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Abstract

Here is a collapsed Gibbs sampler for the Relational Topic Model of Chang/Blei.

1 Relational Topic Model

Here is RTM’s generative process. I use the exponential linkprobability function for simplicity. I
also put a prior on the topicsβk instead of treating them as parameters. I use Chang/Blei’s choice of
symbols, except I denote the observed words asx instead ofw:

θd ∼ D[α] βk ∼ D[γ] zd,n ∼ θd xd,n ∼ βzd,n
yd,d′ ∼ ψe(y|zd,zd′ , η, ν) (1)

Here is the full joint distribution of the RTM:
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In the derivation above (2), note thatNndznd1 is 1 if tokenn in documentd is assigned to topicznd

and word-type1 (otherwise,Nndznd1 = 0). Likewise,nk1 is the number of tokens that are assigned
to topick and word1.

We can derive the collapsed joint distribution by integrating out{θd} and{βk}. Due to the conju-
gacy between the Dirichlet and the discrete distribution, the resulting collapsed distribution can be
analytically written down and is simply a product of gamma functions which are the normalizing
constants of the prior and posterior Dirichlets:
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In order to obtain the conditional distribution for a particular znd, we simply need to view all other
variables as constant. We can remove terms from the collapsed joint that do not depend onznd.
Making use of facts likeΓ(Ndk +α) = (N¬nd

dk +α)Γ(N¬nd
dk + α) and realizing thatΓ(N¬nd

dk +α)
does not rely onznd (since¬nd means we have excluded tokennd from the count) allows us to
obtain the conditional distribution. The resulting conditional distribution is simply the standard
LDA conditional distribution ofznd multiplied by the relevant link probability functions:
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In line 5, we divide the unnormalized conditional distribution ψe(yd,d′ |z¬nd
d ,zd′ , η, ν) which are

constants with respect toznd. This does not change the conditional distribution.

Now let us consider the terms relating to exponential probability link function (where z̄d =
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In line 12 above, I made the approximation
∏

i(1 − exp(ci)) ≈ (1 − exp(c̄i))
N for computational

efficiency. If one is willing to tolerate more computation, more accurate approximations can be used
as well.
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Putting all the pieces together, here is the conditional distribution forznd:
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Note that line 13 is the “LDA” part of the conditional distribution, line 14 is the term for observed
edges, and line 15 is the term for the observed non-edges. Theterm in line 14 only needs to be
computed once per document per sweep. Note that the only approximation made is the term in
line 15. Also note thatznd is included within the countNdk′ wherek′ = k. We can introduce an
additional approximation by only computing the term in line15 once per document per sweep and
caching it – this amounts to using theNdk count at the beginning of the Gibbs sweep.

After each Gibbs sweep over{znd}, the hyperparametersη, ν can be optimized via the techniques
in the appendix of Chang/Blei (although I haven’t looked at this closely yet). Also,α, γ can be
optimized by Minka’s fixed point updates.

I chose to focus on the exponential probability link function since it allows for the simplification in
line 14. It may also be possible to simplify the other probability link functions in Chang/Blei.

Since we now have a collapsed Gibbs sampler over{znd} that is similar to the standard LDA sam-
pler, one can easily extend the RTM. For instance, one can sample from theRelational Author Topic
model by simply plugging in the “author” term into the conditional distribution.

Finally, in order to turn this into a CVB0-style algorithm, one can use the same conditional distribu-
tion, but instead of sampling eachznd, one should maintain a distribution over eachznd and update
the count matricesNdk andNwk with the fractional count corresponding exactly to the conditional
distribution.
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