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Increasing complexity of embedded systems, and shortening time-to-market makes

designer productivity the key concern in embedded system development. As a result

Programmable Embedded Systems — that have a programmable processor and memory

subsystem to support the software part of the application — are becoming an attractive

platform for embedded system design. Programmable embedded systems greatly enhance

design reuse, reduce the complexity, and time-to-market via software. The application-

specific, strict, multi-dimensional design constraints, result in embedded processor designs

being highly customized. Embedded processors often feature design idiosyncracies, custom-

algorithms, and sometimes even miss some architectural features. Consequently, code gen-

eration for the embedded processors is a challenging task. However, if the compiler is able

to exploit the architectural features of the embedded processors, it can make a tremendous

difference in the power, performance, etc. of the eventual system. Existing embedded sys-

tem design/exploration techniques either do not consider compiler effects on the design, or

include the compiler effects in an ad-hoc manner, which may lead to inaccurate evaluation

of design choices and therefore result in suboptimal design decisions. This thesis proposes a

Compiler-in-the-Loop Exploration approach, – a systematic method to include compiler ef-

fects during architectural evaluation of embedded systems. This dissertation demonstrates
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the need and usefulness of the proposed methodology at several levels of embedded system

design abstraction: at the the instruction set architecture level, at the processor pipeline de-

sign level, at the memory design level, and at the processor-memory interface level. At each

level of design abstraction, this dissertation demonstrates that the proposed methodology

results in a more meaningful exploration of design space leading to better design decisions

with respect to the design goals of performance, code size, energy and power consumption.
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Chapter 1

Introduction

1.1 Embedded Systems

An embedded system is a special purpose computer system, which is encapsulated by

the device it controls. The embedded system takes inputs from a pre-defined, a rather re-

strictive interface, and has a very specific predefined functionality, unlike a general-purpose

computer system. For example, an embedded system is used in most modern cars to monitor

the engine emissions and adjust the engine operations to keep emissions as low as possible.

This system receives inputs from a variety of sensors, e.g., oxygen sensor, air pressure sensor,

air temperature sensor, engine temperature sensor, throttle position sensor, knock sensor,

etc. The embedded system uses this information to control fuel injectors, spark plugs, idle

speed etc. to achieve the best engine performance while minimizing the engine emissions.

1.1.1 Ubiquitous and Pervasive

Our everyday lives are becoming increasingly dependent on Embedded Systems. Fig-

ure 1.1 depicts that embedded systems play an important role in most aspects of our life. To

start with we may have some embedded systems inside our body, e.g., a rhythm generator.

Then, we might be wearing a few embedded systems on our body, e.g., watch and music

players. We interact with embedded systems all the time; at home, microwave, refrigerator,

home security system, are embedded systems. At office, the printer and fax machines are

examples of embedded systems. Even while going to office, we are dependent on over 50

embedded systems present in modern-day cars, and even more at each traffic control light.

Most entertainment systems are examples of high-end embedded systems. In fact even while
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Figure 1.1: Embedded System Collage, courtesy Prof. Prabhat Mishra

we are sleeping, the alarm radio clock is an embedded system we are dependent upon to

wake up on time.

While some embedded systems merely assist us to communicate with other people, e.g.,

mobile phones, others help to keep our lives organized, e.g., digital diary, PDA, there are

yet other classes of embedded systems on which we even depend on for our lives. For exam-

ple, several embedded systems, like the ones in automotive devices and controls, railways,

aircraft, aerospace and medical devices are safety-critical applications.

Embedded systems have wide-ranging impact on society, including security, privacy

and modes of working and living. Embedded Systems may not be visible to the customer

as “computers” in the ordinary sense. New processors and methods of processing, sensors,

actuators, communications and infrastructures are “enablers” for this very pervasive com-

puting. They are in a sense ubiquitous, that is, almost invisible to the user and almost

omnipresent. As such, they form the basis for a significant economic growth.

1.1.2 Impact of Embedded Systems

More than 98% of the processors designed today end up in embedded systems. Accord-

ing to a report, “Future of Embedded Systems Technology” from the BCC Research Group,

the worldwide embedded systems market was estimated at $45.9 billion in 2004. Expected

to grow at an average annual growth rate (AAGR) of 14% over the next six years, this
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market will cross $90 billion before 2010. To accommodate this exponential growth chip

designers and manufacturers have constantly pushed the envelope of technological, physical,

and design constraints. Various innovations and paradigm-defining ideas have taken shape

as a result.

1.2 Constraints on Embedded Systems

Embedded computer systems constitute the widest possible use of computer systems; it

includes all computers other than those specifically intended as general-purpose computers.

The diversity in the application of embedded systems translate into a very diverse set of

stringent application-specific, multi-dimensional constraints.

1.2.1 Application-Specific Constraints

Embedded systems are characterized by providing a set of function, or functions, that

is not itself a computer in the ordinary sense. Ranging from a portable music player, to

real-time control of systems, like of the space shuttle, the functionality and environment of

embedded systems varies a lot. For example, the embedded system used in space shuttles,

or oil well borehole must be able to operate at an unusual temperature and pressure, and

UV radiation ranges. The embedded system that controls the braking mechanism in cars

should respond quickly every time. Such embedded systems have real-time constraints on

their functionality.

1.2.2 Multi-dimensional Constraints

One distinguishing characteristic of embedded systems is the multi-dimensional con-

straints under which these systems must operate. A few of these constraints are:

Performance Embedded systems, like all other computer systems have performance con-

straints, and it is not surprising that more and more performance in being desired by

these embedded systems.

Cost A very common and important constraint for embedded systems is the cost. In the

domain of high volume embedded systems, e.g., a portable music player, reducing cost

becomes a major concern. These systems will often have just a few chips, a highly
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integrated CPU, a custom chip that controls all other functions and a single memory

chip. In these designs each component is selected and designed to minimize system

cost.

Weight Increased weight of hand-held embedded systems can render then unusable, or

atleast unsellable. For example the lightest mobile phones can be sold at premium

pricing. Automobile industry prefers light components, because weight directly im-

pacts the fuel consumption of the cars. Same is the case with embedded systems

deployed in space or air crafts.

Power/Energy Of all the constraints applicable on embedded systems, energy, or power

constraints may well be the most important ones, especially for battery operated

embedded systems. A strict limitation on the power consumption of the embedded

system comes from the power capacity of the battery. Furthermore, increase in energy

consumption results in either larger (and heavier) battery, or frequent charging, both

of which are undesirable.

Real-time Many embedded systems have real-time system constraints that must be met.

The braking mechanism in cars should respond quickly and reliably every time. Such

embedded systems have real-time constraints on their functionality. There needs to

be an acceptable limit on the theoretical limit on the time when the brake pedal is

pressed to the time when the brakes are applied. These hard timing constraints are

modeled as real-time constraints that must be met in the system.

Time-to-Market The life-time of most consumer electronic embedded systems is decreas-

ing drastically. Even time the time of inception of an embedded system device, it is

well known that the window in which the embedded system should be brought into

the market is very short. The deadlines to market the embedded systems are very

short, and the profit therein is very sensitive to it.

Size Embedded systems, especially the ones that go inside the body have very strict size

constraints. More broadly size constraint, or form factor is an important constraint

in cell phones, PDAs too.

Thus, unlike general purpose computers, embedded systems have constraints in many

dimensions, e.g., cost, area, power consumption, time-to-market, reusability, and even
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weight of the embedded system.

1.2.3 Stringent Constraints

Embedded systems are much more sensitive to multi-dimensional constraints than

general purpose systems. For example even if the weight, or area, or power consumption of

a general purpose computer is a little more than expected, it is okay, because the general

purpose computer is not supposed to be frequently moved, and is attached to the power

plug in the wall. However increase in the power consumption, or weight of a PDA may

render it unsellable, and unuseable. If the remote sensing applications consume more power

than it can be generated by the solar panels, then they cannot even function.

To summarize, embedded systems are characterized by strict multi-dimensional design

constraints.

1.3 Designer Productivity

1.3.1 Increase in Complexity

A very clear and important trend in embedded systems is the continuous increase in

complexity. More and more functionality is desired and delivered in the next generation of

electronic consumer systems. Together with the convergence of devices, this has led to a

steep increase in the complexity of embedded systems. For instance Handspring technologies

makes a popular cell phone series Treo. In 2002, Treo 300 was launched, equipped with a

33 MHz processor. The next version of Treo was launched in 2004, Treo 600, and it has

a 133 MHz processor. Cell phone processors are fast increasing in the capabilities, and

are fast marching towards the 600-megahertz range. Although evolving communications

standards are a reason for increasing performance requirements of cell phones, another

important reason is the convergence of functionality in cell phone. Call processing is now

just one small aspect of modern cell phones. They already come loaded with Palm organizer

software and a Blazer Web browser, and can run Microsoft Outlook, Word, Excel, and other

core business applications. Users can read and send e-mail, view PDFs, inspect and make

changes to documents, review change orders, and even pull up drawings to inspect with

co-workers. They can also call the office to check voice mail. The cell phones and PDAs

are already integrated, the vision is now to replace the laptop by these hybrid devices. For
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example, Siemens is developing the SX-1, a phone that uses a laser to project a virtual

full-size keyboard onto a flat surface, to make the laptops obsolete. Similarly there are

increasing performance demands for network routers, video games, and avionic software.

1.3.2 Shrinking Time-to-Market

The time elapsed from the conception of a product to when it is launched is called

Time To Market (TTM), and is one of the important factors which determines the profits

for the product. The embedded system market is characterized by amazingly small product

time to market window. Computers seem obsolete a few months after rollout and new

wireless phones come out two weeks after you bought one. In such a world, the TTM can

make or break an equipment manufacturer.

1.4 Programmable Embedded Systems

Increasing complex system functionalities and time-to-market pressures are changing

how electronic systems are designed and implemented today. The escalating nonrecurring

engineering (NRE) costs to design and manufacture the chips have tiled the balance towards

achieving greater design reuse. As a result hardwired application specific integrated circuit

(ASIC) solutions are no longer attractive. Increasingly we are seeing a shift toward sys-

tems implemented on programmable platforms. Embedded systems implemented on such

programmable platforms are called “Programmable Embedded Systems”. Programmable

embedded systems are an attractive option for modern embedded systems as they provide

easier and faster implementation, easier “reusability” and “upgrade-ability” via software.

When time-to-market is the major concern, designers definitely prefer to use “pro-

grammable” components instead of custom hardware components in the embedded sys-

tems. In the programmable embedded system as shown in Figure 1.2, the processor and the

memory are referred to as the programmable components. For example it is preferable to

implement the user interface in the phone in software. This allows cheap and fast upgrade-

ability of the user-interface of the phone. In fact the main reason for implementing some

functionality in custom-made hardware is to meet the speed and power constraints. With

increasing speeds and low-power processor technology available, more and more function-

ality is being shifted to the software. However by doing this, the onus of developing the
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Figure 1.2: Programmable Embedded System

system is shifted on to the software engineer.

1.4.1 Highly Customized Architectures

The programmable component in the embedded system (or the embedded processor)

is designed very much like the general purpose processors, but is more specialized and

customized to the application domain. To meet the strict multi-dimensional constraints

applicable on the embedded system, customization is very important. For example, even

though register renaming increases performance in processors by avoiding false data de-

pendencies, embedded processors may not be able to employ it because of the high power

consumption and the complexity of the logic. Therefore embedded processors might deploy

a “trimmed-down” or “light-weight” version of register renaming, which provides them the

best compromise on the important design parameters.

In addition designers often implement some irregular design features, which are not

common in general purpose processors, but will lead to significant improvements in some

design parameters for the relevant set of applications. For example, several cryptography

application processors come with hardware accelerators that implement the complex cryp-

tography algorithm in the hardware. By doing so, the cryptography applications can be

made faster, and consume less power, but may not have any noticeable impact on nor-

mal applications. Embedded processor architectures often have such application specific

“idiosyncratic” architectural features.

And last but not the least, some design features that are present in the general purpose
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processors may be entirely missing in embedded processors. For example, support for

prefetching is now a standard feature in general purpose processors, but it may consume

too much energy and require too much extra hardware to be appropriate in an embedded

processor.

1.4.2 Compilation Challenges

High levels of customization and the presence of idiosyncratic design features in em-

bedded processors, leaves the compiler for the embedded processors in a very tough spot.

Compilers for general purpose processors are not suitable for embedded processors for sev-

eral reasons as detailed in this section.

1.4.2.1 Different ISA

Typically embedded processors have different instruction set architectures (ISA) than

general purpose processors. While IA32, and PowerPC are the most popular ISAs in the

general purpose processors, ARM and MIPS are the most popular instruction sets in em-

bedded processors. The primary reason for the difference in ISAs is because embedded

processors are often built ground up to optimize for their design constraints. For instance

the ARM instruction set results in very small code size. Compiling an application in ARM

code may often lead to the minimum code size.

1.4.2.2 Different Optimization Goals

Even if the compilers can be modified to compile for a different instruction set, the

optimization goals of the compilers for general purpose processors and embedded processors

differ a lot. Most general purpose compiler technology aims towards high performance

and less compile-time. However for many embedded systems, code size may be a more

important design goal, because the binary image needs to fit in the limited memory present

in the embedded system. Furthermore power consumption is a very important goal for the

compilers of embedded processors, which may not be a concern for the compilers for general

purpose processors.
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1.4.2.3 Limited Compiler Technology

Even though techniques may be present to exploit the regular design features in the

general purpose processors, compiler technology to exploit the “customized” version of the

architectural technique may be absent. For example, predication is a standard architectural

feature employed in most high-end processors. In predication, the execution of each instruc-

tion is conditional on the value of a bit in processor state register, called condition bit. The

condition bit can be set by some instructions. Predication allows a dynamic decision about

whether to execute an instruction or not. However, due to the architectural overhead of

implementing predication, sometimes a very limited support for predication is deployed in

embedded processors. For example, in the Starcore architecture [1], there is no condition

bit, there is just a special conditional move instruction (e.g., cond move R1 R2, R3 R4),

whose semantics are: if (R1 > 0) move R1 R3, else move R1 R4. To achieve the same ef-

fect as predication, the computations should be performed locally, and then the conditional

instruction can be used to dynamically decide to commit the result or not. Now in such

cases, the existing techniques and heuristics developed for predication do not work. New

techniques have to be developed to exploit this “flavor” of predication in the architecture.

The first challenge in developing compilers for embedded processors is therefore to enhance

the compiler technology to exploit novel and idiosyncratic architectural features present in

embedded processors.

1.4.2.4 Limited Resources

Since the architectural feature deployed in embedded processor is irregular, idiosyn-

cratic or customized, the analysis required to exploit the feature is typically more complex.

However, since the analysis might have to run on the embedded processor itself, it may not

be a feasible solution. Therefore, merely developing a compilation technique to exploit an

architectural feature in the embedded processor is not enough, a light-weight analysis is re-

quired that can be employed in the resource constrained embedded processor. For example,

register renaming is a popular architectural feature present in many high-end processors.

It takes care of all the false dependencies in the code, and therefore does not need any

fine grain compiler support. However due to the high complexity of register renaming, it

is not typically present in embedded processors. Therefore there is scope of developing fine

grain compiler scheduling mechanisms that can improve the performance by avoid processor
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pipeline stalls due to data hazards for embedded processors. Furthermore, some embedded

processors may even deploy partial register renaming. In such customized cases, the analysis

to detect the data hazards becomes very complicated, as it has to be done on a case-to-

case basis; as a result, even if such a technique is developed, owing to it’s complexity, it

may be unusable in the embedded system. Therefore a major challenge is generating code

for embedded processors is to develop “light-weight” techniques to exploit the irregular,

idiosyncratic, design features in the embedded processor.

1.4.2.5 Avoid penalty due to missing design features

On the same lines, several times embedded systems simply omit some architectural

features that are common in general purpose processors. For example the support for

prefetching may be absent in embedded processor. In such cases, the challenge is to minimize

the power and performance loss due to the missing architectural feature.

To summarize, code generation for embedded processor is very challenging due to their

non-regular architectures, and stringent multidimensional constraints on them.

1.4.3 Compilation is Effective for Embedded Processors

However, the brighter side of this story is that it has been shown time and again that

when a compilation technique is developed to exploit an ”idiosyncratic” architectural fea-

tures of embedded systems, the power, performance, etc. of the system can be significantly

improved. For example, a compiler technique to support the partial predication can achieve

almost the same performance as complete predication [2]. Therefore it is definitely very

important to investigate compiler techniques to exploit the various architectural features

present in embedded systems. This is one of the most important goals of this thesis. In

this thesis, we propose several compilation techniques to exploit the architectural features

present in embedded processors.

1.5 Compiler-Assisted Embedded Processor Design

Given the significance of the compiler on the processor power and performance, it is

only logical that the compiler must play an important role in embedded processor design.

This is especially important for embedded systems.
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1.5.1 Traditional Design Space Exploration

Compiler

Processor
Description

ADL

Application Executable Simulator Report

Figure 1.3: Traditional Simulation-Only Design Space Exploration

Figure 1.3 models the traditional design methodology for exploring prcoessor archi-

tectures. In the traditional approach, the application is compiled once to generate an

executable. The executable is then simulated over various architectures to choose the best

architecture. We call such traditional design methodology as Simulation-Only (SO) De-

sign Space Exploration (DSE). The SO DSE of embedded systems does not incorporate

compiler effects on the embedded processor design. However the compiler effects on the

eventual power, performance characteristics can be incorporated in embedded processor

design in an ad-hoc manner in the existing methodology. For example, the hand-generated

code can be used to reflect the code that the actual compiler will eventually generate. This

hand-generated code can be used to evaluate the architecture. However, such a scheme may

be erroneous and result in sub-optimal design decisions. A systematic way to incorporate

compiler hints while designing the embedded processor is needed.

1.5.2 Compiler-in-the-Loop Exploration

Compiler

Processor
Description

ADL

Application Executable Simulator Report

Figure 1.4: Compiler-in-the-Loop Design Space Exploration

In this thesis, we propose a systematic method to incorporate compiler effects during

the embedded processor design. Figure 1.4 describes our proposed Compiler-Assisted, or

Compiler-in-the-Loop (CIL) schema for DSE. In this scheme, for each architectural vari-

ation, the application is compiled (using an architecture-sensitive compiler), and the exe-
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cutable is simulated on a simulator of the architectural variation. Thus the evaluation of

the architecture incorporates the compiler effects in a systematic manner.

The key enabler of the CIL DSE methodology is a architecture-sensitive compiler.

While a conventional compiler takes only the application as input and generates the exe-

cutable, an architecture-sensitive compiler also takes the processor architecture description

as an input. The architecture-sensitive compiler exploits architectural features present in

the described system, and generates code for the specific architecture configuration.

1.6 Thesis Contributions

This thesis advances both the compiler technology and processor design technology in

synergistic ways. This thesis advances compiler technology by developing novel techniques

to exploit architectural features present in embedded processors. Additionally, this thesis

demonstrates the need and usefulness of CIL DSE to effectively and accurately explore the

embedded processor design space.

Instruction Set Pipeline
Processor Memory

Design

Memory Interface
Processor Pipeline - 

Figure 1.5: Processor Design Abstractions

This dissertation develops novel compilation techniques to exploit architectural fea-

tures present in embedded processors and demonstrate the need and usefulness of CIL DSE

at several abstractions of processor design, as shown in Figure 1.5: at the processor instruc-

tion set design abstraction, at the processor pipeline design abstraction, at the memory

design abstraction, and at the processor memory interaction abstraction.

At the processor pipeline design abstraction, in Chapter 2, we first develop a novel

compilation technique for generating code for processors with partial bypassing. Partial

bypassing is a popular microarchitectural feature present in embedded systems because

although full bypassing is the best for performance, it may have significant area, power and

12



wiring complexity overheads. However, partial bypassing in processors poses a challenge

for compilers, as there are no techniques to accurately detect pipeline hazards in a partially

bypassed processors. Our Operation Table based modeling of the processor allows us to

accurately detect all kinds of pipeline hazards, and generates up to 20% better performing

code than a bypass insensitive compiler.

During processor design, the decision to add/remove a bypass is typically made by

designer’s intuition and/or SO DSE. However, since the compiler has significant impact on

the code generated for a bypass configuration, the SO DSE may be significantly inaccu-

rate. The comparison of our CIL with SO DSE demonstrates that not only do these two

explorations result in significantly different evaluations of each bypass configurations, but

they also exhibit different trends for the goodness of bypass configurations. Consequently,

the traditional SO DSE can result in sub-optimal design decisions, justifying the need and

usefulness of our CIL DSE of bypasses in embedded systems.

At the instruction set design abstraction, in Chapter 3, we first develop a novel compi-

lation technique to generate code to exploit reduced bit-width Instruction Set Architectures

(rISA). rISA is a popular architectural feature in which the processor supports two instruc-

tion sets. The first instruction set comprises instructions which are 32-bits wide, and the

second is a narrow instruction set which comprises 16-bit wide instructions. rISA architec-

tures were originally conceived to reduce the code size of the application. If the application

can be expressed in the narrow instructions only, then upto 50% code compression can be

achieved. However since the narrow instructions are only 16-bits wide, they implement

limited functionality, and can access only a small subset of the architectural registers. Our

register pressure heuristic consistently achieves 35% code compression as compared to 14%

achieved by existing techniques.

In addition we also find out that the code compression achieved is very sensitive on

the narrow instruction set chosen and the compiler. Therefore during processor design,

the narrow instruction set should be designed very carefully. We employ our CIL DSE

technique to design the narrow instruction set. We find that correctly designing the narrow

instruction set can double the achievable code compression.

At the processor pipeline - memory interface design abstraction, in Chapter 4, we first

develop a compilation technique to aggregate the processor activity and therefore reduce

the power consumption when the processor is stalled. Fast and high bandwidth memory
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buses — although best for performance — can have very high cost, energy consumption,

and design complexity. As a result embedded processors often employ slow buses. Reducing

the speed of the memory bus increases the time a processor is stalled. Since the energy

consumption of the processor is lower in the stalled state, the power consumption of the

processor decreases. However there is further scope for power reduction of the processor by

switching the processor to IDLE state while it is stalled. However, switching the state of

the processor takes 180 processor cycles in the Intel XScale, while the largest stall duration

observed in the qsort benchmark of the MiBench suite is less than 100 processor cycles.

Therefore it is not possible to switch the processor to low power IDLE state during naturally

occurring stalls during the application execution. Our technique aggregates the memory

stalls of a processor into a large enough stall, so that the processor can be switched to the

low power IDLE state. Our technique is able to aggregate up to 50,000 stall cycles, and by

switching the processor to low power IDLE state, the power consumption of the processor

can be reduced by up to 18%.

There is a significant difference in the estimation of the processor power consumption

between the SO DSE and CIL DSE. SO DSE can significantly overestimate the processor

power consumption for a given memory bus configuration. This bolsters the need and

usefulness of including compiler effects during the exploration and therefore highlights the

need for CIL DSE.

At the memory design abstraction in Chapter 5, we first develop a novel compilation

technique to optimize for energy consumption in Horizontally Partitioned Cache (HPC)

architectures. HPC is a popular memory architectural feature present in embedded systems

in which the processors have multiple (typically two) caches at the same level of memory

hierarchy. Wisely partitioning data between the caches can result in performance and

energy improvements. However existing techniques target at performance improvements

and achieve energy reduction only as a byproduct. Our energy oriented data partitioning

technique is able to reduce the energy consumption by the memory subsystem by 50%,

while losing 3% on performance.

We observe that the energy reduction obtained using HPCs is very sensitive on the

caches sizes. Therefore it is important to include compiler effects while deciding the caches

sizes. As compared to SO DSE of HPC configurations, CIL DSE results in discovering HPC

configurations which result in 33% less energy consumption.
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Finally we summarize and conclude our thesis in Chapter 6.
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Chapter 2

Processor Pipeline Design

The processor pipeline design is arguably the most important aspect of processor de-

sign. Design of the processor pipeline includes deciding the length and the width of the

processor, the register renaming and instruction scheduling policy, the number of integer,

and floating point ALUs, multipliers, load store units, branch units and much more. As

depicted in Figure 2.1, the processor pipeline design also heavily depends on and influences

the instruction set architecture and the memory design of the processor.

Pipeline
Processor Memory

Design

Memory Interface
Processor Pipeline - 

Instruction Set

Figure 2.1: Processor Pipeline Design Abstraction

Typically the next generation of a processor has the same instruction set architecture,

but has a different processor pipeline structure. For example, the pipelines implementing

the ARM instruction have evolved from a simple 3-stage pipeline to a 5-stage pipeline in

StrongARM 11000 and currently to the 7-stage pipeline in the Intel XScale. The processor

pipeline is the chief means of achieving the power, performance objectives of the processor.

In the context of embedded systems, there is a tremendous opportunity to tune the

application code to the processor pipeline features to optimize for power and performance
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etc. Consequently when the processor pipeline is modified (upgrade a processor), a new

compiler is released for the new processor. Note that since the ARM instruction sets are

backward compatible, the application code that was executing on the old ARM processor

will execute correctly on the new processor, although it will not be executing efficiently. The

compiler for the new processor tries to exploit the processor pipeline features and achieve

efficient execution of the application code.

However, it takes a very long time to develop the compiler for the new generation of the

processor. This is primarily due to very limited reuse of the compiler across the processor

designs. The heuristics for speedup, or low-power employed in the previous version of the

processor do not work for the new processor; as a result, significant parts of the compiler have

to re-written and re-tuned. Retargetable compiler technology aims to solve this problem by

developing a compiler, in which the heuristics and compiler passes are parameterized on the

architectural features. In the ADL-based retargetable compilers, the processor pipeline is

specified in an Architecture Description Language (ADL), and the compiler is parameterized

on the architecture description.

Retargetable compilation techniques have been developed to exploit the length, and

width of the processor. Retargetable compilation techniques have been developed in the

EXPRESSION project [3], which allows the designers to add/remove a pipeline stage and

generate efficient code for the processor pipeline design. The Trimaran [4] compiler uses

the MDes ADL to produce code for parameterizable EPIC architectures. Thus designers

can accurately explore the impacts of the modifying the processor pipeline length, while

including the compiler effects. What is more important is that emission of such compiler

effects not including the compiler impacts results in significant error in the judgement of

the goodness of the pipeline designs.

In this chapter we focus on developing a retargetable compilation technique for partially

bypassed processors and demonstrate the effectiveness of CIL DSE exploration methodology

to design the bypasses of the processor.

2.1 Partial Bypassing

Bypasses, or forwarding paths are simple yet powerful and widely used feature in

modern processors to eliminate some data hazards [5]. With Bypasses, additional datapaths
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and control logic are added to the processor so that the result of an operation is available

for subsequent dependent operations even before it is written in the register file. However,

this benefit of bypassing is accompanied by significant impact on the wiring area on the

chip, possibly widening the pitch of the execution-unit datapaths. Datapaths including the

bypasses often are timing critical and cause pressure on cycle time, especially the single cycle

paths. The delay of bypass logic can be significant for wide issue machines. Due to extensive

bypassing very wide multiplexors or buses with several drivers may be needed. Apart from

the delay, bypass paths increase the power consumption of the processor. Thus complete

bypassing may have a significant impact in terms of area, cycle time, and power consumption

of the processor [6]. Partial bypassing presents a trade-off between the performance, power

and cost of a processor. Partial bypassing is therefore an especially valuable technique for

application specific embedded processors.

As mentioned earlier, embedded systems are characterized by strict multi-dimensional

design constraints, including severe constraints on time-to-market. Short time-to-market

makes it imperative to reuse design parts both in hardware and software. Design reuse in

compilers, which is one of the most important, time consuming and costly software in an

embedded processor system, is facilitated primarily by the means of a retargetable compiler

technology. A retargetable compiler, as opposed to a normal compiler, also takes the pro-

cessor description, as an input parameter. However partial bypassing poses challenges for

good quality code generation by retargetable compilers. A good compiler should not only be

able to use the bypasses present in the processor, but also avoid the penalty of the bypasses

missing in the processor. Although ad-hoc scheduling rules, like ”instruction patterns” can

be used to generate code for a processor with a given bypass configuration, a more formal

and extensible technique is needed for retargetable compilers. The key enabler for this is

the ability to accurately detect pipeline hazards. A pipeline hazard detection mechanism

is a fundamental capability used in most retargetable scheduling algorithms. Traditional

retargetable compilers use the information about the structure of the processor to detect

and avoid resource hazards [7], and use constant operation latency of each operation to

detect and avoid data hazards [8]. For each operation o, the operation latency is defined as

a positive integer ol ∈ I+, such that if any data-dependent operation is issued more than

ol cycles after issuing o, then there will be no data hazards.

For processors that have no bypassing, or have complete bypassing, the operation
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latency is a well defined constant. However, for a partially bypassed processor, the operation

latency cannot be specified by a constant. In fact the operation latency of an operation

depends on the two dependent operations, the dependent operand, the structure of the

pipeline and also on the presence/absence of the bypasses. Thus traditional retargetable

pipeline hazard detection techniques, that assume a constant operation latency break down

in the presence of partial bypassing. There are no existing retargetable pipeline hazard

detection techniques for a partially bypassed processor.

In the absence of retargetable pipeline hazard detection mechanisms, it is possible

to perform conservative scheduling by using existing techniques. This can be done by

using operation latencies obtained by assuming that no bypasses are present. Although

conservative scheduling will result in a legitimate schedule even for statically-scheduled

processors, it fails to exploit the bypasses present in the processor. The other option is

to perform optimistic scheduling using operation latencies obtained by assuming that all

bypasses are present. Optimistic scheduling may result in illegitimate schedules for statically

scheduled (VLIW) processors, but it is able to use the bypasses present in the processor.

However, it incurs penalty due to the missing bypasses in the processor. In fact, it can

be shown that pipeline hazard detection using any constant value of operation latency is

sub-optimal. Therefore an accurate and retargetable pipeline hazard detection mechanism

is needed.

Adding or removing bypasses in a processor is architecture independent (does not af-

fect the instruction set). As a result bypasses in a processor can be changed while still

keeping the processor backward compatible. Thus, tuning the bypass configuration is a

lucrative option even while developing the next generation of the processor. With incom-

plete bypassing becoming popular in modern embedded processors, developing retargetable

compilers is needed to generate good quality code for them. Bypass-sensitive retargetable

code generation therefore not only enables quick and easy adaptation of the compiler to mi-

nor changes in the design, but is of paramount importance for rapid and automated design

space exploration of processors with partial bypasses.

We solve the problem of retargetable pipeline hazard detection using Operation Tables

(OTs). An OT is a mapping between the operands of an operation to the resources and

the registers of the processor. An OT captures which processor resources an operation uses

in each cycle of it’s execution. It can therefore be used to detect resource hazards in a
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given schedule. An OT also captures the read/write/bypassing of processor registers and

can therefore be used to detect data hazards in a given schedule. Thus OTs are able to

accurately detect all pipeline hazards in an integrated manner. Most existing scheduling

algorithms can leverage our integrated and accurate pipeline hazard detection mechanism

to generate better schedules.

2.2 Motivation

Consider the three flavors of bypassing in a simple 5-stage pipeline shown in Figure 2.2,

Figure 2.3 and Figure 2.4. In all these pipelines we assume that the write in the register

file takes place at the end of the cycle. Thus, if the same register is read and written in a

cycle, the old value is read.

Consider the execution of an ADD operation in these pipelines. In absence of any

hazards, if the ADD operation is in F pipeline stage in cycle i, then it will be in OR

pipeline stage in cycle i + 2. At this time it needs to read the two source registers. The

ADD operation will then write back the destination register in cycle i + 4, when it reaches

the WB pipeline stage. The result of the ADD operation can be read from the register file

in and after cycle i + 5.

pipeline path
data path

F D OR EX WB

RF

Figure 2.2: A 5-stage processor pipeline with no bypassing

The pipeline in Figure 2.2 does not have any bypasses. There is only one way to read

operands, i.e., from RF. Thus, the operation latency of ADD is 3 cycles. Any dependent

operation should be scheduled at-least 3 cycles after ADD to avoid any data hazard.

Figure 2.3 contains bypasses from both EX pipeline stage and WB pipeline stage to

both the operands of OR pipeline stage. This is an example of complete bypassing. For

completely bypassed pipeline, the operation latency of ADD is 1 cycle. A data dependent
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pipeline path
data path

F OR EX WB

RF

D

Figure 2.3: A 5-stage processor pipeline with complete bypassing

operation scheduled 1 or 2 cycles after ADD can read the result of ADD from the bypass,

while a data dependent operation scheduled 3 or more cycles after ADD can read the result

from RF. The effect complete bypassing is to reduce the operation latency, resulting in

performance improvement. But in either case (in the case of no bypassing, or complete

bypassing), the operation latency can be accurately described by a single value.

pipeline path
data path

D ORF WB

RF

EX

Figure 2.4: A 5-stage processor pipeline with partial bypassing

The pipeline in Figure 2.4 contains bypass only from EX pipeline stage to both the

operands of OR pipeline stage. There is no bypass from WB pipeline stage. This is an

example of partial bypassing. In the pipeline with partial bypassing, scheduling a data

dependent operation 1 cycle after ADD will not result in a data hazard, because the result

of ADD can be read from EX pipeline stage via the bypass. However if the data dependent

operation is scheduled 2 cycles after scheduling ADD, there is no way to read the result of

ADD. There is a data hazard. But again, if the data dependent operation is scheduled 3

or more cycles after ADD, then the result of the ADD operation can be read from the RF.

Thus the data hazard can be avoided by scheduling a data dependent operation of ADD

1 cycle or 3 or more cycles after scheduling the ADD operation. The operation latency
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of ADD in the incompletely bypassed pipeline in Figure 2.2 (c) is denoted by 1, 3, which

means that scheduling a data dependent operation 1 or 3 or more cycles after the schedule

cycle of ADD will not cause a data hazard, but scheduling the data-dependent operation 2

cycles after the schedule cycle of ADD WILL cause a data hazard.

Thus due to incomplete bypassing, the operation latency of ADD cannot be accurately

specified using just one value. Unlike previous approaches that use a single value, in this

chapter we show how OTs can be used to accurately pipeline hazards in the presence of

such multi-valued operation latencies. The operation latency in the presence of incomplete

bypasses is very much linked to the structure of the pipeline and the presence and absence

of bypasses, and the path operation takes in the pipeline. Operation Tables define a binding

between an operation and the resources it may use and registers it will read/write/bypass

in each cycle of it’s execution. Using a resource and register model of a processor, OTs can

be used to model both the data and resource hazards.

2.3 Related Work

Bypassing was first described in the IBM Stretch [9]. Modern processors heavily use

bypasses to avoid data hazards and thereby improve performance. Cohn et. al [10] showed

that partial bypassing helps reduce cost with negligible reduction in the performance on the

iWarp VLIW processor. Abnous et. al [11], [12] analyzed partial bypassing between VLIW

functional units in their 4-integer-unit VIPER processor. They argued that the bypassing

cost is minor as compared to the performance benefits achieved in RISC processors, but

that complete bypassing is too costly in VLIW processors.

Ahuja et al. [6] discuss the performance and cost trade-off of register bypasses in

a RISC-like processor. They manually performed bypass sensitive compilation (operation

reordering) on a few benchmarks, and presented results with a relatively coarse cache model.

Buss et al. [13] reduce inter-cluster copy operations by placing operand chains into the

same cluster and assigning FUs to clusters such that the inter-cluster communication is

minimized. The work closest to ours is by Fan et al. [14], in which they describe their

bypass customization framework based on bypass sensitive compilation. They focus on

VLIW processors and propose an FU-assignment technique to make better use of partial

bypasses. However they do not perform instruction reordering. In contrast we propose
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a bypass-sensitive instruction-reordering technique that is applicable for a wide range of

processors.

The concept of Operation Tables (OTs) proposed in this chapter is similar to Reser-

vation Tables (RTs). Reservation Tables (RTs) [15] or Finite State Automata [16], [17]

(generated from Reservation Tables) are used to detect resource hazards in retargetable

compiler frameworks [18], [4], [3], [7]. RTs model the structure of the processor including

the pipeline of the processor and the flow of operations in the pipeline. RTs can thus be

used to model resource hazards in a given schedule. However RTs do not model data in the

schedule and are thus unable to detect data hazards. Operation Tables, model both the

resources and the register information of operations so that both data and resource hazards

can be effectively captured.

2.4 Processor Model

C1 C2 C3 C4

C5

p1

p3 p4

p5

p6 p7

p9

p8

p2

LS

XWB

LWB

RF

F D OR

EX

Figure 2.5: Example Pipeline

In this section, we define the processor and operation model. We will then define

Operation Table for operations on the processor model depicted in Figure 2.5.

2.4.1 Pipeline Model

A pipelined processor can be divided into pipeline units by the pipeline registers. The

processor pipeline can be represented as a Directed Acyclic Graph (DAG) of the pipeline

units, ui ∈ U which represent the nodes of the DAG, and a directed edge (ui, uj) represents

that operations may flow from unit ui to unit uj . There is a unique ”source node”, u0, to
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which there are no incoming edges. This unit generates operations. Further, some nodes

are ”sink nodes”, which do not have any outgoing edges. These nodes represent writeback

units. In the pipeline shown in Figure 2.5, F is the source unit and XWB and LWB are the

writeback units. The operations flow along the block arrows.

2.4.2 Operation Model

Each operation oi ∈ O supported by the processor is defined using an opcode oi.opcode

and a list of source and destination operands, oi.sourceOperands and oi.destOperands. The

opcode defines the path of the operation in the processor pipeline. Each source or destination

operand, operand is defined by a 3-tuple, <arg, rf, rn>, where arg is the argument of the

operand, rf is the register file it belongs to, (or IMM for immediate operands), and rn is

the register number (or immediate value for immediate operands). The operand argument

describes how to read/write the operand. Thus the operation, ADD R1 R2 5, has opcode

ADD, and has one destination operand and two source operands. The destination operand

is represented by <D1, RF, 1>. The first source operand is represented as <S1, RF, 2>,

and the third as <S2, IMM, 5>.

2.4.3 Pipeline Path of Operation

The pipeline path of an operation oi is the ordered list of units that an operation

flows through, starting from the unique source unit u0, to at least one of the writeback

units. Each unit ui ∈ U contains a list of operations that it supports, ui.opcodes. The add

operation, ADD R1 R2 5 has opcode ADD, and the pipeline units F, D, OR, EX and XWB

have the ADD operation in the list of opcodes they support.

2.4.4 Register File

We define a register file as a group of registers that share the read/write circuitry. A

processor may have multiple register files. The processor in Figure 2.5 has a register file

named RF.

2.4.5 Ports in Register File

A register file contains read ports and write ports to enable reading and writing of

registers from and to the register file. Register operands can be read from a register file
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rf via read ports, rf.readPorts, and can be written in rf via write ports, rf.writePorts.

Register operands can be transferred via ports through register connections. The register

file RF in the processor in Figure 2.5, has two read ports (p6 and p7) and two write ports

(p8 and p9).

2.4.6 Ports in Pipeline Units

A pipeline unit, ui can read register source operands via its read ports, ui.readPorts,

write result operands via its write ports, ui.writePorts, and bypass results via its bypass

ports, ui.bypassPorts. Each port in a unit is associated with an argument arg, which

defines the operands that it can transfer. For example a readPort of a unit with argument

S1 can only read operands of argument S1. In the processor in Figure 2.5, pipeline unit

OR has 2 read ports, p1 and p2 with arguments, S1 and S2 respectively. The units, XWB

and LWB have write ports p4 and p5 respectively with arguments D1, and D2 respectively

while EX has a bypass port p3 with argument D1.

2.4.7 Register Connection

A register connection rc facilitates register transfer from a source port rc.srcPort to

destination port rc.destPort. In the processor diagram in Figure 2.5, the pipeline unit OR

can read two register source operands, first from the register file RF (via connection C1),

and second from RF (via connection C2) as well as from EX (via connection C5). The

register connection C5 denotes a bypass.

2.4.8 Register Transfer Path

Register transfers can happen from a register file to a unit (register read), from a unit

to a register file (a writeback operation), and even between units (register bypass). The

register transfers in our processor are modeled explicitly via ports. A register transfer path

is the list of all the resources used in a register transfer, i.e., the source port, the register

connection, the destination port, and the destination register file or unit.
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Operation Table Definition
OperationTable := { otCycle }
otCycle := unit ros wos bos dos
ros := ReadOperands { operand }
wos := WriteOperands { operand }
bos := BypassOperands { operand }
dos := DestOperands { regNo }
operand := regNo { path }
path := port regConn port regFile

Table 2.1: Operation Table Definition

2.5 Operation Table

An Operation Table (OT) describes the execution of an operation in the processor.

Table 2.1 describes the grammar and structure OTs. An OT is a DAG of OTCycles, each

OTcycle describes what happens in each execution cycle, while the directed edges between

OTCycles represent the time-order of OTCycles. Each OTCycle describes the unit in

which the operation is, and the operands it is reading ros, writing wos and bypassing bos

in the execution cycle. The destination operands dos are used to indicate the destination

registers, and are required to model the dynamic scheduling algorithms in the processor.

Each operand that is transferred (i.e., read, written, or bypassed) is defined in terms of the

register number, regNo, and all the possible paths to transfer it. A path is descibed in

terms of the ports, register connections and the register file involved in the transfer of the

operand.

Table 2.2 shows the OT of the add operation, ADD R1 R2 R3 on the partially bypassed

pipeline shown in Figure 2.5. In the absence of any hazards, the add operation executes

in 5 cycles, therefore the OT of the add operation contains 5 otCycles. In the first cycle

of its execution, the add operation needs the F pipeline stage, and in the second cycle it

needs D pipeline stage. In the third cycle, the add operation occupies OR pipeline stage

and needs to read its source operands R2 and R3. All the paths to read each readOperand

are listed. The first readOperand, R2 can be read only from the RF via connection C1.

There are two possible paths to read the second operand. First is from RF via ports p7

and p2 and connection C2. The second path is from Ex via ports p3 and p2 and connection

C5. Since the sources are read in this cycle, the destOperands are listed. In the fourth cycle

the add operation is executed and needs EX pipeline stage. The result of the operation
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Operation Table of ADD R1 R2 R3
1 F
2 D
3 OR

ReadOperands
R2

p1, C1, p6, RF
R3

p2, C2, p7, RF
p2, C5, p3, EX

DestOperands
R1, RF

4 EX
BypassOperands

R1
p3, C5, p2, OR

5 WB
WriteOperands

R1
p4, C3, p8, RF

Table 2.2: Operation Table of ADD R1 R2 R3

R1 is bypassed via connection C5. It can be read as the second operand of the operation

occupying the OR unit. WB pipeline stage is needed in the fifth cycle. In the otCycle the

result of the add operation R1 is written back to RF via connection C3.

2.6 Bypass Register File

The OT of an operation lists all the paths to read each operand. In the presence of

bypasses, there may be multiple ways to read an operand. For example, in the Intel XScale

processor, an operand can be read from the register file and 7 bypasses. Thus there can be

8 paths to read an operand. Listing down all the paths to read the operands makes the OT

description not only long, but also error-prone. To reduce the complexity of specification,

the concept of Bypass Register File (BRF) is used.

2.6.1 Bypass Register File

A Bypass Register File (BRF) is a virtual register file for each operand that is read

in the processor pipeline. All the bypasses that are attached to the operand write to the
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BRF, and the operand can be read from the normal register files or the BRF. The semantics

of BRF differ from a regular register file in the sense that the register values are valid for

only one cycle. Only one BRF is needed for each operand that can accept values from the

bypasses. This greatly reduces the complexity and redundency in the specification of OTs.

C2C1 C3 C4

C5

p1

p3 p4

p5

p6 p7

p9

p8

p2

p11
p10

C6

OR

EX

LS

XWB

LWB

RF

BRF

F D

Figure 2.6: Example Pipeline with BRF

Figure 2.6 shows the processor pipeline model with Bypass Register File abstraction.

All the bypasses to port p2 of unit OR write into the BRF , and the second operand that

has to be read via port p2, can now be read either from the register file RF via connection

C2, or from BRF via connection C6.

Table 2.3 shows the OT of the operation ADD R1 R2 R3 using the BRF abstraction.

The only difference is that the EX unit now bypasses the result to the BRF though ports

p3, and p10, and connection C5, and that the second operand in OR is read via the register

file RF or via the BRF .

Therefore using the BRF abstraction, only one Bypass Register File is needed for each

machine operand that can be read and it accepts bypasses.

2.7 Hazard Detection using Operation Tables

Operation Tables can be used to detect pipeline hazards in a processor, for a given

schedule of instructions. Hazard detection using OTs requires that the state of the machine

(processor) be maintained to reflect the current schedule. The state of the machine is

defined in Table 2.4.

A machineState is a ordered list (square brackets) of macCycle. Each macCycle
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Operation Table of ADD R1 R2 R3
1 F
2 D
3 OR

ReadOperands
R2

p1, C1, p6, RF
R3

p2, C2, p7, RF
p2, C6, p11, BRF

DestOperands
R1, RF

4 EX
BypassOperands

R1
p3, C5, p10, BRF

5 WB
WriteOperands

R1
p4, C3, p8, RF

Table 2.3: Operation Table of ADD R1 R2 R3 with BRF

Machine State
machineState := [macCycle]
macCycle := Resources, RF, BRF

Table 2.4: Machine State

denotes the state of the machine resources (whether they are busy or free), and the registers

in the register files (whether they are available for read, or not). The state of the Bypass

Register File also a part of the macCycle.

The function DetectHazard described in Figure 2.7 is the main pipeline hazard detec-

tion function. It detects both the data and resource hazards if the operation op is scheduled

at time t in a given machineState. The function DetectHazard tries to schedule each

otCycle of the operation in the machine states starting from time t. It reports a hazard if

there is a hazard in scheduling any otCycle in the corresponding macCycle.

The function DetectCycleHazard, described in Figure 2.8 detects a hazard when an

otCycle is scheduled in a macCycle. The function reports a hazard if a resource that

is required in the otCycle is not present in the macCycle. A hazard is reported if any

readOperand cannot be read (lines 04-07), or writeOperand cannot be written (lines 08-

12). To avoid WAW (Write After Write), a hazard is reported when a destOperand is not
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bool DetectHazard(machineState, Operation op, Time t)
01: for (i = 0; i < op.OT.length; i + +)
02: if (DetectCycleHazard(machineState[t + i], op.OT [i]))
03: return TRUE
04: endIf
05: endFor
06: return FALSE

Figure 2.7: Detect Hazard when an operation is scheduled

present in the Register File (lines 13-18).

The function AvailRP in Figure 2.9 tells whether the register reg can be read via

any paths in the macCycle. A register can be read by a path if the register is present in

the RegFile (line 04) and all the resources required to read the register from the RegFile

are available (line 03). A register can be read if it can be read by any path (line 01, 05).

Similarly, the function AvailWP indicates if the register reg can be written via any of the

paths in the macCycle. The register can be written in the RegFile in cycle macCycle (line

13) if all the resources in any path (line 10) are available in the macCycle (line 12).

The function DetectHazard is thus able to tell, if there is a hazard in scheduling

an operation in certain cycle, given the state of the machine. For this to function cor-

rectly, the state of the machine needs to be maintained. The function AddOperation in

Figure 2.10 updates the machine state after scheduling operation op in cycle t. It finds

the earliest macCycle to schedule each otCycle without a hazard (lines 03-04), and then

updates the macCycle. Each machineState is updated by scheduling an otCycle by the

function AddCycle (line 06).

The function AddCycle in Figure 2.11 updates a macCycle by scheduling an otCycle

in it. A macCycle is updated by removing all the Resources required in otCycle from

the Resources in macCycle (line 01). All the required resources for the operand reads

(lines 02-05) and writes (lines 06-11) are also marked as busy. If there are DestOperands,

RemRegFromRegFile removes the Register from RF in the later cycles (lines 12-15). The

function AddRegToRegFile, adds the WriteOperands to RF in the later cycles (line 10).

In the next sections we show that the DetectHazard function, and the AddOperation

function can be used to detect all the pipeline hazards using Operation Tables. Thereafter

we discuss how these fundamental functions can be used to improve most existing standard
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bool DetectCycleHazard(macCycle, otCycle)
/* resource hazard */
01: if (otCycle.Resources �⊂ macCycle.Resources)
02: return TRUE

/* all sources can be read*/
03: foreach (ro ∈ otcycle.ReadOperands)
04: if (AvailRP (ro.Register, ro.Paths,macCycle) == φ))
05: return TRUE
06: endIf
07: endFor

/* all dests can be written */
08: foreach (wo ∈ otcycle.WriteOperands)
09: if (AvailWP (wo.Register, wo.Paths,macCycle) == φ))
10: return TRUE
11: endIf
12: endFor

/* dest is not available */
13: foreach (do ∈ otcycle.DestOperands)
14: regF ile = do.RegisterF ile
15: if (do.Register �∈ macCycle.regF ile)
16: return TRUE
17: endIf
18: endFor

/* no hazard */
19: return FALSE

Figure 2.8: Detecting Hazards when a cycle of Operation Table is scheduled

scheduling algorithms.

2.8 Illustrative Example

Consider scheduling the sequence of three operations in the pipeline in Figure 2.6.

MUL R1 R2 R3 (R1← R2×R3)

ADD R4 R2 R3 (R4← R2 + R3)

SUB R5 R4 R2 (R5← R4−R2)

The OTs of ADD and SUB are similar, except for the register indices. The MUL
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path AvailRP(reg, paths, macCycle)
01: foreach (path ∈ paths)
02: regF ile = path.RegisterF ile
03: if (path.Resources ⊂ macCycle.Resources)
04: if (reg ∈ macCycle.regF ile)
05: return path
06: endIf
07: endIf
08: endFor
09: return φ

path AvailWP(reg, paths, macCycle)
10: foreach (path ∈ paths)
11: regF ile = path.RegisterF ile
12: if (path.Resources ⊂ macCycle.Resources)
13: return path
14: endIf
15: endFor
16: return φ

Figure 2.9: Finding the available read and write path

operation uses the same resources but spends two cycles in the EX pipeline stage. An

operation bypasses the results only after the execution has finished. Thus a valid bypass

from EX pipeline stage will be generated only in the second cycle of execution of MUL.

Since MUL occupies the EX pipeline stage for two cycles, a resource hazard should be

detected between the MUL and ADD operation. SUB requires the result of ADD operation

as the first operand, for which there is no bypass, so there should be a data hazard. We

illustrate the detection of hazards by scheduling these three operations in-order. Initially

We assume that all the resources are free and that all the registers are available in the

RF. There is no hazard when MUL is scheduled in the first cycle. Figure 2.12 shows the

machineState after MUL is scheduled by AddOperation.

If we try to schedule ADD in the next cycle, DetectHazard detects a resource hazard.

There is a resource hazard when the fourth otCycle of ADD is tried in the fifth macCycle.

The resource EX is not free in the macCycle. Figure 2.13 shows the machineState after

scheduling ADD in the second cycle using AddOperation.

Now in the existing schedule in Figure 2.13, if we try to schedule SUB in the third

cycle, there is a data conflict. The third otCycle of SUB cannot read R4 from RF. AvailRP
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void AddOperation(machineState, op, t)
01: j = t
02: for (i = 0; i < op.OT.length; i + +)
03: while (DetectHazard(machineState[j], op.OT [i])
04: j + +
05: endWhile
06: AddCycle(machineState[j], op.OT [i])
07: endFor

Figure 2.10: Update the state of the machine

returns φ because even though the connection C1 is free, R4 is not present in RF. The data

hazard is resolved in the eighth cycle of machineState. Figure 2.14 shows machineState

after SUB is scheduled in the third cycle using AddOperation.

Thus Operation Tables can be used to accurately detect both data and resource con-

flicts, even in the presence of incomplete bypassing.

2.9 Integrating OTs in a Scheduler

Detection of pipeline hazards is a fundamental problem in scheduling. Our OT-based

approach generates accurate hazard detection information, allowing any traditional schedul-

ing algorithm to perform better. For the sake of illustration, we demonstrate how to modify

a simple list scheduling algorithm to use Operation Tables. We believe OTs can similarly

be integrated into other scheduling formulations. The scheduling problem is to schedule

the vertices of a data dependence graph G = (V,E), where each vertex corresponds to an

operation, and there is an edge between vi and vj if vj uses the result of vi. Vertex v0 and

vn are the unique start and end vertices. The function parents(v) gives a list of all the

parents of v.

Figure 2.15 maintains three sets of vertices, U , the unscheduled vertices, F , the frontier

vertices or the vertices that are ready to be scheduled, and S, the vertices that have been

scheduled (line 01). We initialize the algorithm by scheduling the vertex start vertex v0.

Therefore, U = V −v0, F = φ, and S = v0. The schedule time for each vertex is initialized to

0 (schedT ime[v] = 0, ∀v ∈ V ) (lines 02-04). For scheduling, the frontier set of unscheduled

vertices is computed in each step. All unscheduled vertices (v ∈ U) whose parents have

been scheduled (parents(v) ⊂ S) belong to the frontier set. (line 06) The vertices in the
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void AddCycle(macCycle, opcycle)
/* make the resources busy */
01: macCycle.Resources− = macCycle.Resources

/* mark the resources used in read as busy */
02: foreach (ro ∈ otcycle.ReadOperands)
03: path = AvailRP (ro.Register, ro.Paths,macCycle)
04: macCycle.Resources− = path.Resources
05: endFor

/* mark the resources used in write as busy */
06: foreach (wo ∈ otcycle.WriteOperands)
07: reg = wo.Register
08: path = AvailWP (wo.Register, wo.Paths,macCycle)
09: macCycle.Resources− = path.Resources
10: AddRegToRegFile(reg, path.RegisterF ile, j)
11: endFor

/* remove the dest register */
12: foreach (do ∈ otcycle.DestOperands)
13: reg = do.Register
14: regF ile = do.RegisterF ile
15: RemRegToRegFile(reg, regF ile, j)
16: endFor

Figure 2.11: Update a machine cycle

frontier set are sorted by some priority function (line 07), and the vertex with the least

cost is picked for scheduling (line 08). The minimum schedule time for v is the maximum

of the schedule time plus the latency of each parent vertex p (line 09). The vertex v is

then scheduled in the first cycle, when it does not cause a hazard (lines 10-13). Different

implementations of list scheduling mainly differ in the priority function for the frontier set.

However in the presence of partial bypassing, the operation latency of an operation is

not sufficient to avoid all the data hazards; Operation Tables are needed. The traditional

list scheduling algorithm can be very easily modified to make use of the DetectHazard

and AddOperation functions to schedule using Operation Tables. Figure 2.16 shows the

same list scheduling algorithm that uses Operation Tables for pipeline hazard detection.

The only modification required is to change the DetectHazard function (line 09) and the

AddOperation function (line 12). Our new Operation Table based DetectHazard func-

tion defined in Figure 2.7 is used. The AddOperation function is needed to update the
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machineState that is a input parameter in the DetectHazard function.

Thus we have demonstrated the integration of the Operation Table based pipeline

hazard detection mechanism into the standard list scheduling algorithm. Pipeline hazard

detection being a very important and distinct part in most scheduling algorithms enables

easy swapping by our more accurate OT-based technique. Thus most existing scheduling

algorithms should be able to leverage the accurate pipeline hazard detection mechanism to

generate better schedules.

2.10 Effectiveness of OT-based Bypass-sensitive Compiler

To demonstrate the need and efficacy of Operation Tables, we perform experiments on

the popular embedded processor, the Intel XScale [19], employed in wireless and hand-held

devices. The Intel XScale provides high code density, high performance and low power,

all at the same time. Figure 2.17 shows the 7-stage out-of-order superpipeline of XScale.
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XScale implements dynamic scheduling using register scoreboarding, and has a partially

bypassed pipeline. We present experimental results on the benchmarks from MiBench

[20] suite, which are the representative of typical embedded applications. To estimate the

performance of compiled code we have developed a cycle-accurate simulator of the Intel

XScale processor pipeline. Our simulator structurally models the Intel XScale pipeline

and its performance measurements have been validated against the 80200 evaluation board

[21]. The performance measurement of our cycle-accurate simulator is accurate to within

7% of the evaluation board. This accuracy is good enough to perform processor pipeline

experiments with reasonable fidelity.

Figure 2.18 shows the experimental setup for these experiments. We first compile the

applications using GCC cross compiler for XScale. The benchmarks were compiled using

the -O3 option to optimize for performance. We then simulate the compiled code on our

XScale cycle accurate simulator and measure the number of execution cycles (gccCycles).

We read the executable and generate the control flow graph and other data dependency

data structures. We perform OT-based scheduling on each basic block of the program, and

generate the executable again. Our within-basic block scheduling algorithm is very sim-

ple. We enumerate all the possible schedules and consider only the first 1000 schedules.

The instructions are re-ordered to match with the best performing schedule and the new

executable is generated. We simulate the new executable on the same XScale cycle ac-

curate simulator and measure the number of execution cycles (otCycles). The percentage
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ListSchedule(V)
01: U = V − v0;F = φ;S = v0

/* initialize */
02: foreach (v ∈ V )
03: schedT ime[v] = 0
04: endFor

/* list schedule */
05: while (U �= φ)
06: F = {v|v ∈ U, parents(v) ⊂ S}
07: F.sort() /* some priority function */
08: v = F.pop()
09: t = MAX(schedT ime(p) + p.OL), p ∈ parents(v)
10: while (DetectHazard(v, t))
11: t + +
12: endWhile
13: schedT ime[v] = t
14: endWhile

Figure 2.15: Original List Scheduling Algorithm

performance improvement is computed as gccCycles−otCycles
gccCycles × 100.

We perform exhaustive scheduling within the basic blocks. Exhaustive scheduling

must have exponential time complexity, but data dependencies limit the number of possible

schedules. As a result the OT-based rescheduling time for all the benchmarks is below 1

minute.

Figure 2.19 plots the percentage performance improvement over various benchmarks.

The graph shows that our code generation scheme can generate up to 20% better performing

code than the best performing code generated by GCC. susan.corners is an image processing

algorithm that finds the corners in a given image. Our compiler was able to detect data

conflicts in two innermost loops of the corner detection algorithm, and was able to find a

schedule that avoided the conflict. In the bitcount benchmark, the scheduling could not find

a better schedule than GCC in the frequently executed loops. It could find at least one

instance of data hazard (undetected by GCC) in some other loop, and was able to avoid

it, but since the loop was not among the most frequently executed loop the performance

difference was not significant. In the qsort benchmark, although our detection hazard could

detect some sub-optimal schedules, it was not possible to avoid them by re-ordering alone.
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ListScheduleUsingOTs(V)
01: U = V − v0;F = φ;S = v0

/* initialize */
02: foreach (v ∈ V )
03: schedT ime[v] = 0
04: endFor

/* list schedule */
05: while (U �= φ)
05: F = {v|v ∈ U, parents(v) ⊂ S}
06: F.sort() /* some priority function */
07: v = F.pop()
08: t = MAX(schedT ime(p)), p ∈ parents(v)
09: while (DetectHazard(machineState, v.OT, t))
10: t + +
11: endWhile
12: AddOperation(machineState, v.OT, t)
13: schedT ime[v] = t
14: endWhile

Figure 2.16: List Scheduling algorithm using Operation Tables

We surmise that if OT-based hazard detection technique is implemented as a first-class

technique in the main compiler flow, much better results can be achieved. Another reason

that reduces the effectiveness of our schedule is due to the variation of latencies of operations,

especially the memory latencies. OT-based compiler generates a precise schedule for a

given flow of instructions in the pipeline and their latencies. Any variation in the latencies

disturbs the quality of the schedule generated. In the benchmark susan.edges, the high

rate of cache misses disturbed the generated schedule so much that very little improvement

was achieved. Although the benefits achieved by a scheduler using OTs may be small, it

is always beneficial. In fact for our set of benchmarks, OT-based compiler on an average

generates 8% better performing schedule than the best performing schedule generated by

GCC.

2.11 Compiler-in-the-Loop Partial Bypass Exploration

Traditionally the decision of which bypasses to add/remove is based on the designer’s

intuition and/or simulation-only exploration. The traditional method of exploring partial
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Figure 2.17: 7-stage pipeline of XScale

bypasses i.e. simulation-only exploration is performed by measuring the performance of the

same compiled code (binary) on processor models with different bypass configurations. The

configuration with the best performance is chosen. However, once a bypass configuration is

chosen, a “production compiler” is developed for the chosen bypass configuration. Although

it takes a lot of time and effort to develop the production compiler, finally it is able to exploit

the bypasses present in the processor. It has been shown that tuning the compiler for the

bypass configuration has significant impact on the performance of a partially bypassed

processor [22]. This implies that the performance estimation done by the simulation-only

exploration incurs significant errors. Furthermore in a simulation-only exploration, since

the code that executes on the processor may not be the correct representative of the code

that will be finally executed on the processor, it leads to inaccuracies in other estimates e.g.

power. There is thus a crucial need of a bypass-sensitive compiler-in-the-loop exploration

of partial bypassing in embedded processors.

Embedded systems, which are characterized by multi-dimensional design constraints

including power, performance and cost, critically require an exploration framework which

is able to accurately evaluate the performance, area and energy of each design alternative

and thus perform meaningful multi-dimensional trade-offs.

To address these issues, we developed PBExplore: A Compiler-in-the-Loop Framework

to explore Partial Bypassing in processors. PBExplore evaluates the performance of a

bypass configuration by generating code for the processor with given bypass configuration

and simulates the generated code on cycle accurate simulator of the processor with the same

bypass configuration. PBExplore also synthesizes the bypass control logic and evaluates the

area and energy overhead of the bypass configuration. Thus PBExplore is able to effectively

perform meaningful multi-dimensional (performance-area-power) trade-offs among bypass
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Figure 2.18: Experimental Setup

configurations. This makes PBExplore a valuable assist for designers of programmable

embedded systems.

2.11.1 PBExplore: A Compiler-in-the-Loop Exploration Framework

PBExplore is driven by bypass configuration as shown in Figure 2.20. All the bypasses

present in the processor are described in the bypass configuration. A bypass is defined

in terms of the pipeline stage where it is generated, and the operand that can use it. The

application is compiled using a bypass-sensitive compiler that is parameterized on the bypass

configuration. The generated executable is then simulated on a cycle accurate simulator that

is parameterized on the same bypass configuration. The cycle accurate simulator reports

the runtime (in cycles) for the application. The bypass configuration is used to synthesize

the bypass control logic and estimate the area overhead of bypasses. A Power simulator uses

the synthesized bypass control logic, and the input stimuli in each cycle (generated by the

cycle accurate simulator) to estimate the energy consumed by the bypass control logic for

the execution of the application. Thus PBExplore is able to make an accurate estimation of

performance (cycles of execution), area and energy consumption overhead for each bypass

40



Performance Improvement

0

5

10

15

20

25

Basicmath

Bitcount
Qsort

Susan.smoothing

Susan.corners

Susan.edges

Dijkstra

Benchmarks

Figure 2.19: Experimental Results

configuration. We now describe the different components of PBExplore.

2.11.2 Area and Energy Overhead Estimation

We quantify the area and energy consumption overhead of bypassing by synthesizing

the bypass control logic for each bypass configuration. Figure 2.21 shows the bypass logic

for the second operand in the OR pipeline stage in the pipeline in Figure 2.21, which receives

only one bypass (from the EX pipeline stage). Each operand can potentially receive bypass

from each pipeline stage. Of course for real processors that have large number of such

bypasses for each operand, the bypass control logic scales and result in significant area and

energy consumption overhead. Each pipeline stage that is a source of a bypass, generates

a bypass value, a bypass valid and a bypass register number. If the operand to be read

matches any of the incoming bypass register numbers, then the corresponding bypass value

is chosen, otherwise the value from the register file is chosen. We synthesize the bypass

logic using the Synopsys Design Compiler[23] and estimate the area overhead of the bypass

control logic. Synopsys Power Estimator[23] is then used to simulate this bypass control

logic with the input stimuli generated by the cycle accurate simulator to estimate the energy

consumption of the bypass control logic.
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2.11.3 Simulation-only Exploration

To demonstrate the need, usefulness and capabilities of PBExplore, we perform several

experiments on the Intel XScale[19] architecture. XScale has three execution pipelines, the

X pipeline (units X1, X2, and XWB), the D pipeline (units D1, D2 and DWB), and M

pipeline (units M1, M2 and Mx(referred to as MWB)). For our experiments we assume that

7 pipeline stages, X1, X2, XWB, M2, MWB, D2 and DWB can bypass to all the 3 operands

in RF . Thus there are 7 × 3 = 21 different bypasses in XScale. No computation finishes

before or in the pipeline units M1 and D1, thus there are no bypass connection from these

units.

In the XScale pipeline model, we vary whether a pipeline stage bypasses its result

or not. If a pipeline stage bypasses, all the operands can read the result. Thus there

are 27 = 128 possible bypass configurations. Figure 2.22 plots the runtime (in execu-

tion cycles) of the bitcount benchmark for all these configurations using simulation-only

(dark diamonds), and compiler-in-the-loop (light squares) exploration. We make two im-

portant observations from this graph. The first is that all the light squares are below their

corresponding dark diamonds, indicating that the execution cycles evaluated by compiler-

in-the-loop exploration is less than the execution cycles evaluated by the simulation-only

exploration. This implies that the bypass-sensitive compiler is able to effectively take ad-

vantage of the bypass configuration, and is generating good quality code for each bypass
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Figure 2.22: Simulation-only vs. Compiler-in-the-Loop Exploration

configuration. The second observation is that the difference in the execution cycles for

a bypass configuration can be up to 10%, implying that the performance evaluation by

simulation-only exploration can be up to 10% inaccurate.

A case can be made for simulation-only exploration by arguing that the error in explo-

ration is important only if it leads to a difference in trend. To counter this claim we will now

zoom into this graph and show that simulation-only exploration and compiler-in-the-Loop

exploration result in different trends, and may lead to different design decisions. Figure 2.23

is a zoom-in of Figure 2.22 and shows the explorations when only the X-bypasses are varied,

while the rest are present. To bring out the difference in trends, the bypass configurations

in this graph are sorted in the order of execution cycles as evaluated by simulation-only
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Figure 2.23: X-bypass Exploration for bitcount benchmark

exploration. Figure 2.23 shows that as per the simulation-only approach, all configurations

with bypasses from two stages in the X-pipeline are similar, i.e. the execution cycles for

configurations < X2 X1 >, < XWB X1 > and < XWB X2 > are similar. However, our

bypass-sensitive compiler is able to exploit the configuration < X2 X1 > better than other

configurations with two X-bypasses.

(c) D Bypass Exploration (bitcount)
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Figure 2.24: D-bypass Exploration for bitcount benchmark

Figure 2.24 and Figure 2.25 focuses on varying D and M bypasses while keeping the

rest in-place. Figure 2.24 shows that the simulation-only exploration evaluates the perfor-

mance of the bypass configurations with one bypass as equivalent. However, our PBExplore

determines that if you can have only one bypass, the bypass from the D2 pipeline stage is a

superior choice. We make similar observations for the M-bypass exploration in Figure 2.25.

Thus, performance evaluation by the simulation-only exploration and our bypass-

sensitive compiler-in-the-loop exploration differ significantly, and may lead to different de-

sign decisions.
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(d) M Bypass Explorations (bitcount)
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Figure 2.25: M-bypass Exploration for bitcount benchmark

2.11.4 Compiler-in-the-Loop Exploration
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Figure 2.26: Power-Area trade-offs using PBExplore

To demonstrate that PBExplore can effectively perform a multi-dimensional explo-

ration, we vary the bypasses only for the first operand, and assume that all the bypasses

reach the other two operands. Thus there are 27 = 128 bypass configurations. Figure 2.26

shows the performance-area evaluation of each bypass configurations computed using PB-

Explore. Similarly, Figure 2.27 shows the performance-energy evaluation of each bypass

configurations computed using PBExplore.

The performance area and energy consumption are shown relative to that of a fully

bypassed processor. The interesting pareto-optimal design points 1 and 2 are marked in

both the graphs. Design point 1 represents the bypass configuration when MWB and XWB

do not bypass to the first operand. This bypass configuration, uses 18% less area than

full bypassing and consumes 14% less energy than full bypassing, while suffering only 2%

performance penalty. Similarly design point 2 represents the bypass configuration when only
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Figure 2.27: Power-Energy trade-offs using PBExplore

D2 and X2 bypass to the first operand. This configuration uses 25% less area and consumes

16% less power than fully bypassed processor, while losing only 6% on performance. These

configurations represent cheaper (in area and energy consumption) design alternatives, at

the cost of minimal performance degradation. These are exactly the kind of trade-offs that

an embedded processor designers would need to evaluate when customizing bypasses.

2.12 Summary

The design of a processor’s pipeline has a profound impact on the power, performance

of the processor; consequently it is a very important step in processor design. Significant

research efforts have been invested in developing compiler techniques to exploit processor

pipeline details in order to improve the performance, energy consumption etc.

In this chapter we advance the existing architecture-sensitive compiler technology by

making the compiler sensitive to the bypasses present in the processor pipeline. Bypasses

are present in most pipelined processors, as they eliminate certain data hazards and improve

performance. However, bypasses often have significant impact on the cycle-time, power con-

sumption and the complexity of the processor. Embedded system designers, in their quest

to achieve all the multi-dimensional design goals in chorus, want to customize the bypasses.

They want to keep only the most useful bypasses, and get rid of the less useful ones, with

minimum loss in performance. Such a processor, in which only some of the bypasses are

present, is called a partially bypassed processor. Partially bypassed processors pose a chal-

lenge for code generation. Missing bypasses cause data hazards and result in performance

loss. Existing architecture-sensitive compilation techniques cannot model partial bypasses
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and are therefore not able to accurately detect all pipeline hazards in a partially bypassed

processor.

In this chapter we proposed the Operation Tables representation to model a partially

bypassed processor pipeline. Our Operation Table based compiler is able to accurately

detect all kinds of pipeline hazards in a partially bypassed processor, and is therefore able

to generate code for any given bypass configuration. On the base configuration of the

partially bypassed Intel XScale processor, our bypass-sensitive compiler is able to generate

up to 20% better performing code than a bypass insensitive compiler.

Further, we developed a CIL DSE to explore bypasses in a processor pipeline. Tradi-

tionally the decision of which bypasses to keep and which ones to remove was done using the

designer’s intuition and/or a SO DSE. We show that the performance evaluations of bypass

configurations as done by SO DSE are not only significantly different than the results of the

CIL DSE, but there is a difference in trends too. This implies that SO DSE can result in

sub-optimal design decisions and therefore inferior processor microarchitecture, establishing

the need and usefulness of our CIL DSE strategy in designing the bypasses of the processor

pipeline.

While this approach is useful for both general purpose and embedded processors, we

believe it is particularly important for embedded processor designs that need to meet strict

timing, area, and codesize constraints. Further, in this chapter we have demonstrated the

need and usefulness of CIL DSE for the design of partial bypassing in pipelined processors.

However, we believe CIL DSE is useful in designing many other architectural features at

the processor pipeline design abstraction.
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Chapter 3

Instruction Set Architecture

Design

The instruction set of a processor determines the syntax and the semantics of the

instructions of the processor. As shown in Figure 3.1, traditionally the compiler is not

aware of the internals of the processor, and the instruction set is the only interface it

understands. In its most basic form, a compiler just recodes an application in a high-level

programming language (e.g., C, C++, Java) into the binary instructions of the processor.

Thus the instruction set is the only interface between the application code and the processor;

it provides the mechanisms for the application to exercise the internal components of the

processor.

Pipeline
Processor Memory

Design

Memory Interface
Processor Pipeline - 

Instruction Set

Figure 3.1: Instruction Set Architecture Design Abstraction

Among generations of processors, the instruction set is often updated to better exploit

the new processor design internals. For example, the ARM instruction set has gone through

11 revisions and may go through several more. The instruction set design is very crucial
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and has tremendous impact on the power, performance etc. achievable by the processor.

Every change in the instruction set requires reevaluation of the applications to determine if

it can make efficient use of the processor design via the interface.

Typically the decisions of the changes in the instruction set are manual. To evaluate

the effectiveness of the changes, or evaluate the new instruction set, designers typically

hand generate the code and measure the power, performance metrics etc. of the processor.

This method of evaluating the new instruction set may be okay if finally humans will be

developing code for the processor. However due to explosion in the size of the software

executing on embedded processors, this is no longer feasible. Increasingly compilers are

now becoming the default code generators. In such a case, evaluating the goodness of a

new instruction set by hand compiling the application may not be accurate.

To remove this limitation of hand generating code to evaluate a new architectural fea-

ture, Architecture Description Langugage (ADL) based exploration techniques have been

proposed. In these semi-automated methods, the instruction set of the processor is described

in the ADL, and then a compiler/simulator toolchain is generated for the described instruc-

tion set architecture. Different instruction set architectures can be evaluated by modifying

the ADL, and estimating the power, performance etc. of the new instruction set architec-

ture using the generated compiler and simulator. The key to these approaches lie in the

instruction-set level retargetability of the generated compiler. For instance, the Instruction

Set Description Language (ISDL) describes the instruction-set of processor architectures.

ISDL is used by the Aviv compiler [24] to provide instruction set retargetability. Similarly

in the nML ADL a hierarchical scheme is used to describe instruction sets. nML has been

used by code generators CBC and CHESS [25] to provide instruction-set retargetability.

The EXPRESS compiler of the EXPRESSION ADL [3] also provides instruction-set level

retargetability.

In this chapter we focus on developing a novel compilation technique to achieve high

degrees of code compression using a popular instruction set architecture feature, called

rISA. Next, we demonstrate the need and usefulness of CIL DSE exploration using this

compilation technique while designing the rISA architectural feature.
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3.1 reduced bitwidth Instruction Set Architecture (rISA)

Programmable RISC processors are increasingly being used to design modern embed-

ded systems. Examples of such systems include cell-phones, printers, modems, handhelds

etc. Using RISC processors in such systems offers the advantage of increased design flexibil-

ity, high computing power and low on-chip power consumption. However, RISC processor

systems suffer from the problem of poor code density which may require more ROM for

storing program code. As a large part of the IC area is devoted to the ROM, this is a severe

limitation for large volume, cost sensitive embedded systems. Consequently, there is a lot

of interest in reducing program code size in systems using RISC processors.

Traditionally, ISAs have been fixed width (e.g., 32-bit SPARC,64-bit Alpha) or variable

width (e.g., x86). Fixed width ISAs give good performance at the cost of code size and

variable width ISAs give good performance at the cost of added decode complexity. Neither

of the above are good choices for embedded processors where performance, code size, power,

all are critical constraints. Dual width ISAs are a good tradeoff between code size flexibility

and performance, making them a good choice for embedded processors. Processors with dual

with ISAs are capable of executing two different Instruction-Sets. One is the “normal” set,

which is the original instruction set, and the other is the “reduced bit-width” instruction set

that encodes the most commonly used instructions using fewer bits. A very good example is

the ARM [26] ISA with a 32-bit “normal” Instruction Set and a 16-bit Instruction Set called

“Thumb”. Other processors with a similar feature include the MIPS 32/16 bit TinyRISC

[27], ST100 [28] and the Tangent A5 [29]. We term this feature as the “reduced bit-width

Instruction Set Architecture” (rISA).

Processors with the rISA feature dynamically translate (or decompress, or expand) the

narrow rISA instructions into corresponding normal instructions. This translation usually

occurs before or during the decode stage. Typically, each rISA instruction has an equivalent

instruction in the normal instruction set. This makes translation simple and can usually be

done with minimal performance penalty. As the translation engine converts rISA instruc-

tions into normal instructions, no other hardware is needed to execute rISA instructions.

If the whole program can be expressed in terms of rISA instructions, then up to 50% code

size reduction can be achieved.

The fetch-width of the processor being the same, the processor when operating in rISA
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mode fetches twice as many rISA instructions (as compared to normal instructions) in each

fetch operation. Thus while executing rISA instructions, the processor needs to make lesser

fetch requests to the instruction memory. This results in a decrease in power and energy

consumption by the instruction memory subsystem.

Typically, each rISA instruction has an equivalent instruction in the normal instruction

set. This makes the translation from rISA instructions to normal instructions very simple.

Research e.g., [30], [31] has shown that the translation unit for a rISA design can be very

small and can be implemented in a fast, power efficient manner. Furthermore, we have

shown that significant energy savings achieved by executing rISA code [32].

Thus, the main advantage of rISA lies in achieving low code size and low energy

consumption with minimal hardware alterations. However since more rISA instructions are

required to implement the same task, rISA code has slightly lower performance compared

to the normal code.

3.2 rISA Architecture

A rISA processor is one which supports instructions from two different Instruction

Sets. One is the “normal” 32-bit wide Instruction Set, and the other is the “narrow” 16-bit

wide Instruction Set. The “narrow” instructions comprise the reduced bit-width Instruction

Set rIS. The code for a rISA processor contains both normal and rISA instructions, but

the processor dynamically converts the rISA instructions to normal instructions, before or

during the instruction decode stage.

3.2.1 rISA: Software Aspects

(a) (b) (c)

rISA_mx

mxNormal
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Figure 3.2: Normal and rISA instructions co-exist in Memory
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3.2.1.1 Adherence to Word Boundary

The code for rISA processors contains instructions from both the instruction sets, as

shown in Figure 3.2 (a). Many architectures impose the restriction that all code should

adhere to the word boundary.

In order for the normal instructions to adhere to the word boundary, there can be only

even number of contiguous rISA instructions. To achieve this, a rISA instruction that does

not change the state of the processor is needed. We term such an operation as rISA nop.

The compiler can then pad odd-sized sequence of rISA instructions with rISA nop, as shown

in Figure 5 (b). ARM-Thumb and MIPS32/16 impose such architectural restrictions, while

the ARC processor can decode the instructions even if they cross the word boundary.

3.2.1.2 Mode Change Instructions

rISA processors operate in two modes, the normal mode and the rISA mode. In order

to dynamically change the execution mode of a processor, there should be a mechanism in

software to specify change in execution mode. For most rISA processors, this is accomplished

using explicit mode change instructions. We term an instruction in the normal instruction

set that changes mode from normal to rISA the mx instruction, and an instruction in the

rISA instruction set that changes mode from rISA to normal the rISA mx instruction. The

code including the mode change instructions is shown in Figure 3.2 (c).

In ARM/Thumb, ARM instructions BX or BLX switch the processor to Thumb mode.

The ARM BX instruction is a version of a ARM branch instruction, which changes the exe-

cution mode of the processor to rISA mode. Similarly the ARM BLX instruction is a version

of ARM BL instruction (Branch and Link), with the additional functionality of switching

the processor to rISA mode. Similar earmarked instructions also exist in the Thumb in-

struction set to switch the processor back to the normal mode of operation. The MIPS16

ISA has an interesting mechanism for specifying mode changes. All routines encoded us-

ing MIPS16 instructions begin at the half word boundary. Thus, calls (and returns) to

half word aligned addresses change the mode from normal to rISA. The ARC Tangent A5

processor on the other hand allows native execution of the ARCompact instructions. No

special instruction is required to switch modes.
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3.2.2 rISA: Hardware Aspects

Figure 3.3: Simple translation of Thumb instruction to ARM instruction

Although the code for a rISA processor contains instructions from both the Instruction

Sets, the instruction fetch mechanism of the processor is oblivious of the presence of rISA

instructions. The fetched code is interpreted (decoded) as normal or rISA instruction de-

pending on the operational mode of the processor. When the processor is in rISA mode, the

fetched code is assumed to contain two rISA instructions. The first one is translated into

normal instruction, while the second one is latched and kept for the next cycle of execution.

Execute Stage

16

16

32

Fetch Stage Decode Stage

Instr.
Decoder

Normal

Decoder

rISA
Instr.

Figure 3.4: Single step Decoding of rISA instructions

Figure 3.3 shows an example of translation of a Thumb-ADD instruction to a normal

ARM-ADD instruction. The translation can be realized in terms of simple and small table

lookups. Since the conversion to normal instructions is done during or before the instruction

decode stage, the rest of the processor remains same. To provide support for rISA typically

only decode logic of the processor needs to be modified. The rISA instructions can be
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decoded by either single step decoding or two step decoding.

Figure 3.4 shows the one step decoding of rISA instructions. The single step decoding

of rISA instructions is just like performed at the same time as the decoding of the normal

instructions. Single step decoding is typically simpler because of the rISA instructions are

“narrow”.

Decoder

rISA
Instr.

Instr.
Decoder

Normal

Fetch Stage Decode Stage Execute Stage

Figure 3.5: Two step Decoding of Thumb instructions

In the two step decoding shows in Figure 3.5, the rISA instructions are first translated

to normal instructions. The normal instructions can then be decoded as before. Although

such implementation requires minimal logical changes to the existing architecture, it may

lengthen the cycle time. ARM7TDMI implements two step decoding approach of Thumb

instructions.

3.3 Related Work

Many leading 32-bit embedded processors also support the 16 bit (rISA) instruction

set to address both memory and energy consumption concerns of the embedded domain

[26], [27], [28], [29].

There has been previous research effort to achieve further code compression with the

help of architectural modifications to rISA. The ARM Thumb IS was redesigned by Kwon et

al. [33] to compress more instructions and further improve the efficiency of code size reduc-

tion. This new Instruction Set is called Partitioned Register Extension (PARE), reduces the

width of the destination field and uses the saved bit(s) for the immediate addressing field.

The register file is split into (possibly overlapping) partitions, and each 16-bit instructions

can only write to a particular partition. This reduces the number of bits required to specify

the destination register. With a PARE-aware compiler, the authors claim to have achieved

a compression ratio comparable to Thumb and MIPS16.
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Another direction of research in rISA architectures has been to overcome the problem

of decrease in performance of rISA code. Kwon et al. [34] proposed a parallel architecture

for executing rISA instructions. TOE(Two Operation Execution) exploits Instruction Level

Parallelism provided by the compiler. In the TOE architecture all rISA instruction occur

in pairs. With 1-bit specifying the eligibility of the pair of rISA instructions to execute in

parallel, the performance of rISA can be improved. Since the parallelization is done by the

compiler, the hardware complexity remains low.

Krishnaswamy et al. [35] observed that there exist Thumb instruction pairs that are

equivalent to single ARM instructions throughout the 16-bit Thumb code. They enhanced

the Thumb instruction set by an AX (Augmenting Extensions) instructions. Compiler finds

the pairs of Thumb instructions that can be safely executed as single ARM instruction, and

replace them by AX+Thumb instruction pairs. They coalesce the AX with the immediately

following Thumb instruction at decode time and generate an ARM instruction to execute

single instruction, thus increasing performance.

While there has been considerable research in the design of architectures/architectural

features for rISA, the compiler techniques employed to generate code targeted for such

architectures are rudimentary. Most existing compilers either rely on user guidance or

perform a simple analysis to determine which routines of the application to code using rISA

instructions. These approaches, which operate at the routine level granularity, are unable to

recognize opportunities for code size optimization within routines. We propose instruction-

level granularity of rISAization and present compiler framework to generate optimized code

for such rISA architectures. Our technique, is able to aggressively reduce code size by

discovering codesize reduction opportunities inside a routine, resulting in high degrees of

code compression.

3.4 Challenges in Compilation for rISA Architectures

Although up to 50% code compression can be achieved using rISA, owing to severe

restrictions on the number of operations, register accessibility and reduced functionality, it

is in practice tough to consistently achieve more than 30% code size reduction. In order to

alleviate such severe constraints, several solutions have been proposed. We discuss several

such architectural features in the light of aiding code generation in rISA processors.
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3.4.1 Granularity of rISAization

We term the compiler-process of converting normal instructions into rISA instructions

as rISAization. Existing compilers like the ARM-Thumb compiler (as yet) supports the

conversion at a routine level granularity. Thus, all the instructions in a routine can be in

exactly one mode, the normal ARM mode, or the Thumb mode. A routine cannot have

instructions from both the ISAs. Furthermore existing Compilers rely on human analysis

to determine which routines to implement in ARM instructions, and which ones in Thumb

instructions.
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Figure 3.6: Code compression achieved by routine-level rISAization

Figure 3.6 plots the code compression achieved by MIPS32/16 compiler performing in-

discriminate rISAization. The compiler could achieve 38% code compression on diff bench-

mark, that has only one routine and low register pressure. All the instructions could be

mapped to rISA instructions. However on 1dpic, the most important routine had high reg-

ister pressure, that resulted in register spilling and thus leading to an increase in code size.

Similar is the case with adii. Some other benchmarks had routines in which the conversion

resulted in an increase in the code size. Thus although routine-level granularity of rISAiza-

tion can achieve high degrees of code compression on small routines, it is unable to achieve

decent code compression on application level. In fact MIPS32/16 compiler could achieve

only 15% code size reduction on our set of benchmarks. This is because not a lot of routines

can be found, whose conversion results in substantial code compression. The inability to

compress code is due to two main reasons (i) rISAization may result in an increase in code

size. (ii) rISAization of routines that have high register pressure results in register spills
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and thus increase in the code.

Function Level Granularity
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Function 2
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rISA Instructions

normal Instructions

Figure 3.7: Routine-level Granularity versus Instruction-level Granularity

Figure 3.7 explains the two major drawbacks of rISAizing at routine-level granularity

and shows that instruction-level granularity alleviates these drawbacks.

First is that a routine-level granularity approach misses out on the opportunity to

rISAize code sections inside a routine, which is deemed non profitable to rISAize. It is

possible that it is not profitable to rISAize a routine as a whole, but some parts of it

can be profitably rISAized. For example, the Function 1 and Function 3 are found to be

non-profitable to rISAize as a whole. Traditional routine-level granularity approaches will

therefore not rISAize these routines, while instruction-level granularity approaches will be

able to achieve some code size reduction by identifying and rISAizing only some profitable

portions of the routine.

Second, the compiler is not able to leave out some regions of code inside a routine that

may incur several register spills. It is possible that leaving out some pieces of code inside a

profitable routine may increase the code compression achieved. For example, in Figure 3.7,

the instruction-level granularity approaches have the choice to leave out some regions of

code inside a routine to achieve higher code compression.

Thus consistently high degree of code compression can be achieved by rISAization

at instruction level granularity. However, instruction-level granularity of rISAization has

some overheads. Instruction level granularity of rISAization needs explicit mode change

instructions. We define a normal instruction mx changes the execution mode of the processor

from normal to rISA, while a rISA instruction rISA mx changes the execution mode of
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the processor from rISA mode to normal mode. The mode change instructions have to

be inserted in the code at the boundaries of normal and rISA instructions. Unlike the

conversion at routine level granularity, this causes an increase in code size. But our results

show that even with this code size penalty, consistently higher degrees of code compression

can be achieved by rISAization at instruction level granularity.

3.4.2 rISA Instruction Set

The rISA instruction set is tightly constrained by the instruction width. Typical

instruction sets have three operand instructions; two source operands and one destination

operand. Only 16 bits are available to encode the opcode field and the three operand

fields. The rISA design space is huge, and several instruction set idiosyncrasies makes it

very tough to characterize. In informal terms if rISA wxyz defines a rISA instruction set

with opcode width w-bits, and three operands widths as x-bit, y-bit, and z-bits respectively.

Most interesting rISA instruction sets are bound by rISA 7333 and rISA 4444.

w-bit
opcode

x-bit
destination

y-bit
op1

z-bit
op2

w+x+y+z = 16
rISA_wxyz

Figure 3.8: rISA Instruction Format

The rISA 7333 format describes an instruction set in which the opcode field is 7-bit

wide, and each operand is 3-bit wide. Such an instruction set would contain 128 instructions,

but each instruction can access only 8 registers. Although such a rISA instruction set can

rISAize large portions of code, but register pressure may become too high to achieve a

profitable encoding. On the other extreme is the rISA 4444 format, which has space for

only 16 instructions, but each instruction can access up to 16 registers. For applications

that do not use a wide variety of instructions, but have high register pressure, such a rISA

instruction set is certainly a good choice.

The design space between the two extremes is huge. All realistic rISA instruction sets

contain a mix of both type of instructions, and try to achieve the “best of both worlds”. De-

signing a rISA instruction set is a essentially a trade-off between encoding more instructions

in the rISA instruction set, and providing rISA instructions access to more registers.
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The “implicit operand format” of rISA instructions is a very good example of the

trade-off the designers have to make while designing rISA. In this feature, one (or more)

of the operands in the rISA instruction is hard-coded (i.e. implied). The implied operand

could be a register operand, or a constant. In case a frequently occurring format of add

instruction is add Ri Ri Rj (where the first two operands are the same), a rISA instruction

rISA add1 Ri Rj , can be used. In case an application that access arrays produces a lot of

instructions like addr = addr + 4 then a rISA instruction rISA add4 addr which has only

one operand might be very useful. The translation unit, while expanding the instruction,

can also fill in the missing operand fields. This is a very useful feature that can be used by

the compiler to generate good quality code. ARC Tangent A5 processor uses this feature

extensively to optimize ARCompact instruction set.

3.4.3 Limited Access to Registers

rISA instructions usually have access to only a limited set of processor registers. This

results in increased register pressure in rISA code sections. A very useful technique to

increase the number of useful registers in rISA mode is to implement a rISA move instruction

that can access all registers. This is possible because a move operation has only two operands

and hence has more bits to address each operand.

3.4.4 Limited width of immediate operands

A severe limitation of rISA instructions is the inability to incorporate large immediate

values. For example, with only 3 bits are available for operands, the maximum unsigned

value that can be expressed is 7. Thus, it might be useful to vary the size of the immediate

field depending on the application and the values that are (commonly) generated by the

compiler. Increasing the size of the immediate fields however, reduces the number of bits

available for opcodes (and also the other operands). Several architectures implement a

rISA extend instruction, which extends the immediate field in the next rISA instruction.

Such an instruction is very useful to be able to rISAize contiguous large portions of code.

59



3.5 Our Compilation for rISA Architectures

We implemented our rISA compiler technique in the EXPRESS retargetable com-

piler. EXPRESS [2] is an optimizing, memory-aware, Instruction Level Parallelizing (ILP)

compiler. EXPRESS uses the EXPRESSION ADL [3] to retarget itself to a wide class of

processor architectures and memory systems. The inputs to EXPRESS are the application

specified in C, and the processor architecture specified in EXPRESSION. The front-end is

GCC based and performs some of conventional optimizations. The core transformations

in EXPRESS include RDLP [36] – a loop pipelining technique, TiPS : Trailblazing Per-

colation Scheduling [37] – a speculative code motion technique, Instruction Selection and

Register Allocation. The back-end generates assembly code for the processor ISA.

Assembly

Instruction Selection

Register Allocation

Mode Change Instrs.

Insert NOPs

Mark rISA Blocks

GCC Front End

C/C++
Source Files

Profitability Analysis

Figure 3.9: rISA Compiler Steps

A rISA compiler not only needs the ability to selectively convert portions of applica-

tion into rISA instruction, but also heuristics to perform this conversion only where it is
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profitable. Figure 3.9 shows the phases of the EXPRESS compiler with our rISAization

technique. The code generation for rISA processors in EXPRESS is therefore a multi-step

process:

3.5.1 Mark rISA Blocks

Various restrictions on the rISA instruction set, means that several normal instructions

may not be convertible into rISA instructions. For example, an instruction with a large

immediate value may not be rISAizable. The first step in compilation for a rISA processor

is thus marking all the instructions that can be converted into rISA instructions. However,

converting all the marked instructions into rISA instructions may not be profitable, because

of the overhead associated with rISAization. The next step is therefore, to decide which

contiguous list of marked instructions are profitable to convert to rISA instructions. Note

that a list of contiguous marked instructions can span across basic block boundaries. To

ensure correct execution, mode change instructions need to be added, so that the execu-

tion mode of processor (normal or rISA) matches that of the instructions it is executing.

The instruction selection, however is done within basic blocks. Contiguous list of marked

instructions in a basic block is termed rISABlock.

3.5.2 Profitability Heuristic for rISAization

Even though all the instructions in a rISABlock, can be rISAized, it may not be

profitable (in terms of code compression, or performance) to rISAize the rISABlock. For

example, if a rISABlock is very small, then the mode change instruction overhead could

outshine any code compression achievable by rISAization. Similarly if the rISABlock is very

big, the increase register pressure (and register spilling therefore) could make rISAization

the rISABlock a bad idea. Thus an accurate estimation of code size and performance trade-

off is necessary before rISAizing a rISABlock. In our technique, the impact of rISAization

on code size and performance is estimated using a profitability analysis (PA) function. The

PA function estimates the difference in code size (CS) and performance (PF) if the block

were to be implemented in rISA mode as compared to normal mode. The compiler (or

user) can then use these estimates to trade-off between performance and code size benefits

for the program. Next we describe how the PA function measures the estimated impact on

code size and performance.
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Estimate CodeSize Reduction

01: CS1 = sizeof(mx) + sizeof(rISA mx)
02: CS2 = sizeof(rISA nop)
03: CS3 = Extra Spill Reload Estimate(bl)
04: return sizeBlock(bl, NORMAL)− sizeBlock(bl, rISA)− CS1− CS2− CS3

Extra Spill Reload Estimate(Block bl)

05: // Estimate spill code if the block is rISAized
06: extra rISA reg press = Avg Reg Press(bl, rISA vars)−K1× rISA REGS
07: if (extra rISA reg press > 0)
08: avail non rISA regs = TOTAL REGS − rISA REGS
09: rISA spills = extra rISA reg press×bl.num instrs

Avg Live Len(bl)

10: else
11: avail non rISA regs = TOTAL REGS − rISA REGS − extra rISA reg press
12: rISA spills = 0
13: endIf

14: extra non rISA reg press = Avg Reg Press(bl, non rISA vars)
15: −K1× avail non rISA regs
16: if (extra non rISA reg press > 0)
17: non rISA spills = extra non rISA reg press
18: else
19: non rISA spills = 0
20: endIf

21: spill code if rISA = rISA spills× SIZE rISA INSTR
22: +non rISA spills× SIZE NORMAL INSTR

23: // Estimate spill code if the block is NOT rISAized
24: extra normal reg press = Avg Reg Press(bl, all vars)−K1× TOTAL REGS
25: if (extra normal reg press > 0)
26: normal spills = extra normal reg press×bl.num instrs

Avg Live len(bl)

27: else
28: normal spills = 0
29: endIf

30: spill code if normal = normal spills× SIZE NORMAL INSTR
31: extra spill code = spill code if rISA− spill code if normal
32: extra reload code = K2× extra spill code×Avg Uses Per Def
33: return extra spill code + extra reload code

Parameters

TOTAL REGS = 16, rISA REGS = 8
SIZE rISA INSTR = 2 bytes, SIZE NORMAL INSTR = 4 bytes
K1 and K2 are control constants

Figure 3.10: Profitability heuristic for rISAization

3.5.2.1 Code Size (CS)

Figure 3.10 shows the portion of the PA function that estimates the code size reduction

due to rISA. Ideally, converting a block of code to rISA instructions reduces the size of the62



block by half. However, the conversion typically incurs an overhead that reduces the amount

of compression. This overhead is composed of three factors:

Mode Change Instructions (CS1): Before every block of rISA instructions, a mx

(Mode Change from normal to rISA) instruction is needed. This causes an increase in

code size by one full length instruction. At the end of every rISA block, a rISA mx (Mode

Change from rISA to normal) instruction is needed, causing an increase in code size by the

size of the rISA instruction. Thus for an architecture with normal instruction length of 4

bytes and rISA instruction of 2 bytes, CS1 = 4 + 2 = 6bytes.

NOP (CS2): Most architectures require that normal instructions be aligned at word

boundaries. However, rISAizing a block with odd number of instructions1 will cause the

succeeding normal instruction to be mis-aligned. In such cases, an extra rISA nop (No-

operation instruction) needs to be added inside the rISA block. We conservatively estimate

that each rISA block needs a rISA nop instruction. CS2 = 2bytes.

Spills/Reloads (CS3): Due to limited availability of registers, rISAizing a block

may require a large amount of spilling (either to memory or to non-rISA registers). As this

greatly impacts both code size and performance it is important to accurately estimate the

number of spills (and reloads) due to rISAization. The PA function estimates the number

of spills and reloads due to the rISA block by calculating the average register pressure2 due

to the variables in the block.

The first step is to calculate the amount of spill code inserted if the block is rISAized

(line 20 in Figure 3.10). The block may contain variables that need to be allocated to the

rISA register set and variables that can be allocated to any registers. Thus, rISA spill code

is estimated as the total of spills due to rISA variables (lines 05-13) and spills due to non

rISA variables (lines 14-19). The constant K1 can be used to control the importance of spill

code in estimation.

The function Avg Reg Press returns the average register pressure for variables of a

particular type (rISA or non rISA) in a block. The function Avg Live Len returns the

average distance between the definition of a variable in a block and its last use (i.e. its

life-time). In a block, the extra register pressure (that causes spilling) is the difference

between Avg Reg Press and the number of available registers (lines 06, 14, 22). Each spill

reduces the register pressure by 1 for the life time of the variable. So, a block with size
1Including the rISA mx instruction
2Register Pressure is defined as the number of variables live at the point in the program.
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num instrs requires num instrs/Avg Live Len spills to reduce the register pressure by 1.

Thus, the number of spills required to mitigate the register pressure is equal to the extra

register pressure multiplied by the number of spills required to reduce register pressure by

1 (lines 09, 16, 24).

The next step is to estimate the total number of spills if the block is not converted to

rISA instructions (line 28). This is accomplished in a manner similar to that of estimation

of rISA variables.

As each spill also requires reloads to bring the variable to a register before its use, it is

necessary to also calculate the number of extra reloads due to conversion to rISA. The PA

function estimates the number of reloads as a factor of number of spills in the rISA Block.

The constant K2 can be used to control the importance of reload code in estimation.

The total reduction in code size of the block due to rISAization (line 04) is

CS = 2×NumInstrs(rISABlock)− CS1− CS2− CS3.

A CS value greater than zero implies that converting the block to rISA instructions is

profitable in terms of code size.

3.5.2.2 Performance (PF)

The impact of converting a block of instructions into rISA on performance is difficult

to estimate. This is especially true if the architecture incorporates a complex instruction

memory hierarchy (with caches). Our technique makes a crude estimate of the performance

impact based on the latency of the extra instructions (due to the spills/reloads, and due to

the mode change instructions). A more accurate estimate can be made by also considering

the instruction caches and the placement of the blocks in program memory.

3.5.3 Instruction Selection

EXPRESS uses a tree pattern matching based algorithm for Instruction Selection. A

tree of generic instructions is converted to a tree of target instructions. In case a tree

of generic instructions can be replaced by more than one target instruction tree, the one

with lower cost is selected. The cost of a tree depends upon the user’s relative importance

of performance and code-size. Our approach towards compiling for rISA, looks at the

rISA conversion as a natural part of the Instruction Selection process. The Instruction

Selection phase uses a profitability heuristic to guide the decisions of which section of a
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routine to convert to rISA instructions, and which ones to normal target instructions. All

generic instructions within profitable rISABlocks are replaced with rISA instructions and

all other instructions are replaced with normal target instructions. Replacing a generic

instruction with a rISA instruction involves both selecting the appropriate rISA opcode,

and also restricting the operand variables to the set of rISA registers.

3.5.4 Inserting Mode Change Instructions

After Instruction Selection the program comprises of sequences of normal and rISA

instructions. A list of contiguous rISA instructions may span across basic block bound-

aries. To ensure correct execution, we need to make sure that any possible execution path,

whenever there is a switch in the instructions from normal to rISA or vice versa, there is an

explicit and appropriate mode change instruction. There should be a mx instruction when

the instructions change from normal to rISA instructions, and a rISA mx instruction when

the instructions change from rISA instructions to normal instructions.

If the mode of instructions change inside a basic block, then there is no choice but to

add the appropriate mode change instruction at the boundary. However when the mode

changes at basic block boundary, the mode change instruction can be added at the begin-

ning of the successor basic block or at the end of the predecessor basic block. The problem

becomes more complex if there are more than one successors and predecessors at the junc-

tion. In such a case, we want to add the mode change instructions so as to minimize the

performance degradation. So we want to add them so that they will be executed the least.

We use profile information to find out the execution counts of the basic block and then solve

the optimality problem.

To further motivate the problem consider two consecutive basic blocks bi, and bj .

Suppose bi is the successor of bj . Further suppose that the end mode of bi and the start

mode of bj , is the same, then there is no need to add a mode change instruction. However

if there is another execution path from basic block bk to bj , and the last instruction of bk is

of a different mode, then explicit mode change instructions need to be inserted.

There are two choices to insert the mode change instruction, we can either insert the

mode change instruction as the last instruction of bk, or as the first instruction of bj. In the

second solution, we will have to insert a mode change instruction as the last instruction in

bi too. Thus the first solution seems to be the winner. However if execution frequency of bk
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is greater than sum of execution frequencies of bi and bj , then first solution results in more

increase in Dynamic Code Size. In general there can be many control flow edges coming in

bj , and going out of bk, making the problem more complex.

Along every possible execution path, whenever instructions change from normal to

rISA, or otherwise, there should be an explicit mode change instruction. The cost of insert-

ing a mode change instruction is equal to the execution frequency of the basic block. The

problem is thus to insert mode change instructions with least cost.

The insertion of mode change instructions is performed in two steps. If mode change

occurs inside a basic block, corresponding mode change instructions are inserted at the

boundary of rISA Block.

After the first step, the CFG (Control Flow Graph) can be visualized as a directed

graph G = (V,E), where V represents the basic blocks, and E represent the Control Flow

edges as shown in Figure 3.11(a). G has two distinguished vertices, the start vertex v0 and

the end vertex vn. Three functions are thus defined on V,

• ExecFrequency : V− > N gives the execution frequency for each vertex.

• EntryMode : V → {Normal, rISA} gives entry mode of the basic block represented

by the vertex is Normal or rISA. EntryMode(Vi) is rISA if the first instruction of the

basic block is a rISA instruction. Otherwise it is Normal.

• ExitMode : V → {Normal, rISA}. ExitMode(Vi) is rISA if the last instruction of

the basic block is a rISA instruction. Otherwise it is Normal.

We get ExecFrequency for each basic block from the profile information. The func-

tions EntryMode and ExitMode are computed for each basic block.

We can switch the EntryMode, or ExitMode of a vertex by inserting a mode change

instruction at the start of the basic block, or at the end of the basic block respectively.

However switching the EntryMode or ExitMode of the vertex vi costs ExecFrequency(vi).

The problem of mode change instruction insertion is to find EntryMode and ExitMode

for each vertex so that,

for each edge (vi, vj) ∈ E,

ExitMode(vi) == EntryMode(vj)

such that the switching cost is minimized. The switching cost essentially represents the

Dynamic Code Size.
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(a)

Orignal CFG, G = (V, E)

(b)

Modified Graph, G’ = (V’, E’)

(c)

G’ = {g1, g2, ... gr}
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Figure 3.11: Mode change Instruction Insertion

To solve this problem we transform our graph G. We break each vertex vi into two

vertices, vi1 and vi2 in graph G’ as shown in Figure 3.11(b). Vertex vi1 represents the entry

of vi, and vi2 represents the exit of vi. All the incoming edges into vi now come to vi1, and

all the outgoing edges from vi, now emanate from vi2. Two functions are defined on vertices

of G’,

• ExecFrequency(vij) = ExecFrequency(vi)

• Mode(vi1) = EntryMode(vi)

• Mode(vi2) = ExitMode(vi)

The new Graph G′ = (V ′, E′) is a forest of connected components. Our problem now

reduces into finding Mode for each vertex so that all the vertices in a connected component

have the same mode.

We identify all the connected components of G′ = {g1, g2, ...gk}, as depicted in Fig-

ure 3.11(c). Each connected component is a subgraph gi = (Vi, Ei), containing a subset of
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vertices,

Vi ⊂ V ′, Vi = {u1, u2, ...ur}.
These vertices are partitioned into two (possibly empty) sets VNormal and VrISA.

Vi = VNormal
⋃

VrISA, and VNormal
⋂

VrISA = φ.

Cost of converting all vertices to rISA Mode =

Σi=1..|VNormal|ExecFrequency(ui).

Cost of converting all vertices to Normal Mode =

Σi=1..|VrISA|ExecFrequency(ui).

We pick the lower cost conversion and thus decide upon the Mode of each vertex in G’

and hence EntryMode and ExitMode of each vertex in G. Finally we insert the appropriate

mode change instructions. To change the EntryMode of a basic block from Normal to rISA,

we add a mx instruction as the first instruction of the basic block. To change the EntryMode

of a basic block from rISA to Normal, we add a rISA mx instruction as the first instruction

of the basic block. To change the ExitMode of a basic block from Normal to rISA, we add

a mx instruction as the last or second last instruction of the basic block. To change the

ExitMode of a basic block from rISA to Normal, we add a rISA mx instruction as the last

or second last instruction of the basic block.

Note that if the last instruction of a basic block is a branch operation, and the machine

does not have a delay slot, then the mode change instruction has to be added as the second

last instruction in the basic block.

3.5.5 Register Allocation

The actual register allocation of variables is done during the Register Allocation phase.

The EXPRESS compiler implements a modified version of Chaitin’s solution [38] to Register

Allocation. Since code blocks that have been converted to rISA typically have a higher

register pressure (due to limited availability of registers), higher priority is given to rISA

variables during register allocation.
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3.5.6 Insert NOPs

The final step in code generation is to insert rISA nop instruction in rISABlocks that

have odd number of rISA instructions. This is a straightforward step and we do not discuss

about it.

3.6 Effectiveness of Our Approach

In this section, we first demonstrate the efficacy of our compilation scheme over an

existing rISA architecture. We show that the register pressure based profitability function

to decide which regions of code to rISAize performs good consistently. We then design

several interesting rISA design points, and study the code compression obtained by using

them. We show that the code compression achieved is very sensitive to the rISA design,

and that a custom rISA can be designed for a set of applications to achieve high code

compression.

We perform our experiments over MIPS32/16 ISA on a set of applications from numer-

ical computation kernels (Livermore Loops), and DSP application kernels, that are often

executed in embedded processors.

Our first experiment is to study the efficacy of our compilation technique. We compare

the code compressions we achieve with the code compression GCC can achieve using the

MIPS32/16 rISA. To this effect, we first compile the applications using GCC for MIPS32

ISA. We then compile the applications using GCC for MIPS32/16 ISA. We perform both

the compilations using -Os flags with the GCC to enable all the code size optimizations. The

percentage code compression achieved by GCC for MIPS16 is computed and is represented

by the light bars in Figure 3.12. The MIPS32 code generated by GCC is compiled again

using the register pressure based heuristic in EXPRESS. The percentage code compression

achieved by EXPRESS is measured and plotted as dark bars in Figure 3.12.

It can be clearly seen from Figure 3.12 that the register pressure based heuristic per-

forms better consistently better than GCC and successfully prevents code inflation. GCC

achieves on an average 15% code size reduction, while EXPRESS achieved an average of 22%

code size reduction. We used SIMPRESS[39], a cycle accurate simulator, to measure the

performance impact due to rISAization. We simulated the code generated by EXPRESS on

a variant of the MIPS R4000 processor that was augmented with rISA MIPS16 Instruction
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Figure 3.12: Percentage code compressions achieved by GCC and EXPRESS for MIPS32/16

Set. the memory subsystem was modeled with no caches and a single cycle main memory.

the performance of MIPS16 code is on an average 6% lower than that of MIPS32 code, with

the worst case being 24Thus our technique is able to reduce the code size using rISA with

a minimal performance impact.

3.7 Compiler-in-the-Loop rISA Design Space Exploration

The rISA IS, because of bit-width restrictions, can encode only a subset of the normal

instructions and allows access to only a small subset of registers. Such severe restrictions

make the code-size reduction obtainable by using rISA very sensitive to the compiler quality

and the application features. For example, if the application has high register pressure, or

if the compiler does not do a good job of register allocation, it might be better to increase

the number of accessible registers at the cost of encoding only a few opcodes in rISA.

Thus, it is very important to perform compiler-in-the-loop design space exploration (DSE)

while designing rISA architectures. Contemporary rISA processors (such as ARM/Thumb,

MIPS32/16) incorporate a very simple rISA model with rISA instructions able to access 8

registers (out of 16 or 32 general-purpose registers). In this chapter, we show that varying

this model by considering the application characteristics and the compiler quality results in

substantial improvement of code-size reduction. We present a rISA design space exploration

framework that incorporates a compiler designed to optimize for rISA and is able to explore

a wide range of architecture design points.
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3.7.1 rISA DSE Parameters

Conventional rISA architectures like Thumb[26] and MIPS16[40] fix the register set

accessible by rISA instructions to be 8. Thus, each operand requires 3 bits for specification.

This implies that, for three operand instructions, up to 128 opcodes can be encoded in

rISA. The primary advantage of this approach is that most normal 32-bit instructions can

also be specified as rISA instructions. However, this approach suffers from the drawback

of increased register pressure possibly resulting in poor code size. One modification is to

increase the number of registers accessible by rISA instructions to 16. However, in this

model, only a limited number of opcodes are available. Thus, depending on the application,

large sections of program code might not be implementable using rISA instructions. The

design parameters that can be explored include the number of bits used to specify operands

(and opcodes), and the type of opcodes that can be expressed in rISA.

Another important rISA feature that impacts the quality of the architecture is the

“implicit operand format” feature. In this feature, one (or more) of the operands in the

rISA instruction is hard-coded (i.e. implied). The implied operand could be a register

operand, or a constant. In case a frequently occurring format of add instruction is add Ri

Ri Rj (where the first two operands are the same), a rISA instruction rISA add1 Ri Rj ,

can be used. In case an application that access arrays produces a lot of instructions like

addr = addr + 4 then a rISA instruction rISA add4 addr which has only one operand might

be very useful. The translation unit, while expanding the instruction, can also fill in the

missing operand fields. This is a very useful feature that can be used by the compiler to

generate good quality code.

A severe limitation of rISA instructions is the inability to incorporate large immediate

values. For example, with only 3 bits available for operands, the maximum unsigned value

that can be expressed is 7. Thus, it might be useful to vary the size of the immediate

field, depending on the application and the values that are (commonly) generated by the

compiler. Increasing the size of the immediate fields will, however, reduce the number of

bits available for opcodes (and also the other operands). This trade-off can be meaningfully

made only with a compiler-in-the-loop DSE framework.

Various other design parameters such as partitioned register files, shifted/padded im-

mediate fields, etc. also should be explored in order to generate a rISA architecture that

is tuned to the needs of the application and to the compiler quality. While some of these
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design parameters have been studied in a limited context, there has been no previous work

that seeks to generate rISA designs that combine all of these features. Our exploration

framework, is able to quantify the impact of these features both individually and in various

combinations. Also, since it incorporates the compiler, the quality of each design point is

measured accurately.

3.7.2 rISA Exploration Framework

Application

model
rISA

model
architecture

Simulator Report

Performance

Code Size

EXPRESSION
description

+
rISA

description

Parameters
No. of opcodes in rISA

Opcodes in rISA

No. of operands

Implicit Operands

Custom immediate field size

Compiler

Figure 3.13: Design Space Exploration flow

Figure 3.13 presents the DSE framework used to explore rISA design points. The

processor architecture (with the desired rISA features) is described using an Architecture

Description Language (ADL) called EXPRESSION [3]. This description is then input to

the EXPRESS retargetable compiler [2] and SIMPRESS simulator [39]. The desired appli-

cations are then compiled, simulated and the code size and performance numbers are gen-

erated for analysis. The various rISA design parameters mentioned in the previous section

can be described in EXPRESSION which is then used to retarget the EXPRESS compiler

to produce code optimized for those features. Below, we describe our DSE framework in

greater detail. First, we describe how we capture rISA information in the EXPRESSION

ADL. Then, we describe the rISA optimization techniques incorporated by the EXPRESS

compiler.
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3.7.3 ADL based DSE

EXPRESSION is an ADL designed to support design space exploration of a wide

class of processor architectures. EXPRESSION contains an integrated specification of both

structure and behavior of the processor-memory system. The structure is specified as a

net-list of components (i.e., units, storages, ports and connections) along with a high-

level description of the pipeline and data-transfer paths in the architecture. The behavior

describes the Instruction Set of the processor. Each instruction is defined in terms of its

opcode, operands and its format.

Specification of the rISA model in EXPRESSION consists of describing the rISA in-

structions and the restrictions on the operands. Each rISA instruction is specified as the

compressed counterpart of a normal instruction. The register accessibility restrictions are

specified by considering the rISA registers as a special class of registers (that is a subset

of the general purpose register class). Furthermore, the limitations on the immediate val-

ues that can be specified in a rISA instruction are also specified. Finally, some special

rISA instructions such as the mx, rISA mx, rISA nop, rISA extend, rISA load, rISA store

and rISA move are identified in the specification. This information in the EXPRESSION

description is used to derive a rISA architecture model (Figure 3.13) that is used by the

retargetable compiler and the simulator.

3.7.4 Compiler-in-the-loop DSE

Figure 3.14 shows the flow of the EXPRESSION retargetable compiler. The compiler

takes the rISA model described in EXPRESSION as input, and is able to retarget itself to

generate good quality code for the machine with rISA model described in EXPRESSION.

The EXPRESSION description is also used to generate the simulator for the machine. Using

the rISA instructions to normal instructions mapping, the translator unit is generated, and

is pre-appended to the decode unit. By considering the compiler effects during DSE, the

designer is able to accurately estimate the impact of the various rISA features.

3.7.5 rISA Model

In this section, we briefly describe the rISA processor model. The model defines the

rISA IS, and mapping of rISA instructions to normal instructions. A rISA instruction
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Figure 3.14: rISA Compiler flow for DSE

should map to a unique normal instruction. Such a mapping simplifies the translator unit,

so that it does not cause any performance delay.

As rISA processors can operate in either the rISA mode or in the normal mode, a

mechanism to specify the mode is necessary. For most rISA processors, this is accomplished

using explicit instructions that change the mode of execution. We term an instruction in the

normal IS that changes mode from normal to rISA the mx instruction, and an instruction

in the rISA IS that changes mode from rISA to normal the rISA mx instruction.

Every sequence of rISA instructions starts with an mx instruction and ends in a

rISA mx instruction. To ensure that the ensuing normal instruction aligns to the word

boundary, a padding rISA nop instruction is needed.

Due to bit-width constraints, a rISA instruction can access only a subset of registers.

The register accessibility of each register operand must be present in the rISA model. The

width of immediate fields must also be specified.

In addition, there may be special instructions in the rISA model to help the compiler

generate better code. A very useful technique to increase the number of registers accessible

in rISA mode is to implement a rISA move instruction that can access all registers (This

is possible because a move has only two operands and hence has more bits to address each

operand.). A technique to increase the size of the immediate value operand is to implement

a rISA extend instruction that completes the immediate field of the succeeding instruction.
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Numerous such techniques can be explored to increase the efficacy of rISA architec-

tures. In the next section we describe some of the more important rISA design parameters

that can be explored using our framework.

3.7.6 rISA Design Exploration

Due to highly constrained design of rISA, the code compression achieved is very sensi-

tive to the rISA chosen. rISA design space is huge and several instruction set idiosyncrasies

make it very tough to characterize. To show the variation of code compression achieved with

rISA, we take a designer’s approach. We systematically design several rISA, and study the

code compression achieved by them. We start with the extreme rISA designs of rISA 7333

and rISA 4444 and gradually improve upon them.

The first rISA design point is (rISA 7333). In this rISA, the operand is represented

by 7-bits, and each operand is encoded in 3-bits. Thus there can be 27 instructions in this

rISA, but each instruction can have access to only 8 registers, or be a constant that can

be represented in 3-bits. However, instructions that have 2 operands (like move) have 5-bit

operands, thus they can access 32 ( = all the registers in our architecture model) registers.

Owing to the uniformity in the instruction format, the translation unit is very simple for

this rISA design.

Percentage Code Compression achieved using rISA_7333
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Figure 3.15: Percentage code compression achieved by using rISA 7333

Figure 3.15 shows that the rISA 7333 design on an average achieves 12% code com-

pression. EXPRESS is unable to achieve good code compressions for applications that have

high register pressure, e.g., adii, and those with large immediate values. In such cases, the

compiler heuristic decides not to rISAize large portions of the application to avoid code size
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increase due to extra spill/reload and immediate extend instructions.

The first limitation of rISA 7333 is overcome in the second rISA design i.e. rISA 4444,

which takes us to the other limit. In this rISA the opcode as well as each operand is encoded

in 4-bits. Although only 16 instructions are allowed in such a rISA design, it allows each

operand to access 16 registers. We profiled the applications and incorporated the 16 most

frequently occurring instructions in this rISA.

Percentage Code Compression achieved using rISA_4444
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Figure 3.16: Percentage code compression achieved by using rISA 4444

Figure 3.16 shows that the register pressure problem is mitigated in the rISA 4444 de-

sign. It achieves better code size reduction for benchmarks that have high register pressure,

but performs badly on some of the benchmarks because of its inability to convert all the

normal instructions into rISA instructions. rISA 4444 achieves about 22% improvement

over normal instruction set.

We now attack the second problem faced in rISA 7333 (small immediate values).

For instructions that have immediate values, we decrease the size of opcode, and use the

bits to accommodate as large an immediate value as possible. This design point is called

rISA 7333 imm. Because of the non-uniformity in the size of the opcode field, the transla-

tion logic is complex for such a rISA design.

As Figure 3.17 shows the rISA 7333 imm design achieves slightly better code compres-

sions as compared to the first design point since it has large immediate fields, while having

access to the same set of registers. rISA 7333 imm achieves about 14% improvement over

normal instruction set.

Another optimization that can be performed to save precious bit-space is to encode
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Percentage code compression achieved by  rISA_7333_imm
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Figure 3.17: Percentage code compression achieved by using rISA 7333 imm

instructions with same operands with different opcode. Since fewer operands are required

to express such an instruction, it requires lesser instruction bits, which can be used in two

ways, first is the direct way by providing increased register file access to the remaining

operands and second (a more indirect way) is that this instruction can afford a longer

opcode, another instruction which has tighter constraints on the opcode field (example

an instruction with immediate operands) can switch opcode with this instruction. We

apply the implied operands feature in rISA 7333 and obtain our forth rISA design i.e.

rISA 7333 imp opnd. This rISA design matches the MIPS16 rISA.

Percentage code compression achieved using rISA_7333_imp_opnd

0

10

20

30

40

50

hyd
ro

pro
d

ban
d tri lre

st
at

e
ad

ii
pre

d
dpre

d
su

m diff

2d
pic

1d
pic lre

ih
yd

ro m
in

Benchmarks

Figure 3.18: Percentage code compression achieved by using rISA 7333 imp opnd

The rISA 7333 imp opnd design achieves, on average, about the same code size im-

provement as the rISA 4444 design point. Note that the performance benefits of using im-

plicit operands is substantial for some applications such as state and dpred. rISA 7333 imp opnd
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achieves about 22% improvement over normal instruction set.

The fifth rISA design point i.e. rISA hybrid is a custom ISA for each benchmark.

All the previous techniques are used to define a custom rISA for each benchmark. In

this rISA design instructions can have variable register accessibility. Complex instructions

with operands having different register set accessibility are also supported. The register

set accessible by operands varies from 4 to 32 registers. We profiled the applications and

manually (heuristically) determine the combinations of operand bit-width sizes that provide

best code size reduction. The immediate field is also customized to gain best code size

reduction.

Percentage Code Compression achieved using rISA_hybrid
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Figure 3.19: Percentage code compression achieved by using rISA hybrid

The rISA hybrid, because it is customized for the application set, achieves the best

code size reduction. rISA Hybrid achieves about 26% overall improvement over normal

instruction set. The code compression is consistent across all benchmarks.

Figure 3.20 shows the average (over benchmarks) reduction in code compression achieved

in various rISA designs. It can be deduced from the experimental results presented that the

code compression achieved is very sensitive to the application characteristics and the rISA

itself. Choosing the correct rISA for the applications can result in up to 26%− 12% = 14%

more code compression. Thus it is very important to design and tune the rISA to the

applications.

We have shown that the register pressure heuristic consistently achieves high code

compressions (up to 22%). We also observe that the code compression obtained is very

sensitive on the application and the rISA itself. Therefore there is a need to effectively

78



Percentage code compression achieved by various rISAs
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Figure 3.20: Code size reduction for various rISA architectures

explore the rISA design space and that high degrees of code compression can be achieved

by tuning the rISA for specific applications.

3.8 Summary

The instruction set of a processor defines how the software can utilize the internals of

the processor through instructions. Furthermore it is a primary mechanism for a compiler

to optimize for power and performance of the processor. Consequently the instruction set of

the processor is very carefully designed, and there has been a lot of research in developing

compiler techniques to exploit the features of the instruction set of a processor for power

and performance improvements.

In this chapter, we focused on a popular instruction set feature called reduced bit-width

Instruction Set Architecture (rISA). Architectures with rISA have two instruction sets, one

set comprises the normal 32-bit wide instructions, while the other is composed of narrow

16-bit wide instructions. Most popular embedded processors, e.g., ARM, MIPS implement

rISA. The intuition behind such ”dual” instruction set architectures is the observation that

in RISC systems, very few instructions are used majority of the time. Thus if the most

frequently used instructions could be compressed in 16-bits, then up to 50% code size

reduction can be achieved by representing the application in terms of instructions of the

narrow instruction set.

The narrow instruction set has limited expressibility: not all normal instructions can

be converted into narrow instructions, and some normal instructions translate into multiple
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narrow instructions. In addition, narrow instructions have access to only a few registers.

Existing compilation techniques perform the conversion from normal instructions to

narrow instructions at a routine level of granularity. Since all normal instructions do not

have a corresponding narrow instruction, very often the routine cannot be compressed at

all. Even if it is converted, due to limited register accessibility of registers from the narrow

instructions, the register pressure in the narrow instruction region increases, resulting in

spill code and therefore an increase in code size. Existing techniques are not aware of

this code size increase due to register pressure. Owing to these two reasons, existing code

compression techniques using rISA are therefore able to achieve only 14% code compression.

We proposed a novel register pressure sensitive compilation technique for rISA archi-

tectures. Further we perform this conversion at instruction level of granularity, increasing

the scope of profitable conversion to narrow instruction set and therefore higher code com-

pressions. Our approach is able to consistently achieve 35% code compression.

Further, we find that the code compression is very sensitive on the compiler and the

rISA instruction set. Therefore it is very important to include the compiler effects during

the design of rISA instruction set. Consequently we proposed a CIL DSE framework for

exploring the rISA design space. CIL DSE demonstrates that correctly choosing the rISA

design can result in upto 2X improvement in achievable code compression.

Due to codesize reduction using rISA, the front end of the processor has to fetch fewer

number of bytes from the instruction cache. Using rISA architectures therefore also helps in

reducing the instruction cache energy consumption. Although most previous research has

focused on evaluating this energy reduction, we also developed a compilation technique for

rISA architectures aimed at reducing the processor energy consumption [32]. Thus the rISA

ISA architectural feature is a very useful technique for code size reduction and processor

power reduction for both general purpose purpose and embedded processors. We believe

this feature is especially pertinent for embedded processors, where design constraints (e.g.,

power, code size etc.) other than performance can be equally or even more important.
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Chapter 4

Processor Pipeline - Memory

Interface Design

The last few decades have seen dramatic improvements in microprocessor performance.

This has been largely due to technological improvements and architectural innovations. In

contrast, the DRAM (Dynamic RAM) performance has not improved at a commensurate

pace, leading to the infamous ”processor-memory gap”. Memory chip manufacturers have

tried to bypass the weak performance of the memory core by designing complex memory

interfaces which isolate the behavior of the slow memory core from the fast interconnections

between the memory chip, the memory controller, and the processor pipeline. In most

modern processors, this interface is implemented using a bus-based system.

High-end systems employ large size and high associativity caches, which help in hiding

the latencies of slow memories. However, embedded systems may not have caches, or may

only have very small caches. Consequently, the memory latency has a direct impact on

the power and performance of embedded processors. Thus the processor pipeline - memory

interface design, as depicted in Figure 4.1 is a very crucial step of embedded processor

design.

Software prefetching [41] has been a primary mechanism for hiding memory latency.

Prefetching attempts to utilize free cycles of the processor pipeline - memory interface to

get data that will be required by the processor in the future; thus improving the efficiency of

the processor pipeline - memory interface. Prefetching in software is effective and preferred

because of two main reasons. First is the extremely low overhead in the hardware, and

second is that software prefetching tends to be more accurate and therefore has low run-
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Figure 4.1: Processor Memory Interface Design Abstraction

time overhead due to cache pollution. Although software prefetching can dramatically

improve the power and performance of embedded processors, most previous research has

focused on using software prefetching to improve the performance of the processor, and

obtain power reductions only as a byproduct.

In this chapter we develop novel technique that uses software prefetching to reduce the

processor power consumption by exploiting the knowledge about the processor pipeline -

memory interface. We then demonstrate that pareto-optimal design points can be discovered

by CIL DSE of processor pipeline - memory interface design.

4.1 Processor-Memory Bus

Memory customization is one of the most important steps in embedded processor design

because of its significant impact on the system performance, cost and power consumption.

Memory characteristics (like latency, bandwidth, etc.) are numerous and complex, but they

should be matched carefully to the application requirements and the processor computation

speed. On one hand, processor stalls (processor waiting for data from memory) should be

minimized, while on the other hand, idle memory cycles (memory waiting for requests from

processor) should be reduced. A lot of time and effort of experienced designers is invested

in tuning the memory characteristics of embedded systems to target application behavior

and processor computation.

However even after such careful design of the memory system there are times during

the execution of real-life applications when the processor is stalled, and there are times

when the memory is idle. We define a processor free stretch to be a sequence of contiguous

cycles when the processor is stalled. Figure 4.2 plots the lengths of processor free stretches
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over the execution of the qsort application from the MiBench benchmark suite[20] running

on the Intel XScale [19]. Very small processor free stretches (1-2 cycles) represent processor

stalls due to pipeline hazards (e.g., Read After Write hazard). A lot of free stretches are

approximately 30 cycles in length. This reflects the fact that the memory latency is about

30 cycles. An important observation from this graph is that although the processor is stalled

for a considerable time (approximately 30% of the total program execution time) the length

of each processor free stretch is small. The average length of a processor free stretch is 4

cycles, and all of them are less than 100 cycles.

>> 36,000  cycles

36,000  cycles

180 cycles

450 mW

0 mW10 mW

1mW

RUN

SLEEPIDLE

DROWSY

Figure 4.3: Power State Machine of XScale

A processor free stretch is an opportunity for optimization. System throughput and

energy can be improved by temporarily switching to a different thread of execution [42].

The energy consumption of the system may be reduced by switching the processor to a
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low power state. Figure 4.3 shows the power state machine [43] of the Intel XScale. In

the default mode of operation, the XScale is in RUN state, consuming 450mW. XScale

has three low power states: IDLE, DROWSY, and SLEEP. In the IDLE state the clock

to the processor is gated, and the processor consumes only 10mW. However, it takes 180

processor cycles to switch to and back from the IDLE state. In the DROWSY state the

clock generation circuit is turned off, while in the SLEEP state the processor is shut down.

DROWSY and SLEEP states have much reduced power consumption, but at an increased

cost of state transition. The break-even processor free stretch for a transition to IDLE state

is 180 × 2 = 360 cycles. This implies that the processor free stretch should be more than

360 cycles to profitably switch the processor to IDLE state. Clearly existing processor free

stretches are not large enough to achieve power savings by switching to a low-power state.

It is important to note that this is in-spite of the fact that the total processor stall duration

is quite large.

The traditional assumption has been that power optimization opportunities by switch-

ing the processor to low-power state can only be found at the operating system level (inter-

process), and not at the compiler-level (intra-process). Consequently a lot of research has

been done to develop power optimization techniques, that operate application level granu-

larity, and are controlled by the operating system. However, to the best of our knowledge

there has been no research to aggregate processor free times within an application to reduce

the power/energy consumption of the processor.

4.2 Related Work

Prefetching can be thought of as a technique to aggregate memory activity. [41]

presents an exhaustive survey of hardware, software, and cooperative prefetching mecha-

nisms. Processor free cycles can be used to increase the throughput of systems by switching

to a different thread of execution [42]. They can also be used to reduce the power consump-

tion of a processor by switching it to a low-power mode [44]. Clock gating, power gating,

frequency scaling and voltage scaling provide architectural support for such low-power states

[44].

Several power/energy reduction techniques work at the operating system level by

switching the whole processor to a low-power mode. The operating system estimates the pro-
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cessor free time using predictive, adaptive or stochastic techniques [43]. Some power/energy

reduction techniques operate at the application level but they control only a very small part

of the processor, e.g. multiplier, floating point unit. The compiler statically or hardware

dynamically estimates the inactive parts of processor, and switches them to low-power mode

[45].

However, there are no existing techniques to switch large parts of processor to a low-

power state, during the execution of an application. This is mainly because during the

execution of an application, without aggregation the processor rest times are too small to

profitably make the transition to the low-power state. This is true even though the total

stall duration may be quite significant. In this chapter we present a technique to aggregate

small processor stalls to create a large free chunk of time when the processor is idle, and

can be profitably switched to a low-power state.

4.3 Motivation

Consider the loop expressed in Figure 4.4(a). In each iteration the next element from

two arrays a and b are loaded and their sum is stored into the third array c. The ARM

assembly code of the loop generated by GCC is shown in Figure 4.4(b).

1. L: mov   ip, r1, lsl#2
2.      ldr     r2, [r4, ip]
3.      ldr     r3, [r5, ip]
4.      add    r1, r1, #1
5.      cmp   r1, r0
6.      add    r3, r3, r2
7.      str      r3, [r6, ip]
8.      ble     L

for (i=0; i<1000; i++)
c[i] = a[i] + b[i];

(a) (b)

Figure 4.4: Example Loop

For our processor pipeline - memory interface experiments, we employ a very simple

processor pipeline and memory model, but a complex memory interface model. Our pro-

cessor pipeline, memory and the interface model is described in Figure 4.5. In our simple

processor pipeline model, every instruction takes one cycle to execute, if the required data

is in the cache. In our simple memory model, memory can service a request in 6 proces-
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sor cycles. To model a realistic interface behavior we need a more complex model. We

assume there is a request buffer in front of the cache. This makes the cache non-blocking

(the processor does not stall on a cache miss). The request latency of the memory (time

elapsed between making a request to getting the first word) is 12 cycles. The memory

bus is pipelined so that multiple requests can be pending and hide the memory latency.

We assume independent request and data bus for increased efficiency of memory bus. The

memory bandwidth is 1 word per 3 cycles and the cache line size is 16 bytes.

Pipelined
Memory

Load Store Unit

Data BusRequest Bus

Buffer
Request

Data Cache

Cache line = 16 bytes
Request Latency = 12 cycles
Bandwidth = 1 word/ 3 cycles

Pipelined Memory
Independent Request and Data bus

Request Buffer

Processor

Figure 4.5: Example Memory Architecture

To simplify the analysis we assume simple loops with sequential array accesses, like

the loop in Figure 4.4. The analysis can be easily generalized later. For such loops it is

convenient to think of memory operations per k loop iterations; where k is the number of

elements (of the type that are being accessed in the loop) that fit in one cache line. For

example the loop in Figure 4.4 loads integers(4 bytes), thus k = 16/4 = 4. Therefore we

define an ITER as 4 iterations. In one Iteration, the loop needs to load 3 lines, one line

each from arrays a, b, and c.

The Computation C in a loop is defined to be the number of cycles required to execute

one ITER of the loop if there are no cache misses. For this loop, C = 8 × 4 = 32 cycles.

The Memory Latency ML of a loop is defined as the number of cycles required to transfer

all the data required in one ITER in steady state, assuming that the request was made well

in advance. In every ITER in steady state, three lines have to be loaded (one line each from

arrays a, b, and c) and one line has to be written back (one out of every three lines, the one

corresponding to array c, is dirty). Thus ML = 4× 4× 3 = 48 cycles.

For this loop ML > C. We call such a loop as memory bound, and there is no way
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to avoid processor stalls for such a loop. Even if the request for the data is made well in

advance, the memory bandwidth is not enough to transfer the required data in time. For

loops in which ML = C, the memory requirement and computation are matched. The

memory system can be said to be tuned for such loops.

Time (cycles)

Normal
Execution Memory Bus Activity

Processor Activity

Processor Activity
Memory Bus Activity

Processor Activity
Memory Bus Activity

Normal
Prefetching

DMA
Prefetching

Figure 4.6: Processor Memory Activity

The top two sets of lines in Figure 4.6 represent the processor and memory bus activity

in a normal processor. The processor executes intermittently. It has to stall at the 6th

instruction of each ITER, and wait for the memory to catch up. The memory activity

starts with the request made by the 2nd instruction, but data continues to transfer on

the memory bus, even after the processor has stalled. Even before all this data could be

transferred, there is a new request from the 2nd instruction of the next ITER of the loop,

and the request latency could not be completely hidden. Thus in a normal processor, both

the processor and memory bus activities are intermittent.

Prefetching has the effect of aggregating the memory bus activity. The next two hor-

izontal lines from the top in Figure 4.6 represent the processor and memory bus activity

with prefetching. Each period of processor execution is longer because of the computa-

tional overhead of prefetching. However, the memory bus activity is now continuous. The

memory bus is one of the most critical resources in several systems, including our example

architecture. Improving the utilization of such an important resource is very important. As

a result of this, the runtime of the loop decreases.

However, the processor utilization is still intermittent. If we can aggregate the pro-

cessor utilization, we can achieve an activity graph as shown by the bottom two lines of

Figure 4.6. The plot clearly shows that the processor needs to be active only for a fraction

of time of the memory bus activity, the fraction being equal to C/ML. Furthermore the ag-
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gregated inactivity window can be large enough to enable profitable switching to low-power

mode, and energy reduction achieved. In this chapter, we present a code transformation

and architectural support required to achieve this aggregation.

4.4 Our Aggregation Approach

for (i=0; i<1000; i++)
c[i] = a[i] + b[i];

(a) (b)

for (i1=0; i1<T2; i1+=T)
startPrefetch()

    setProcWakeup(w)
    procIdleMode()
    for (i2=i1; i2<i1+T; i2++)
        c[i2] = a[i2] + b[i2]

Figure 4.7: Loop Transformation

Our idea of aggregating processor rest time is very intuitive, and requires a prefetch

engine. Figure 4.7 shows the transformation of the loop shown in Figure 4.4. For each

memory bound loop in the application we find out which arrays and how many lines from

each array are required by the loop and the prefetch is started. The loop is first tiled with

tile of size T . Inside each tile, the wakeup factor w is set in the prefetch engine to wake

up the processor. The processor is then switched to a low-power state. In the low-power

state, the processor waits for an interrupt from the prefetch engine. All parts of processor

except the load store unit are switched to a low-power state. At appropriate time the

prefetch engine generates an interrupt to wake up the processor. The processor wakes up

and resumes execution on the prefetched data in the cache. The prefetch engine continues

to work even after the processor is awake. The tile size T , and the wake up parameter w

are computed so as to maximize the time the processor is in the low-power state.

Note that Figure 4.7 shows only the transformation of the loop kernel. However to

implement this transformation, we need to identify the loop kernel, the epilogue and the

prologue of the loop. First we describe the complete loop transformation steps, then we

show the calculation of T and w to achieve the maximum energy savings, and finally describe

our prefetch engine implementation.
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b. ML can be estimated by source code of loop
a. C can be estimated by assembly code of loop

1. Identify simple memory bound loops

5. Find the wakeup time for the third part of loop

Break away the third part (tail) of the loop

4. Find tiling factor and wakeup time for
second part of the loop

Compute wakeup time for first part of loop
3. Find MLof the first part of loop by profiling

b. At steady state
a. Before steady state

2. Break the loop into two parts

Figure 4.8: Transformation Steps

4.4.1 Code Transformation

The transformation is applied only to memory bound loops. The loop transformation

described in Figure 4.8, converts the loop in Figure 4.4 into the loop in Figure 4.9. The first

step in the transformation is to estimate the memory latency ML and the computation C

of the loop. The ML can be estimated by a simple source code analysis, while C can be

estimated by a simple assembly code analysis. We define the steady state of the loop, as

when the loop has consumed a cache-full of data. Before steady state, the memory latency

of the loop may not be equal to ML. If the data required in an ITER is already present

in the cache, there will be no memory transfers. On the other hand, if the data residing in

the cache is dirty, then more writebacks will happen. The loop is therefore broken into two

parts, the first one is before steady state (i = 0; i < T1), the prologue, and the second one

is at steady state (i = T1; i < N). For this we need to estimate T1, the break point of the

loop.

Before steady state, profile information is needed to estimate ML. A cycle accurate

simulator is instrumented to count all memory activity in the loop in the first part of the

loop. Thus for the prologue, ML = cache misses/T1. Using ML, C and T1, the wake up

parameter w1 for the first part of the loop is computed.

For the second and the main part of the loop, ML and C are known. The tile size T

of the loop needs to be computed. There will be (N − T1)/T tiles in the second part of

the loop. However, there may be a tail end of the loop left (i = ((N − T1)/T )× T ; i < N).
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The tail end of the loop, is separated as the third part or epilogue of the loop. In the

main kernel, the processor will be switched to low-power mode at the beginning of each tile,

and processor wake up factor will be setup in the prefetch engine. The processor wakes up

by the interrupt from the prefetch engine, and starts executing. The wake up factor w is

computed in such a way that the tile computation ends by the time processor exhausts the

prefetched data. The wake up time w2 for the epilogue is also estimated.

17.    c[i1] = a[i1] + b[i1]
16. for (i1=T2; i1<N; i1++)
15. procIdleMode
14. setProcWakeup w2
// tail of the loop

13.      c[i2] = a[i2] + b[i2]
12.   for (i2=i1; i2<i1+T; i2++)
11.   procIdleMode
10.   setProcWakeup w
9. for (i1=0; i1<T2; i1+=T)
// tile the second part of the loop 

8.    c[i1] = a[i1] + b[i1]
7. for (i1=0; i1<T1; i1++)
6. procIdleMode
5. setProcWakeup w1
// first part of the loop

4. startPrefetch
3. setPrefetchArray b, N/L
2. setPrefetchArray b, N/L
1. setPrefetchArray a, N/L
// Set the prefetch engine

Figure 4.9: Fully Transformed Loop

Currently our analysis of aggregating processor free times is for loops that request

consecutive lines from each array. It should be possible to extend the scope of this trans-

formation by employing more sophisticated data analysis techniques. The overhead of the

additional instructions inserted by our transformation is negligible (< 1% of the total run-

time).
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4.4.2 Computation of Loop breakpoints, Tile size and Wake up Factor

The loop breakpoints, tile size, and wake up time depend on the the loop characteris-

tics, cache parameters, and the location of arrays in memory. For our analysis we assume

that C is the computation, and ML is the memory latency of the loop. Also assume that

in each ITER of the loop, r lines need to be read. Further assume that the cache has s sets,

and has associativity a.

We first compute the first breakpoint T1 of the loop. The steady state starts when

the loop has consumed one cache-full of data. In s ITERs, the loop completely uses r lines

of each set. Thus it will use the whole cache and a little more in T1 = a× s/r + s ITERs.

To compute the wake up time w1 of the processor, given the number of ITERs the loop

will execute, the following condition must hold true, C × T1 = ML × (T1 − w1/r). This

ensures that enough data has been loaded into the cache to perform computation without

any cache misses. Thus w1 = ((ML− C)× T1× r)/ML.

The wake up time w of the processor inside the tile is computed such that each time

we prefetch a cache-full of data, thus w/r = (a/r)×s. The tile size T can then be computed

by the following relation, (C×T/ML)+w/r = T . This implies T = w/r×ML/(ML−C).

The wake up time w2 for the third part of the loop can be computed similarly as

w2/r = ((ML− C)× (N − T2))/ML.

4.4.3 Architectural Support

Pipelined
Memory

Load Store Unit

Data BusRequest Bus

Buffer
Request

Data Cache

prefetch
engine

Processor

Figure 4.10: Prefetch Engine
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A minimal amount of architectural support is needed for the proposed scheme to work.

The exact implementation of the prefetch engine as well as its interface may differ for each

architecture. Our implementation is shown in Figure 4.10. A mechanism to set up the

prefetch engine is required. The processor needs to specify the start of the arrays, and the

number of lines of each array to be prefetched to the prefetch engine. The processor also

needs to specify the number of lines to prefetch before waking up the processor (w). A

mechanism to start the prefetch engine and a way to switch the processor to a low-power

mode is needed. In the low power mode, the clock to the processor(other than the load

store unit) can be frozen, and even powered-down. The processor just waits for an interrupt

from the prefetch engine. The prefetch engine keeps prefetching by inserting requests in

the request buffer. The prefetch engine monitors the request buffer, and it does not let

the request buffer be empty. If the request buffer is always full, the activity on the data

bus remains uninterrupted. This ensures the maximum usage of data bus by keeping the

request buffer non-empty. After the prefetch engine has requested more than w lines from

the memory, it should generate an interrupt to wake up the processor. The processor should

catch the interrupt and resume execution again. The prefetch engine continues its operation

even after waking up the processor. After all the data has been prefetched, the prefetch

engine should disengage itself, until it is invoked by the processor again.

4.5 Effectiveness of Aggregation

To demonstrate the usefulness and efficacy of our approach we perform experiments

on a XScale simulator that we developed. We validated our simulator against the 80200

EVB (XScale Evaluation Board) [21] to be accurate within 7% on an average in cycle count

measurements. The simulator has been extended to model the prefetch engine. The code

transformations have been applied on the best performing code generated by GCC.

4.5.1 Steady-state Analysis

We perform the first set of experiments on kernels from the Stream suite[46]. Stream

kernels are widely used to balance the memory bandwidth to the computation speed of pro-

cessors. The kernels have varying degree of computation to memory requirement (C/ML)

ratio.
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Figure 4.11: Variation of processor free stretch size with Unrolling

The leftmost (black) bars in Figure 4.11 plot the processor free stretch our aggregation

technique could obtain for each kernel in Stream suite. Up to 50,000 processor free cycles

can be accumulated. Two of the kernels, stream3 and stream5, do not have black bars. Our

technique was unable to aggregate processor free stretches for these two kernels, because

C > ML for these kernels.
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Figure 4.12: Variation of processor switch time with Unrolling

The leftmost (black) bars in Figure 4.12 represent the percentage of total execution

time, the processor can be switched to a low-power mode (processor switch time). The

processor state switching time (360 cycles for each switch), is considered to be full-power

mode. The processor can be switched to a low-power mode for up to 33% of the program

execution time. Note again, that the processor cannot be switched to a low-power mode

in stream3 and stream5. This shows that our technique is able to aggregate processor free
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times into large chunks, so that it becomes profitable to switch the processor to a low-power

mode. Furthermore, our results show that the processor can be switched to low-power mode

for a significant amount of kernel run-time.

4.5.2 Effect of Loop Unrolling

The processor free time our technique is able to aggregate is proportional to the ra-

tio, C/ML. Optimizations that improve this ratio improve the aggregation results. Loop

unrolling is a popular optimization that reduces the computation per ITER (C) of a loop.

In this subsection we analyze the impact of loop unrolling on the processor free stretch and

the processor switch time obtained. Figure 4.11 shows that the processor free stretch size

obtained is not affected by unrolling. As previously discussed, the ability to accumulate

processor free time is dependent on whether ML > C, but if it is possible, the size of the

processor free stretch obtained is proportional to ML. It does not increase by reducing

C. Figure 4.12 show plots the processor switch time percentage obtained for the Stream

kernels for different unroll factors. The first observation is that after unrolling the processor

can find switching opportunities even for kernels stream3 and stream5, which were earlier

deemed unprofitable. The second important observation is that unrolling increases the

processor switch time percentage for the kernels. The processor can now be switched to a

low-power mode for up to 75% of kernel run-time. Thus unrolling improves the applicability

and efficacy of our aggregation technique. It is worth mentioning here that hand-generated

assembly code has even better C/ML ratio.

Another interesting thing to note here is that hand generated assembly typically is

much denser, i.e., it uses much fewer instructions to code the same functionality (thereby

reducing C) , but the ML remains the same. Thus the aggregation techniques works even

better on hand-generated assembly code. This technique is therefore particularly applicable

for a large set of Digital Signal Processing (DSP) applications, where many important

kernels are often hand coded. We believe our technique shows significant promise for energy

reduction in such designs.

4.5.3 Energy Saving Estimation

In this subsection we estimate the energy consumption of the processor with and

without applying our aggregation technique. We develop simple and conservative state-
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based processor energy models. We show that even with such conservative energy models,

our technique achieves significant processor energy reduction. In the normal RUN mode,

operating at 600 MHz, the XScale consumes 450 mW. In the STALL mode, the XScale

consumes 25% of 450 mW = 112.5 mW [47, 19, 48]. In the aggregated processor free time,

we switch the processor to our low-power mode called MY IDLE. In the normal IDLE

mode of XScale, the clock to the processor and memory are gated, and XScale consumes 10

mW. However in our idle state, MY IDLE, the memory clock needs to be on, the prefetch

engine is on, and we need to keep performing writes in the cache. The clock consumes

about 20% power in the XScale, i.e., 90 mW. The clock power is divided into processor

clock power and memory clock power. We assume that processor clock is 6 times faster

than memory clock. The capacitive load on the processor clock is much more than the

capacitive load on the memory clock. We conservatively assume the same capacitive load,

therefore memory clock consumes 90/7 = 13 mW. Caches in XScale consume about 25%

power, i.e., 112.5 mW. However this is divided into data cache power and the instruction

cache power. In XScale the instruction cache and data cache have the same architectural

parameters. However on an average the instruction cache is accessed every cycle, while

the data cache is accessed every 3 cycles. Thus energy consumed by the data cache is

112.5/4 = 28 mW. We synthesized the prefetch engine using design-compiler of Synopsys-

2001.10 on a 0.8μ library, and estimated its power consumption using Synopsys power-

estimate[23]. The power consumption, scaled to the XScale process technology (0.18μ)

is less than 1 mW. Thus in the MY IDLE state, processor consumes 13 + 28 + 1 = 42

mW. However for our experiments, we make a further conservative estimate, and assume

processor power consumption to be 50 mW. We augmented the cycle accurate simulator with

the power of RUN state, STALL state and MY IDLE state. Depending on the current state

of the processor, the corresponding state power is added and the total energy consumption

computed.

Figure 4.13 shows that even with such a conservative estimate, up to 18% proces-

sor energy savings can be obtained by our processor free time aggregation technique on

multimedia applications running on XScale.
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Figure 4.13: Energy savings on multimedia applications.

4.6 Compiler-in-the-Loop Exploration

The increasing gap between the clock rates of the processor pipelines and the memory

have resulted in importance of the memory and the memory interface design as one of the

most important aspects of processor design.

Although fast memory and high bandwidth memory bus the best for performance, but

they may consume too much power to be implemented in embedded processors. Embedded

processors for which energy consumption may be even more important than performance,

will often slow down the clock of the memory and reduce the bandwidth of the the memory

bus to meet the energy budget. Decreasing the memory frequency and bandwidth results

in an increase in the time processor is stalled waiting for data from the memory. Since

the energy consumed by the processor in stall state is lesser than the busy energy of the

processor, the power consumption decreases. The SO DSE will measures the runtime and

the power consumption of the processor at each memory bus frequency and bandwidth.

The dark diamonds in Figure 4.14 represent the runtime and processor power consumption,

while we vary the memory bus frequency and bandwidth.

However, there is further scope of reducing the processor power consumption by switch-

ing the processor to low-power IDLE state during the stall periods. But the typical stall

durations a normal execution of programs are too small for the processor to profitably

switch to low-power IDLE mode. For the Intel XScale embedded processor, running the

qsort benchmark from the MiBench suite, the average stall duration is 4 processor cycles,
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with none of the stalls more than 100 processor cycles. On the other hand, it takes 180

processor cycles to switch to low-power IDLE mode. Thus it is not possible to switch to

low-power IDLE mode during the memory stalls occurring in traditionally compiled code.

However our aggregation technique can aggregate the memory stalls and create a large

enough stall so as to profitably switch the processor to the low-power IDLE state. Doing

so reduces the processor power consumption. The light squares in Figure 4.14 plot the

runtime and processor power consumption, while we vary the memory bus frequency and

bandwidth.

In the Figure 4.14 we obtain the runtime and processor power consumption as evalu-

ated by the SO DSE and CIL DSE for each memory bus configuration. The memory bus

configuration is defined in terms of two parameters, first is CR, the ratio of the processor

clock frequency to the memory bus clock frequency. The second parameter is the width of

the memory bus in bytes. Thus if the bus width is b, and clock ratio is c, this configuration

implies that b bytes can be transferred between the processor and the memory in c processor

clock cycles.
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Figure 4.14: Design Space Exploration of Memory Bus Parameters

Figure 4.14 shows that as we traverse the graph from left to right, the memory bus

frequency and width decreases, and the runtime increases but the processor power con-

sumption decreases. This is because the processor is now stalled for more time, waiting for

data from the memory. For the configurations on the extreme left, the processor and mem-

ory is fast enough and there are no processor stalls. Therefore both the SO DSE and CIL

97



DSE estimate the energy as 450 mW, which is the power consumption of the Intel XScale

processor in the busy mode. For all other configurations, the compiler is able to further

reduce the processor power consumption by aggregating the processor stalls and switching

the processor to low-power IDLE state in the aggregated processor stall duration. As we

decrease the memory bus bandwidth, there is more scope for the compiler to reduce pro-

cessor power consumption. In the limiting case, when the memory is slow enough (extreme

right), the SO DSE assumes that the processor will be stalled for most of the time, there-

fore it estimates the power consumption to be little more than 112.5 mW. 112.5 mW is the

power consumption of the processor in stall state. In contrast, CIL switches the processor

to low-power IDLE state, and therefore it estimates the processor power consumption to

be slightly more than 50 mW. 50 mW is the power consumption of the processor in the

low-power IDLE state.

Thus there is a significant difference in the estimation of the processor power consump-

tion between the SO DSE and CIL DSE. SO DSE can severely overestimate the processor

power consumption at a given memory bus configuration. Thus it is very important to

include compiler effects during the exploration and therefore perform our CIL DSE.

4.7 Summary

The processor pipeline - memory interface may have a huge impact on the effectiveness

of the processor as a whole. It is very important to match and tune the processor frequency

and the memory frequency, so as to minimize the processor stalling for memory, and reduce

the power consumption.

In this chapter, we focused on tuning the bus-based processor pipeline - memory in-

terface. High speed, high bandwidth buses are the best for performance, but they are not

only exceedingly costly, but also consume a lot of power. In embedded systems, where

power is a major concern, designers implement only slower, low bandwidth buses. A slower,

lower bandwidth bus has lower power consumption. In addition the processor is now stalled

waiting for results from the memory for longer percentage of time. Since the processor

consumes less power when it is stalled then when it is running, the power consumption of

the processor also decreases. However there is scope for further processor power reduction

by switching the processor to a low-power IDLE state. However memory stalls obtained by
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executing traditionally compiled codes are not long enough for a profitable switching to the

low-power IDLE state. Therefore using existing techniques it is not possible to save proces-

sor energy by switching the processor to low-power IDLE mode while stalled for memory

response.

Our novel aggregation technique collects memory stall times and creates a large enough

stall so that the processor can be switched to the low-power IDLE mode, and thereby save

processor power consumption. Our technique is able to aggregate up to 50,000 stall cycles,

and by switching the processor to low power IDLE state, the power consumption of the

processor can be reduced by up to 18%.

Further, exploring over various memory bus configurations, we find that not consider-

ing this achievable lower processor power consumption can result in significantly different

evaluation of the processor power consumption. As a result it is very important to con-

sider the compiler effects (power reduction that the compiler technique can reduce) during

exploration, and therefore employ CIL DSE techniques.

Although this aggregation technique in its current form may not be applicable to

general purpose processor, we believe variants of this technique can be developed for general

purpose processors, and we are working in this direction. However, this is already in an

extremely important from for embedded processors.
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Chapter 5

Memory Design

In most embedded processors, the design of the memory subsystem still remains one

of the most important steps of processor design. Significant time and effort of experienced

designs is invested in designing the memory subsystem of the processor. A lot of research

effort has focused on the design of memory subsystem, which is depicted in Figure 5.1.

Pipeline
Processor Memory

Design

Memory Interface
Processor Pipeline - 

Instruction Set

Figure 5.1: Memory Design Abstraction

A broad range of memory designs are popular in embedded processors. Several em-

bedded processors do not use caches at all. In the absence of caches, the memory transfers

take a long time. As a result, the role of a compiler is crucial to achieve desired performance

by re-ordering the instructions and hiding the memory latency of the system.

However, several high-performance embedded processors employ caches to increase

performance. Traditionally the management of caches is hardware controlled: the compiler

has no control over it. Caches result in large improvements in performance and power due

to the presence of spatial and temporal locality of application data. Previous research has

focused on how to optimize the generated code so as to obtain even more benefits from

100



the caches. Compiler techniques such as loop blocking , loop interchange etc. (e.g., [49])

change the order of memory transfers and therefore have a sweeping effect on the power

and performance of cache-based processors.

Yet another kind of memory design is based on using scratch pads. Scratch pads

are essentially compiler controlled memories. The compiler has to explicitly transfer data

to and from scratch pads, and also perform address translation to use them. Due to the

reduced overhead, scratch pads are significantly less complex and more power efficient than

caches. Several compiler techniques have been developed to automatically map and manage

the application data on the scratch pads, e.g., [50] Although compilers may be able to use

them very efficiently for regular applications (where the compiler can determine or guess

the memory access patterns statically), in general they are difficult to use. Needless to say,

the compiler has a huge impact on the effectiveness of such memories.

Thus over the whole range of memory designs, the compiler is instrumental in achieving

fast and power-efficient use of the memory subsystem. As a result, the compiler should be

involved in the design of the memory subsystem of an embedded processor.

In this chapter we present a novel compilation technique to reduce the memory energy

consumption by exploiting a memory architectural feature called Horizontally Partitioned

Caches (HPCs). Then we demonstrate the need and usefulness of Compiler-in-the-Loop

(CIL) Design Space Exploration (DSE) by comparing the memory subsystem energy con-

sumption of the HPC configuration found by CIL DSE against the one found by Simulation-

only (SO) DSE.

5.1 Horizontally Partitioned Cache

Advances in compiler technology have far from kept pace with the phenomenal pace

of microarchitectural innovation. Advanced microarchitectural features are employed in

processors to be exploited manually and/or with the hope that the compiler will be able

to exploit them in the near future. Horizontally partitioned caches are one such feature.

Although originally proposed in 1995 by Gonzalez et al. [51], and after being deployed

in several current processors such as the popular Intel XScale [19], compiler techniques to

exploit it are still in their nascent stages. A horizontally partitioned cache architecture

maintains multiple caches at the same level of hierarchy, however each memory address is
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mapped to exactly one cache. For example, the Intel XScale contains two data caches, a

32KB main cache and a 2KB mini-cache. Each virtual page can be mapped to either of

the data caches, depending on the attributes in the page table entry in the data memory

management unit. Henceforth we will call the additional cache as the mini-cache and the

original cache as the main cache.

The original idea behind such cache organization is the observation that array accesses

in loops often have low temporal locality. Each value of an array is used for a while and

then not used for a long time. Such array accesses sweep the cache and evict the existing

data (like frequently accessed stack data) out of the cache. The problem is worse for high

associativity caches that typically employ FIFO page replacement policy. Mapping such

array accesses to the small mini-cache reduces the pollution in the main cache and prevents

thrashing, thus leading to performance improvements. Thus a horizontally partitioned cache

is a simple, yet powerful architectural feature to improve performance. Consequently most

existing approaches for partitioning data between the horizontally partitioned caches aim

at improving performance.

In addition to performance improvement, horizontally partitioned caches also result

in a reduction in the energy consumption due to two effects. First, reduction in the total

number of misses results in reduced energy consumption. Second, since the size of the mini-

cache is typically small, the energy consumed per access in the mini-cache is less than that

in the large main cache. Therefore diverting some memory accesses to the mini-cache leads

to a decrease in the total energy consumption. Note that the first effect is in-line with the

performance goal and was therefore targeted by traditional performance improvement opti-

mizations. However, the second effect is orthogonal to performance improvement. Therefore

energy reduction by the second effect was not considered by traditional performance ori-

ented techniques. In fact, as we show later, the second effect (of a smaller mini-cache) can

lead to energy improvements even in the presence of slight performance degradation. Note

that this is where the goals of performance improvement and energy improvement diverge.

5.2 Motivation

We illustrate the difference between optimization for performance and energy for hor-

izontally partitioned caches using the memory architecture shown in Figure 5.2(a). The
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char a[1024]          // page A
char b[1024]          // page B

for (i=0; i<1024; i++)
     c += a[i] + b[i%5];

1 KB mini-cache
Access Latency:  1 cycle
Access Energy:   1nJ

8 KB Main Cache
Access Latency:  1 cycle
Access Energy:   3nJ

Access Latency:  20 cycles
Access Energy:   30 nJ
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Figure 5.2: Motivating Example

example architecture has a horizontally partitioned, direct mapped 8KB and 1KB caches,

with line size of 16 bytes and other parameters as shown in Figure 5.2(a). We assume that

the page size is 1KB, and that each page can be mapped to either of the caches.

Now we examine the execution of the code in Figure 5.2(b) on this architecture. The

loop accesses two arrays a and b. Assuming that the arrays are aligned to the beginning

of the page, they occupy two pages (A and B, one page each). To simplify the analysis,

we consider only accesses to these two arrays and evaluate the memory latency (total time

spent in memory accesses) and the memory energy consumption.

The table in Figure 5.2(c) shows the memory latency (in number of cycles) and energy

consumption of the memory subsystem for each of the four possible partitions of the pages.

When both the pages are mapped to the main 8KB cache, all the 2048 accesses will be to

the main cache, and there will be 64 + 1 = 65 cold misses. We estimate the performance of

the memory subsystem as 2048 + 65 × 20 = 3348 cycles, and the energy consumed in the
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memory subsystem as 2048 × 3 + 65 × 30 = 8094 nJ. Similarly we compute the memory

latency and memory energy consumption of the other page partitions. The interesting

partition is the last one, in which both the arrays are mapped to the small 1KB mini-cache.

For this partition, there are more misses in the mini-cache, but less misses in the main

cache. The increase in the misses in the mini-cache is more than the decrease in the misses

in the main cache. Therefore there is a performance degradation. However the increase in

the energy consumption due to the increased misses in mini-cache is less than the decrease

in the energy consumption due to the reduced misses in the main cache, resulting in reduced

energy consumption.

Owing to the difference in energy per access between the caches, and the high hit

rates of the caches, it intuitively seems that the partition that results in minimum memory

energy consumption (optimal energy partition) will have many more pages pages mapped to

the mini-cache than the partition that has the least memory latency (optimal performance

partition). Thus optimizing for performance is not the same as optimizing for energy. This

together with the fact that energy is becoming an ever important design criterion motivates

the need for techniques to find optimal energy partitions. In this chapter we propose and

evaluate several data partitioning algorithms that aim at minimizing memory subsystem

energy consumption in horizontally partitioned cache architectures. It turns out that very

simple greedy heuristics work well to optimize energy, and furthermore optimal energy

partitions do not suffer significant performance degradation.

5.3 Related Work

Caches are one the major contributors of not only system power and performance,

but also of the embedded processor area and cost. In the Intel XScale caches comprise

approximately 90% of the transistor count, 60% of the area, and consume approximately

15% of the processor power [47]. As a result several hardware, software and cooperative

techniques have been proposed to improve the effectiveness of caches.

Originally horizontally partitioned caches were proposed by Gonzalez et al. [51] to

separate and thus reduce the interference between the array and stack variables. Most

previous research focuses on achieving performance improvements using horizontally par-

titioned caches. Hardware based approaches improve the performance by partitioning the

104



data based on reuse history. While some approaches use effective address reuse information

[52, 53], others use program counter reuse information [54]. Software based approaches

attempt to improve performance primarily by coarse-grain region based scheduling [55, 56].

Such schemes simply map the stack data, or the scalar variables to the mini-cache. Recently

Xu et al. [57] proposed a profile-based technique to partition the virtual pages to different

caches. Their algorithm has complexity O(m3n), where m is the number of pages accessed

in the application, and n is the number of memory accesses. It should be noted that O(n)

is also the time complexity of simulation of an application with a given page mapping.

However, the main focus of all the previous research has been performance improve-

ment, and they achieve energy reduction only as a by-product. In this chapter we show that

optimizing for performance does not effectively optimize energy. With energy consumption

becoming an ever important design constraint, there is a need to develop data partitioning

techniques aimed at energy improvement. We also propose and evaluate several such data

partitioning schemes, and demonstrate that in contrast to high-complexity data partition-

ing techniques for performance improvements proposed earlier, low-complexity techniques

work well for energy optimization with negligible performance penalty.

5.4 Our HPC Compiler

The problem of energy optimization for horizontally partitioned caches can be trans-

lated into a data partitioning problem. The data memory that the program accesses is

divided into pages, and each page can be independently and exclusively mapped to exactly

one of the caches. The compiler’s job is then to find the mapping of the data memory pages

to the caches that leads to minimum energy consumption.

As shown in Figure 5.3, we first compile the application and generate the executable.

The Page Access Information Extractor calculates the number of times each page is accessed

during the execution of the program. Then it sorts the pages in decreasing order of accesses

to the pages. The complexity of simulation used to compute the number of accesses to each

page and sorting the pages is O(n + m log (m)), where n is the number of data memory

accesses, and m is the number of pages accessed by the application.

The Data Partitioning Heuristic finds the best mapping of pages to the caches that

minimizes the energy consumption of the target embedded platform. The Data Partitioning
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Figure 5.3: Compiler Framework for HPC Data Partitioning

Heuristic can be tuned to obtain the best performing, or minimal energy data partition by

changing the cost function Performance/Energy Estimator.

The executable together with the page mapping are then loaded by the operating

system of the target platform for optimized execution of the application.

5.4.1 Data Partitioning Algorithms

The compiler framework depicted in Figure 5.3 supports using, evaluating, and com-

paring several data partitioning heuristics of varying complexities to exploit horizontally

partitioned caches. All the data partitioning heuristics take as input a list of memory pages

accessed by the application, sorted in the order of decreasing accesses to the pages.

Heuristic OMN(Pages P)
01: M = φ,m = φ,U = P
02: while (U �= φ)
03: p = U.pop()
04: cost1 = evaluatePartitionCost(M + p,m)
05: cost2 = evaluatePartitionCost(M,m + p)
06: if (cost1 ≤ cost2) M+ = p else m+ = p
07: endwhile
08: return M, m

Figure 5.4: Heuristic OMN

The heuristic shown in Figure 5.4 is a greedy approach for solving the data partitioning
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problem. Initially, M (list of pages mapped to main cache) and m (list of pages mapped to

mini-cache) are empty. All the pages are initially undecided, and are in U (line 01). U is a

list containing pages sorted in the decreasing order of accesses. The heuristic picks the first

page in U , and evaluates the cost of the partition when the page is mapped to the main

cache (line 04) and when it is mapped to the mini-cache (line 05). The heuristic finally

maps a page to the partition that results in minimum cost (line 06). Depending on whether

the function evaluatePartitionCost(M, m) estimates the performance of the partition, or

the energy consumption, the heuristic can be used to find the best performing partition, or

the minimum energy partition.

evaluatePartitionCost(M, m) uses simulation to estimate the performance or the energy

consumption for a given partition. Since each page is considered only once, the complexity

of this heuristic is O(mn), where O(n) is the complexity of the simulation-based estimation.

Heuristic OM2N(Pages P)
01: M = φ, m = φ, U = P
02: while (U �= φ)
03: p = U.pop()
04: M1 = M + p, m1 = m, U1 = U
05: while (U1 �= φ)
06: p′ = U1.pop()
07: cost1′ = evaluatePartitionCost(M1 + p′, m1)
08: cost2′ = evaluatePartitionCost(M1, m1 + p′)
09: if (cost1′ ≤ cost2′) M1+ = p′ else m1+ = p′

10: endwhile
11: M2 = M, m2 = m + p, U2 = U
12: while (U2 �= φ)
13: p′ = U2.pop()
14: cost1′ = evaluatePartitionCost(M2 + p′, m2)
15: cost2′ = evaluatePartitionCost(M2, m2 + p′)
16: if (cost1′ ≤ cost2′) M2+ = p′ else m2+ = p′

17: endwhile
18: cost1 = evaluatePartitionCost(M1, m1)
19: cost2 = evaluatePartitionCost(M2, m2)
20: if (cost1 ≤ cost2) M+ = p else m+ = p
21: endwhile
22: return M, m

Figure 5.5: Heuristic OM2N

Figure 5.5 describes a higher complexity heuristic, OM2N. For each page p ∈ U (line

06), this heuristic uses the heuristic OMN to find whether the page should be mapped to

the main cache (lines 04-10) or to the mini-cache (lines 11-17). Therefore the complexity

of the heuristic OM2N is O(m2n).
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Heuristic ON(Pages P)
01: M = φ, m = φ
02: for (i = 0; i < mini−cache size

page size ; i + +)
03: m+ = U.pop()
05: endFor
06: M = U
07: return M, m

Figure 5.6: Heuristic ON

Our experimental results later show that OMN heuristic works very well for energy

reduction. Motivated by this, we developed an even simpler heuristic for data partitioning.

Figure 5.6 shows a very simple single step heuristic. If we define k = mini−cache size
page size , then

the first k pages with the maximum number of accesses are mapped to the mini-cache, and

the rest are mapped to the main cache. This partition aims to achieve energy reduction

while making sure that there is no performance loss (for high associativity mini-caches).

Note that for this heuristic we do not need to sort the whole list of pages, thus the time

complexity of this heuristic is O(n+ km), which is O(n), since both k and m are very small

as compared to n.

5.5 Effectiveness of Energy-oriented Compilation for HPCs

main cache
32KB

Processor
Core Memory

Controller

XScale
PXA255

mini-cache
2KB SDRAM

SDRAM

Figure 5.7: Modeled memory subsystem

We have developed a framework that employs data partitioning algorithms described in

Section ?? to optimize the memory latency or the memory subsystem energy consumption

of applications. We have modified the sim-safe simulator from SimpleScalar toolset [58]

to obtain the number of accesses to each data memory page. This implements our Page
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Access Information Extractor in Figure 5.3. In order to estimate the performance/energy

of an application for a given mapping of data memory pages to the main cache and the

mini-cache, we have developed performance and energy models of memory subsystem of a

popular PDA, HP iPAQ h4300 [59].

Figure 5.7 shows the memory subsystem of the iPAQ that we have modeled. The

iPAQ uses the Intel PXA255 processor [60] with the XScale core [19], which has a 32KB

main cache and 2KB mini-cache. PXA255 also has an on-chip memory controller that

communicates with PC100 compatible SDRAMs via off-chip bus. We have modeled the

low-power 32MB Micron MT48V8M32LF [61] SDRAM as the off-chip memory. Since the

iPAQ has 64MB of memory, we have modeled two SDRAMs.

We use the memory latency as the performance metric. We estimate the memory

latency as (Am +AM )+MP × (Mm +MM ), where Am and AM are the number of accesses,

and Mm and MM are the number of misses in the mini-cache and the main cache respectively.

We obtain these numbers using the sim-cache simulator [58], modified to model horizontally

partitioned caches. The miss penalty MP was estimated as 25 processor cycles, taking into

account the processor frequency (400 MHz), memory bus frequency (100 MHz), the SDRAM

access latency in power-down mode (6 memory cycles), and the memory controller delay (1

processor cycle).

We use the memory subsystem energy consumption as the energy metric. There are

three components in our estimate of memory energy consumption: energy consumed by

the caches, energy consumed by off-chip busses, and the energy consumed by the main

memory (SDRAMs). We compute the energy consumed in the caches using the access and

miss statistics from the modified sim-cache results. The energy consumed per access for

each of the caches is computed using eCACTI [62]. As compared to CACTI [63], eCACTI

provides better energy estimates for high associativity caches, since it models sense-amps

more accurately and scales device widths according to the capacitive loads. We have used

linear extrapolation on cache size to estimate energy consumption of the mini-cache, since

both CACTI and eCACTI do not model caches with less than 8 sets.

We use the PCB and layout recommendations of PXA255 and Intel 440MX chipset

[64] and the relation between Zo, Co and εr [65], to compute the the energy consumed by

the external memory bus in a read/write burst as shown in Table 5.1.

We used the parameters shown in Table 5.2 from the MICRON MT48V8M32LF
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Input pin capacitance 3.5 pF
Input/output pin capacitance 5 pF
Bus wire length 2.6 in
PCB characterisitc Impedance, Zo 60 Ω
Relative permitivity of PCB dielectric, εr 4.4
Capacitance per unit length, Co 2.34 pF/in
Capacitance per trace 6.17 pF
Bus energy per burst 9.46 nJ

Table 5.1: External Memory Bus Parameters

SDRAM current Idd 100 mA
SDRAM supply voltage Vdd 2.5 V
Memory bus frequency fmem 100 MHz
Number of memory cycles/burst Ncyc 13
SDRAM energy per read/write burst Embst 32.5 nJ

Table 5.2: SDRAM Energy Parameters

SDRAM to compute the energy consumed by the SDRAM per read/write burst operation

(cache line read/write), also shown in Table 5.2.

We perform our experiments on applications from MiBench suite [20] and an im-

plementation of H.263 encoder [66]. To compile our benchmarks we used GCC with all

optimizations turned on.

5.5.1 Optimizing for Energy is DIFFERENT than Optimizing for Per-

formance
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Figure 5.8: Difference in energy consumption between the best energy partition and the
best performing partition

Our first experiment investigates the difference in optimizing for energy and optimizing
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for performance on the memory subsystem. We find the partition that results in the least

memory latency, and the partition that results in the least energy consumption. Figure 5.8

plots Ebr−Ebe
Ebe

, where Ebr is the memory subsystem energy consumption of the partition

that results in least memory latency, and Ebe is the memory subsystem energy consumption

by the partition that results in least memory subsystem energy consumption. For the first

five benchmarks (susan - gsm dec), the number of pages in the footprint were small, so we

could explore all the partitions. For the last seven benchmarks (jpeg - dijkstra), we took the

partition found by the OM2N heuristic as the best partition. As we present later, OM2N

gives close-to-optimal results in the cases when we were able to search optimally. The graph

essentially plots the increase in energy if you choose the best performance partition as your

design point. The increase in the energy consumption is up to 130% and on average 58%

for this set of benchmarks.
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Figure 5.9: Difference in runtime between the best performance partition and the best
energy partition

Figure 5.9 plots Rbe−Rbr
Rbe

, where Rbe is the memory latency (in cycles) of the best

energy partition, and Rbr is the memory latency of the best performing partition. This

graph shows the increase in memory latency when you choose the best energy partition, as

compared to using the best performance partition. The increase in memory latency is on

average 1.7% and 5.8% in the worst case for this set of benchmarks. Thus choosing the best

energy partition results in significant energy savings at a minimal loss in performance.

5.5.2 Simple Greedy Heuristics work well for Energy Optimization

Next we evaluate the effectiveness of various data partitioning heuristics. Figure 5.10

plots Ebase−Emin
Ebase

for each heuristic, where Ebase is the energy consumed in the base case,
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Figure 5.10: Energy savings achieved by various heuristics

i.e. when all the data is mapped to the main cache. No page is mapped to the mini-cache,

and Emin is the energy of the minimum energy partition as computed by the heuristic. The

rightmost black bars in the first five benchmarks (susan - gsm dec) represent the energy

savings achieved by the optimal search. The optimal search can achieve on average 55%

savings in the energy consumed by the memory subsystem. It can also be seen that for

these benchmarks, heuristic OM2N achieves close-to-optimal (within 2%) results. Thus

we did not feel the need to investigate more complex heuristics. Instead we developed low-

complexity heuristics aimed at achieving energy savings. The OMN heuristic achieves up to

62% and on average 50% savings in the energy consumed by the memory subsystem. Thus

simple greedy heuristics work well to reduce the energy consumption. These heuristics have

lower complexity than the O(m3n) heuristic suggested in [57] for performance improvement.

In practice, such high complexity algorithms are unlikely to be used due to their large

runtimes. For example, for the jpeg benchmark, the optimal algorithm would take more

than 5,000 years, our OM2N heuristic takes a few days, the OMN heuristic takes a few

hours, and the ON heuristic takes a few minutes to find the optimal partition. Clearly

there is a need for low complexity, yet effective data partitioning heuristics.

Furthermore as we have noted that the energy optimal partitions incur minimal loss in

performance, therefore for several design domains, it makes sense to use the energy optimal

partition. The energy optimal partition saves significant energy at minimal cost. Even

the single step ON heuristic is also able to achieve up to 57% and on average 35% energy

reduction.

Figure 5.11 plots the goodness of the ON and OMN heuristic in obtaining energy re-

duction. The goodness of a heuristic is defined as energy reduction achieved by the heuristic
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Figure 5.11: Goodness of various heuristics

as compared to the maximum energy reduction that was possible, i.e., (EMain−Ealg)
(EMain−Ebest)

, where

EMain is the energy consumption when all the pages are mapped to the main cache, Ealg is

the energy consumption of the best energy partition that the heuristic found and Ebest is the

energy consumption of the best energy partition. For the last seven benchmarks for which

we could not perform the optimal search, we assume the partition found by the heuristic

OM2N as the best energy partition. The graph shows that the OMN heuristic could obtain

on average 97% of the possible energy reduction, while ON could achieve on average 64%

of the possible energy reduction. It is important to note here that the GCC compiler for

XScale does not exploit the mini-cache at all. The ON heuristic provides a simple yet ef-

fective way to exploit the mini-cache without incurring any performance penalty (for high

associativity mini-caches).

5.5.3 Sensitivity Analysis
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Figure 5.12: Sensitivity analysis
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Next we performed sensitivity analysis of our partitioning algorithms to various cache

configurations. Figure 5.12 plots the average energy savings achieved by the heuristics across

several cache configurations on the first five benchmarks. A cache configuration is specified

as no of sets : linesize in bytes : associativity : replacement policy. The first configuration

is a direct mapped 2KB cache, while the second configuration is a 4-way set associative 2KB

cache. The third configuration is the original configuration, i.e., a 32-way set associative

2KB cache. The fourth configuration is a 32-way, 8KB cache and the fifth configuration

corresponds to a 32-way 16KB cache.

In the first two configurations, we vary the associativity of the cache while keeping the

size constant, and in the last two configurations, we vary the size of the cache while keeping

the associativity constant. For all cache configurations, the difference between the energy

consumption of the minimum energy partition found by OM2N, OMN and the optimal

algorithm is no more than 2%.

Decreasing the associativity increases the energy reduction, because of the decrease

in the energy per access. But for the direct mapped cache, the performance begins to

deteriorate, thereby increasing the energy consumption. As we increase the cache size, the

energy per access of the mini-cache increases, therefore there is no improvement in the total

achievable energy reduction. The best mini-cache configuration for the energy reduction in

horizontally partitioned caches for our set of benchmark is the second configuration, i.e., a

4-way set associative 2KB cache.

Thus although the energy gains achieved by changing cache parameters vary, greedy

heuristics are able to consistently achieve near-optimal results.

5.6 Compiler-in-the-Loop Exploration of HPCs

HPC is a simple, yet very effective architectural feature to improve performance and

power consumption of processor systems. However, as we discover in this chapter, the

energy reduction obtained using HPCs is very sensitive on the HPC design parameters.

Therefore there is much scope for power and performance improvement by customizing the

HPC cache configuration to the application set intended for the system.

Since traditionally caches have been significant contributors to the power and perfor-

mance of the system, there has been extensive previous research to improve the power and
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Figure 5.13: Simulation-only Processor Design Exploration

performance of processor systems by tuning the cache parameters (cache size, associativ-

ity etc.) to the intended application set. However, since the compiler can be oblivious of

the presence of caches, existing cache exploration techniques do not include compiler-in-

the-loop of exploring the cache configurations. Traditional exploration is a SO DSE, i.e.,

compiler is not in the exploration loop is depicted in Figure 5.13. The application is com-

piled once and an executable is generated. The executable is then simulated over various

cache configurations to find out which is the best one.

Compiler

Processor
Description

Application Executable Simulator Report

Figure 5.14: Simulation-only Processor Design Exploration

However, to effectively utilize the HPC architecture, the compiler needs to be aware

of the HPC cache configuration. Acknowledging the impact of HPC-aware compilers in

reducing the energy consumption of the memory susbsystem, we propose a Compiler-in-

the-Loop (CIL) exploration of HPC configurations, as depicted in Figure 5.14.

To accurately evaluate an HPC configuration, the application has to be first compiled

for that HPC configuration. The executable generated is then simulated on the HPC con-

figuration to accurately estimate the power, and performance corresponding to the HPC

configuration.

5.6.1 HPC Exploration Framework

Figure 5.15 is the high-level view of our Compiler-in-the-Loop exploration methodology

for HPC design. The framework is driven by a processor architecture description. We use

EXPRESSION [3] ADL to describe the processor and drive our exploration. It should

be noted however, that the technique we present is generic and is not restricted on any
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Figure 5.15: Compiler-in-the-Loop methodology to explore the design space of HPCs

particular ADL. We need three kinds of information from the processor description: i) the

Horizontally Partitioned Cache parameters, ii) the energy models, and iii) the delay model

of the memory subsystem of the processor. The HPC compiler is parameterized on these

architectural features. We employ the energy-oriented OMN compilation technique [67]

to generate the page mapping which will result in minimum energy consumption by the

memory subsystem for the given application and HPC configuration.

5.6.2 Design Space

We specify the mini-cache using two attributes, the mini-cache size and the mini-cache

associativity. For our experiments, we vary cache size from 256 bytes to 32 KB, in exponents

of 2. The lower bound comes from the restriction of eCACTI to provide energy model for

caches of size less than 256 bytes. The upper bound is 32 KB, which is the size of the main

cache in XScale. We explore the whole range of mini-cache associativities, i.e., from direct

mapped to fully associative. We do not model mini-cache configurations which cannot be

modeled by eCACTI (as well as by CACTI). We set the line size to be as in the Intel

XScale architecture (32 bytes). In total we explore 33 mini-cache configurations for each
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benchmark.

5.6.3 Importance of Exploration
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Figure 5.16: Energy savings achieved by exploration

We first present experimental results to demonstrate the importance of exploring

HPCs. Figure 5.16 plots three bars for applications for each benchmark. The last set of

bars is the average over the applications. The leftmost bar represents the energy consumed

by the memory subsystem when the system has only a 32 KB main cache (no mini-cache

is present.) The second, or the middle bar shows the energy consumed when there is a 2

KB mini-cache in parallel with the 32 KB cache, and the application is compiled to achieve

minimum energy. The third and the rightmost bar represents the energy consumed by the

memory subsystem, when the mini-cache parameters (size and associativity) are chosen us-

ing exhaustive Compiler-in-the-Loop exploration. All the energy values are normalized to

the case when there is a 2 KB mini-cache (the Intel XScale configuration.)

We make two important observations from this graph. The first is that Horizontally

Partitioned Caches are very effective in reducing the memory subsystem energy consump-

tion. As compared to using not using any mini-cache, using default mini-cache (the default

mini-cache is 2 KB, 32-way set associative) leads to 2X reduction in energy consumption on

average. The second important observation is that the energy reduction obtained is very

sensitive on the mini-cache parameters. Compiler-in-the-Loop exploration of the mini-cache

design space to find the minimum energy mini-cache results in additional 80% energy re-

duction on average, thus reducing the energy consumption to 20% from the case with a 2
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KB mini-cache.

Furthermore, the performance of the energy-optimal HPC configuration is very close to

the performance of the best performing HPC configuration. The performance degradation

was no more than 5% and was 2% on average. Therefore energy-optimal HPC configuration

achieves high energy reductions at negligible performance cost.

Figure 5.3 shows the energy optimal mini-cache configuration for each benchmark. The

table suggests that low-associativity mini-caches are good candidates to achieve low-energy

solutions.

Benchmark mini-cache Parameters
adpcm dec 8K, direct mapped
adpcm enc 4K, 2-way
dijkstra 8K, 2-way
blowfish dec 16K, 2-way
blowfish enc 16K, 2-way
gsm dec 2K, direct mapped
gsm enc 2K, direct mapped
h263 8K, 2-way
jpeg 16K, 2-way
lame 8K, 2-way
susan 2K, 4-way

Table 5.3: Optimal mini-cache parameters

5.6.4 Importance of CIL DSE

Compiler-in-the-Loop vs. Simulation only Exploration
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Figure 5.17: CIL versus SO exploration
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OptimalExploration()
01: minEnergy = MAX ENERGY
02: foreach (c ∈ C)
03: energy = estimateEnergy(c)
04: if (energy < minEnergy)
05: minEnergy = energy
06: endIf
07: endFor
08: return minEnergy

Figure 5.18: Optimal Exploration Algorithm

In this section we show the importance of performing CIL DSE and show its superi-

ority to the traditional SO DSE approach. To this goal, we perform cache configuration

exploration using both approaches. Figure 5.17 shows the best achieved energy reductions

for each benchmark using CIL DSE (right bar) and SO DSE approach (middle bar). In the

latter case the page mapping was determined once for each benchmark (the energy-optimal

mapping for 32K/2K horizontally partitioned cache) and was used for all other cache config-

urations. All values are normalized to the 32K/2K cache energy consumption. Figure 5.17

demonstrates that CIL DSE is able to find configurations that result in average 33% lower

energy consumption than SO DSE.

5.6.5 Exploration Algorithms

We have demonstrated that exploring the mini-cache design space is very important,

and significant energy savings can be obtained by correctly choosing the cache parameters.

However since the mini-cache design space is very large, exhaustive exploration may consume

a lot of time. In this section we present some techniques to explore the mini-cache design

space to reduce the exploration-time.

5.6.5.1 Exhaustive Algorithm

Figure 5.18 describes the optimal exploration algorithm. The algorithm estimates the

energy consumption for each mini-cache configuration (line 02), and keeps track of the

minimum energy. The function estimate energy, estimates the energy consumption for a

given mini-cache size and associativity.

We perform exhaustive exploration to figure out the mini-cache parameters which
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results in minimum energy consumption. The rightmost bar in Figure 5.19 plots the energy

consumption of the optimal configuration, as compared to the energy consumption when

the XScale default 32-way, 2K mini-cache is used. The rightmost bar in Figure 5.20 plots

the time (in hours) required to explore the design space using the optimal algorithm.

Energy Consumption achieved by Exploration Algorithms

0%

20%

40%

60%

80%

100%

120%

ad
pcm

_d
ec

ad
pcm

_e
nc

ru
n_b

lo
wfis

h_d
ec

ru
n_b

lo
wfis

h_e
nc

ru
n_d

ijk
st

ra

ru
n_g

sm
_d

ec

ru
n_g

sm
_e

nc

ru
n_h

26
3

ru
n_jp

eg

ru
n_la

m
e

ru
n_s

usa
n

Ave
ra

ge

Benchmarks

E
ne

rg
y 

C
on

su
m

pt
io

n 
(%

)

Greedy
Hybrid
Exhaust

Figure 5.19: Relative energy consumption achieved by exploration algorithms

Exploration Time of Exploration Algorithms
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Figure 5.20: Exploration time of exploration algorithms

5.6.5.2 Greedy Algorithm

In an attempt to reduce the runtime of the exhaustive algorithm, we developed a

very simple greedy exploration algorithm to explore the mini-cache design space. The

greedy algorithm outlined in Figure 5.10 first greedily finds the cache size (lines 02-04), and
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GreedyExploration()
01: size = MIN SIZE, assoc = MIN ASSOC

// greedily find the size
02: while (betterNewConf(size× 2, assoc, size, assoc))
03: size = size× 2
04: endWhile

// greedily find the assoc
05: while (betterNewConf(size, assoc× 2, size, assoc))
06: assoc = assoc× 2
07: endWhile

08: return estimateEnergy(size, assoc)

betterNewConf(size’, assoc’, size, assoc)
01: if (!existsCacheConfig(size′, assoc′))
02: return false
03: energy = estimateEnergy(size, assoc)
04: energy′ = estimateEnergy(size′, assoc′)
05: return (energy′ < energy)

Figure 5.21: Greedy Exploration Algorithm

then greedily finds the associativity (lines 05-07). The function betterNewConfiguration tells

whether the new mini-cache parameters result in lower energy consumption than the old

mini-cache parameters.

The middle bar in Figure 5.19 plots the energy consumption when the mini-cache

configuration is chosen by the greedy algorithm, and the leftmost bar in Figure 5.20 plots

the time that greedy exploration requires to explore the design space of the mini-cache.

Although the greedy algorithm reduces the exploration time on an average by a factor

of 5X, the energy consumption is on an average 2X more than what is achieved by an

exhaustive algorithm. A closer look into the graph reveals that even the greedy algorithm

finds out the near-optimal mini-cache configuration in most of the cases. Clearly, there is

a trade-off between the exploration time and the energy reductions that can be obtained

thereby.
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HybridExploration()
01: size = MIN SIZE, assoc = MIN ASSOC

// greedily find the size
02: while (betterNewConf(size× 4, assoc, size, assoc))
03: size = size× 4
04: endWhile

// search in the neighbourhood
05: done = false
06: while (!done)
07: if (betterNewConf(size× 2, assoc, size, assoc))
08: size = size× 2
09: else if (betterNewConf(size, assoc× 2, size, assoc))
10: assoc = assoc× 2
11: else if (betterNewConf(size÷ 2, assoc, size, assoc))
12: size = size÷ 2
13: else if (betterNewConf(size÷ 2, assoc÷ 2, size, assoc))
14: size = size÷ 2, assoc = assoc÷ 2
15: else if (betterNewConf(size÷ 2, assoc× 2, size, assoc))
16: size = size÷ 2, assoc = assoc× 2
17: else
18: done = true
19: endWhile

20: return estimateEnergy(size, assoc)

Figure 5.22: Hybrid Exploration Algorithm

5.6.5.3 Hybrid Algorithm

To obtain best of both worlds, we developed a hybrid algorithm that can achieve

energy consumption very close to the exhaustive configuration, while consuming time closer

to the greedy algorithm. Figure 5.22 outlines the hybrid algorithm. The hybrid algorithm

first greedily searches for the optimal mini-cache size (lines 02-04). Note however that

it tries every alternate mini-cache size. The hybrid algorithm tries mini-caches sizes in

exponents of 4, rather than 2 (line 03). Once it has found the optimal mini-cache size, then

it explore exhaustively in the size-associativity neighborhood (lines 07-15) to find a better

size-associativity configuration.

The leftmost bar in Figure 5.19 plots the energy consumption when the mini-cache

configuration is chosen by the hybrid algorithm, and the leftmost bar in Figure 5.20 plots
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the time that hybrid exploration requires to explore the design space of the mini-cache.

Our hybrid algorithm is able to find the optimal mini-cache configuration in all of our

benchmarks, while it takes about 3X less time than the exhaustive algorithm.

5.7 Summary

Memory may be the single largest consumer of processor energy. As a result sev-

eral existing research efforts have focused on developing techniques to reduce the energy

consumption of the memory.

In this chapter we focused on developing a novel compilation technique to reduce

memory energy consumption by exploiting the Horizontally Partitioned Cache architectural

(HPC) feature, popular in embedded processors, e.g., StrongARM 11000, and the Intel

XScale. HPC is a memory architectural feature in which processors have multiple caches

(typically two) at the same level of memory hierarchy. If the application data is wisely

partitioned into the two caches, cache pollution can be reduced and therefore performance

improvements can be achieved. This was the original motivation behind implementing HPCs

in processors. Existing data partitioning techniques aim at performance improvement and

obtain energy improvements just as a by-product.

Typically one of the caches in the HPC is smaller, and has less energy consumption

per access. Mapping data to the smaller cache therefore results in reduction in the energy

consumption. However mapping too much data results in increased misses in the smaller

cache, and therefore ultimately leads to performance and energy degradation. Therefore it

is very important to wisely partition the data between the two caches.

Our data partitioning technique, which aims at energy reduction using HPCs is able to

reduce the memory subsystem energy consumption by 50% at on average 3% performance

loss. Thus, HPC is a very effective technique to reduce the memory energy consumption.

However, the energy reductions obtained are very sensitive to the compiler and the HPC

configuration. As a result it is very important to include compiler effects when deciding the

HPC configuration. We show that SO DSE results in sub-optimal results. CIL DSE can

uncover HPC configurations which have up to 30% lesser energy consumption than the one

discovered by the SO DSE, underlining the need and usefulness of CIL DSE.
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Chapter 6

Summary and Future Directions

Embedded systems are characterized by stringent, application-specific, multi-dimensional

design constraints including power consumption, performance, cost weight and time-to-

market. To achieve such flexibility in design, programmable embedded systems, which

contain a programmable processor are becoming a popular choice.

However, to meet all the design constraints simultaneously, the embedded processor

designs are highly customized. Embedded processors are often designed by removing some

costly (in terms of area, power etc) architecture features present in high-end processors,

implementing other architectural features only partially, and implementing some new light-

weight architectural features.

Consequently, code generation for the embedded processors is a very challenging task.

Apart from the lack of compiler technology to exploit the new, or partial architectural

features, an embedded system compiler has to avoid the penalties due to missing design

features. Even if the compiler is able to do all this, it has to perform all these in the restricted

set of resources present on the embedded systems. However, if the compiler is able to exploit

the architectural features of the embedded processors, it can make a tremendous difference

in the power, performance, etc. of the eventual system.

However, existing embedded system design/exploration techniques either do not con-

sider the compiler effects on the design, or include the compiler effects in an ad-hoc manner.

This may lead to inaccurate evaluation of design choices and therefore lead to suboptimal

design decisions.

This thesis proposed a Compiler-in-the-Loop (CIL) Design Space Exploration (DSE)

methodology – a systematic method to include compiler effects during architectural evalu-
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ation of embedded systems. This dissertation demonstrates the need and usefulness of the

proposed methodology at several levels of embedded processor design.

At the processor pipeline design abstraction, we developed a novel compiler technique

to exploit the partial bypasses present in embedded systems, and improve performance by

up to 20%. We further demonstrate that not including compiler effects in DSE, or SO

DSE can result in inaccurate evaluation of processor configurations, leading to sub-optimal

design decisions. This establishes the need and usefulness of CIL DSE.

At the instruction set architecture design abstraction, we first develop a novel compila-

tion technique for rISA instruction set architectures that can consistently achieve 35% code

compression. Thus using CIL DSE of the rISA design space we demonstrate that careful

rISA design using CIL DSE can double the achievable code compression.

At the processor pipeline - memory interface design abstraction, we develop a tech-

nique to aggregate the naturally occurring processor stalls (due to cache misses) into a large

stall so that the processor can be switched to low-power IDLE state and reduce processor

power consumption by up to 18%. Not considering this processor power reduction effects of

our technique during SO DSE results in significant overestimation of processor power con-

sumption, which may again lead to incorrect design decision; thus establishing the efficacy

of CIL DSE.

Finally, at the memory design abstraction, we first develop data partitioning tech-

niques that can reduce the memory energy consumption by 50% using the popular HPC

memory architectural feature. Considering our compiler technique while designing HPC

configuration can discover HPC configurations with 33% lower memory energy consump-

tion.

In this dissertation, we have extended the compiler technology by developing new

architecture-sensitive compilation techniques at all processor design abstractions. In addi-

tion, we have also demonstrated the need and usefulness of incorporating the effects of our

compiler during processor design by CIL DSE. However this is just the beginning. There

are many more architectural features at each of these abstractions which the compilers can

exploit, and by incorporating the effect of the compiler while designing these architectural

features, pareto-optimal processor designs can be generated automatically. The ultimate

aim of this endeavor is that if architecture-sensitive compilation techniques can be devel-

oped for all the “most important” features of processor, and the compiler effects can be
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incorporated at design time, then true processor architecture - compiler codesign can be

achieved, resulting in an automatic pareto-optimal processor design methodology.
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