

inversely corresponds to the wavelet domain of 

influence in time, which is also a triangle [4]. 

 

 
Figure 6: First visualization in AWE 

 

 
Figure 7: Second visualization in AWE 

 

DENOISING 

 

Noise removal is a commonly cited application of 

wavelets [2][5][6]; however, denoising appears to be 

used more in image processing than in sound 

processing.  Denoising is essentially accomplished by 

amplifying or reducing certain frequency channels in 

order to mitigate noise. 

 

If the signal is known to be within a certain range of 

frequencies, then all of the frequency channels 

outside of this range can be turned off in order to 

reduce noise.  If random noise is in the signal, the 

removal of small variations within the signal can help 

to denoise the signal [6].  Small signal variations can 



be reduced by setting the coefficients of the highest 

frequency channel to zero. 

 

AWE facilitates the denoising of signals.  Frequency 

channels can be both strengthened and weakened 

using AWE’s filter interface. 

 

WAVELET FILTERING 

 

Using the same approach as denoising, the wavelet 

coefficients can be manipulated to achieve a simple 

form of equalization.  Channels can be amplified to 

highlight certain frequencies or reduced to suppress 

certain frequencies [4].  Thus, filtering can be done in 

the wavelet domain.  AWE allows for the 

manipulation of ten frequency channels. 

 

COMPRESSION 

 

Another widely cited application of wavelets is the 

data compression of signals.  Wavelets are being used 

in new JPEG and MPEG standards to compress data.   

 

Compression can be accomplished through several 

ways.  One way is to pass the wavelet coefficients 

through a threshold function.  If a wavelet coefficient 

is above a specified threshold, then this coefficient is 

important, since it provides some measurable 

contribution to the signal.  This coefficient would be 

kept.  However, if the coefficient is below the 

specified threshold, the compression scheme would 

turn the coefficient to zero.   

 

Data compression can also be accomplished 

removing the high frequencies from the signal.  Since 

the frequencies are logarithmically spaced, the higher 

frequencies need much more memory space than the 

lower frequencies.  Assuming that frequencies are 

spaced by powers of two, the removal of only the top 

two frequency channels reduces the storage space 

needed to ¼ of the original space.  

 

AWE provides a simulation of wavelet data 

compression.  Since the Daubechies wavelet is 

continuous and the Haar wavelet is discrete, data 

compression is more sonically pleasing with the 

Daubechies wavelet than with the Haar wavelet.  

 

REAL-TIME MUSICAL EFFECTS 

 

Other interesting sound effects can be generated by 

manipulating the wavelet coefficients.  Modulation 

effects can be produced by multiplying the 

coefficients by a cosine wave.  AWE provides a 

simple demonstration of this modulation effect.  

Furthermore, cross-synthesis among two sets of 

wavelet coefficients can be achieved.  AWE also 

provides a demonstration of cross-synthesis.  In 

AWE, the wavelet coefficients of one signal act as 

thresholds for the wavelet coefficients of the other 

signal. 

 

Many other applications of wavelets, like pitch 

shifting and the comb wavelet transform, are 

described in the literature [4]. 

 

COMPUTATIONAL PERFORMANCE ISSUES 

 

While the wavelet transforms may not be as 

computationally efficient as the Fast Fourier 

Transform, the transforms can still be accomplished 

near real-time.  AWE implements both the Haar and 

Daubechies transforms along with various signal 

effects, and the sound still proceeds smoothly.  The 

visualization of the wavelet coefficients is the most 

computationally expensive aspect in AWE.  Thus, the 

program provides a mechanism to stop the 

visualization in order to ensure the efficient 

processing of sound. 

 

CONCLUSION 

 

Wavelet-based signal processing can be achieved by 

manipulating wavelet coefficients.  Denoising, 

filtering, and data compression are all possible in the 

wavelet domain.  Different wavelets can be used in 

the forward and inverse wavelet transforms, and the 

particular wavelet that is used influences the sonic 

characteristics of the effects. 
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