
Compilation Techniques for Energy Reduction
in Horizontally Partitioned Cache Architectures ∗

Aviral Shrivastava, Ilya Issenin, and Nikil Dutt
Center for Embedded Computer Systems

Department of Information and Computer Science
University of California, Irvine

Irvine, CA, USA

aviral@ics.uci.edu, isse@ics.uci.edu, dutt@ics.uci.edu

ABSTRACT
Horizontally partitioned data caches are a popular architec-
tural feature in which the processor maintains two or more
data caches at the same level of hierarchy. Horizontally par-
titioned caches help reduce cache pollution and thereby im-
prove performance. Consequently most previous research has
focused on exploiting horizontally partitioned data caches to
improve performance, and achieve energy reduction only as
a byproduct of performance improvement. In constrast, in
this paper we show that optimizing for performance trades-
off several opportunities for energy reduction. Our experi-
ments on a HP iPAQ h4300-like memory subsystem demon-
strate that optimizing for energy consumption results in up to
127% less memory subsystem energy consumption than the
performance optimal solution. Furthermore, we show that
energy optimal solution incurs on average only 1.7% perfor-
mance penalty. Therefore, with energy consumption becom-
ing a first class design constraint, there is a need for com-
pilation techniques aimed at energy reduction. To achieve
aforementioned energy savings we propose and explore sev-
eral low-complexity algorithms aimed at reducing the energy
consumption and show that very simple greedy heuristics
achieve 97% of the possible memory subsystem energy sav-
ings.

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Special-Purpose
and Application-Based Systems—Real-time and embedded
systems; C.0 [Computer Systems Organization]: Gen-
eral—System Architectures

General Terms
Algorithms, Design, Experimentation, Measurement

∗This work was partially funded by grants from Intel Corpo-
ration, UC Micro(03-028), and SRC contract 2003-HJ-1111

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’05, September 24–27, 2005, San Francisco, California, USA.
Copyright 2005 ACM 1-59593-149-X/05/0009 ...$5.00.

Keywords
mini-cache, split cache, horizontally-partitioned cache, en-
ergy, compiler, data cache, XScale

1. INTRODUCTION
Advances in compiler technology have far from kept pace

with the phenomenal pace of microarchitectural innovation.
The (in)famous Proebstring law (in contrast with the Moore’s
law) states that the compiler advances double the speed of
applications every 18 years. Advanced microarchitectural
features are employed in processors to be exploited manu-
ally and/or with the hope that the compiler will be able to
exploit them in the near future. Horizontally partitioned
caches are one such feature. Although originally proposed
in 1995 by Gonzalez et al. [4], and after being deployed in
several current processors such as the popular Intel XScale
[8], compiler techniques to exploit it are still in their nascent
stages. A horizontally partitioned cache architecture main-
tains multiple caches at the same level of hierarchy, how-
ever each memory address is mapped to exactly one cache.
For example, the Intel XScale contains two data caches, a
32KB main cache and a 2KB mini-cache. Each virtual page
can be mapped to either of the data caches, depending on
the attributes in the page table entry in the data memory
management unit. Henceforth in this paper we will call the
additional cache as the mini-cache and the original cache as
the main cache.

The original idea behind such cache organization is the
observation that array accesses in loops often have low tem-
poral locality. Each value of an array is used for a while and
then not used for a long time. Such array accesses sweep the
cache and evict the existing data (like frequently accessed
stack data) out of the cache. The problem is worse for high
associativity caches that typically employ FIFO page re-
placement policy. Mapping such array accesses to the small
mini-cache reduces the pollution in the main cache and pre-
vents thrashing, thus leading to performance improvements.
Thus a horizontally partitioned cache is a simple, yet pow-
erful architectural feature to improve performance. Conse-
quently most existing approaches for partitioning data be-
tween the horizontally partitioned caches aim at improving
performance.

In addition to performance improvement, horizontally par-
titioned caches also result in a reduction in the energy con-
sumption due to two effects. First, reduction in the total
number of misses results in reduced energy consumption.

Second, since the size of the mini-cache is typically small,
the energy consumed per access in the mini-cache is less
than that in the large main cache. Therefore diverting some
memory accesses to the mini-cache leads to a decrease in the
total energy consumption. Note that the first effect is in-line
with the performance goal and was therefore targeted by tra-
ditional performance improvement optimizations. However,
the second effect is orthogonal to performance improvement.
Therefore energy reduction by the second effect was not con-
sidered by traditional performance oriented techniques. In
fact, as we show in this paper, the second effect (of a smaller
mini-cache) can lead to energy improvements even in the
presence of slight performance degradation. Note that this
is where the goals of performance improvement and energy
improvement diverge.

This paper makes several key contributions. First we show
that significant savings can be achieved in the memory sub-
system energy consumption by optimizing for energy. These
savings were not possible while optimizing for performance.
Motivated by this, we propose and explore several data par-
titioning heuristics aimed at reducing the energy consumed
by the memory subsystem. Our investigation reveals that
very simple greedy heuristics work well for energy optimiza-
tion. In addition, the energy optimal data partitions incur
only a minimal performance loss. Finally we show that our
algorithms performs well over various mini-cache associativ-
ities and mini-cache sizes.

2. RELATED WORK
Caches are one the major contributors of not only system

power and performance, but also of the embedded processor
area and cost. In the Intel XScale caches comprise approx-
imately 90% of the transistor count, 60% of the area, and
consume approximately 15% of the processor power [2]. As
a result several hardware, software and cooperative tech-
niques have been proposed to improve the effectiveness of
caches.

Originally horizontally partitioned caches were proposed
by Gonzalez et al. [4] to separate and thus reduce the in-
terference between the array and stack variables. Most pre-
vious research focuses on achieving performance improve-
ments using horizontally partitioned caches. Hardware based
approaches improve the performance by partitioning the
data based on reuse history. While some approaches use
effective address reuse information [15, 11], others use pro-
gram counter reuse information [17]. Software based ap-
proaches attempt to improve performance primarily by coarse-
grain region based scheduling [12, 18]. Such schemes simply
map the stack data, or the scalar variables to the mini-cache.
Recently Xu et al. [19] proposed a profile-based technique
to partition the virtual pages to different caches. Their al-
gorithm has complexity O(m3n), where m is the number of
pages accessed in the application, and n is the number of
memory accesses. It should be noted that O(n) is also the
time complexity of simulation of an application with a given
page mapping.

However, the main focus of all the previous research has
been performance improvement, and they achieve energy
reduction only as a by-product. In this paper we show
that optimizing for performance does not effectively opti-
mize energy. With energy consumption becoming an ever
important design constraint, there is a need to develop data
partitioning techniques aimed at energy improvement. In

this paper we propose and evaluate several such data parti-
tioning schemes, and demonstrate that in contrast to high-
complexity data partitioning techniques for performance im-
provements proposed earlier, low-complexity techniques work
well for energy optimization with negligible performance
penalty.

3. MOTIVATION

char a[1024] // page A
char b[1024] // page B

for (i=0; i<1024; i++)
 c += a[i] + b[i%5];

1 KB mini-cache
Access Latency: 1 cycle
Access Energy: 1nJ

8 KB Main Cache
Access Latency: 1 cycle
Access Energy: 3nJ

Access Latency: 20 cycles
Access Energy: 30 nJ

Off-chip Memory

Pipeline
Processor

A
B
-

A, B

A, B
A
B
-

2048 65

1024
1024 64

1
00 2048

1024
1024

0 0
1

64
96

3348
3348
3348
3968

8094
6046
6046
4928

Main Cache Mini Cache
Main Cache

Accesses
Main Cache

Misses
Mini Cache

Accesses
Mini Cache

Misses
Runtime
(cycles)

Energy
(nJ)

(a) (b)

(c)

Figure 1: Motivating Example

We illustrate the difference between optimization for per-
formance and energy for horizontally partitioned caches us-
ing the memory architecture shown in Figure 1(a). The ex-
ample architecture has horizontally partitioned, direct mapped
8KB and 1KB caches, with line size of 16 bytes and other
parameters as shown in Figure 1(a). We assume that the
page size is 1KB, and that each page can be mapped to
either of the caches.

Now we examine the execution of the code in Figure 1(b)
on this architecture. The loop accesses two arrays a and b.
Assuming that the arrays are aligned to the beginning of the
page, they occupy two pages (A and B, one page each). To
simplify the analysis, we consider only accesses to these two
arrays and evaluate the memory latency (total time spent
in memory accesses) and the memory energy consumption.

The table in Figure 1(c) shows the memory latency (in
number of cycles) and energy consumption of the memory
subsystem for each of the four possible partitions of the
pages. When both the pages are mapped to the main 8KB
cache, all the 2048 accesses will be to the main cache, and
there will be 64 + 1 = 65 cold misses. We estimate the per-
formance of the memory subsystem as 2048+65×20 = 3348
cycles, and the energy consumed in the memory subsystem
as 2048 × 3 + 65 × 30 = 8094 nJ. Similarly we compute
the memory latency and memory energy consumption of the
other page partitions. The interesting partition is the last
one, in which both the arrays are mapped to the small 1KB
mini-cache. For this partition, there are more misses in the
mini-cache, but less misses in the main cache. The increase
in the misses in the mini-cache is more than the decrease
in the misses in the main cache. Therefore there is a per-
formance degradation. However the increase in the energy

consumption due to the increased misses in mini-cache is less
than the decrease in the energy consumption due to the re-
duced misses in the main cache, resulting in reduced energy
consumption.

Owing to the difference in energy per access between the
caches, and the high hit rates of the caches, it intuitively
seems that the partition that results in minimum mem-
ory energy consumption (optimal energy partition) will have
many more pages pages mapped to the mini-cache than the
partition that has the least memory latency (optimal per-
formance partition). Thus optimizing for performance is
not the same as optimizing for energy. This together with
the fact that energy is becoming an ever important design
criterion motivates the need for techniques to find optimal
energy partitions. In this paper we propose and evaluate
several data partitioning algorithms that aim at minimiz-
ing memory subsystem energy consumption in horizontally
partitioned cache architectures. It turns out that very sim-
ple greedy heuristics work well to optimize energy, and fur-
thermore optimal energy partitions do not suffer significant
performance degradation.

4. COMPILER FRAMEWORK

Compiler

Executable

Embedded
Platform

Heuristic
Data Partitioning

Page Access Info.
Extractor

Page
Mapping

Application

Performance/Energy
Estimator

Data Partitioning Framework

Figure 2: Compiler Framework

The problem of energy optimization for horizontally par-
titioned caches can be translated into a data partitioning
problem. The data memory that the program accesses is
divided into pages, and each page can be independently and
exclusively mapped to exactly one of the caches. The com-
piler’s job is then to find the mapping of the data memory
pages to the caches that leads to minimum energy consump-
tion.

As shown in Figure 2, we first compile the application and
generate the executable. The Page Access Information Ex-
tractor calculates the number of times each page is accessed
during the execution of the program. Then it sorts the pages
in decreasing order of accesses to the pages. The complex-
ity of simulation used to compute the number of accesses to
each page and sorting the pages is O(n+m log (m)), where n
is the number of data memory accesses, and m is the number
of pages accessed by the application.

The Data Partitioning Heuristic finds the best mapping of
pages to the caches that minimizes the energy consumption
of the target embedded platform. The Data Partitioning
Heuristic can be tuned to obtain the best performing, or
minimal energy data partition by changing the cost function
Performance/Energy Estimator.

The executable together with the page mapping are then

Heuristic OMN(Pages P)
01: M = φ, m = φ, U = P
02: while (U �= φ)
03: p = U.pop()
04: cost1 = evaluatePartitionCost(M + p, m)
05: cost2 = evaluatePartitionCost(M, m + p)
06: if (cost1 ≤ cost2) M+ = p else m+ = p
07: endwhile
08: return M, m

Figure 3: Heuristic OMN

loaded by the operating system of the target platform for
optimized execution of the application.

5. DATA PARTITIONING ALGORITHMS
The compiler framework depicted in Figure 2 supports

using, evaluating, and comparing several data partitioning
heuristics of varying complexities to exploit horizontally par-
titioned caches. All the data partitioning heuristics take as
input a list of memory pages accessed by the application,
sorted in the order of decreasing accesses to the pages.

The heuristic shown in Figure 3 is a greedy approach for
solving the data partitioning problem. Initially, M (list of
pages mapped to main cache) and m (list of pages mapped to
mini-cache) are empty. All the pages are initially undecided,
and are in U (line 01). U is a list containing pages sorted
in the decreasing order of accesses. The heuristic picks the
first page in U , and evaluates the cost of the partition when
the page is mapped to the main cache (line 04) and when
it is mapped to the mini-cache (line 05). The heuristic fi-
nally maps a page to the partition that results in minimum
cost (line 06). Depending on whether the function evalu-
atePartitionCost(M, m) estimates the performance of the
partition, or the energy consumption, the heuristic can be
used to find the best performing partition, or the minimum
energy partition.

evaluatePartitionCost(M, m) uses simulation to estimate
the performance or the energy consumption for a given par-
tition. Since each page is considered only once, the complex-
ity of this heuristic is O(mn), where O(n) is the complexity
of the simulation-based estimation.

Figure 4 describes a higher complexity heuristic, OM2N.
For each page p ∈ U (line 06), this heuristic uses the heuris-
tic OMN to find whether the page should be mapped to the
main cache (lines 04-10) or to the mini-cache (lines 11-17).
Therefore the complexity of the heuristic OM2N is O(m2n).

Our experimental results later show that OMN heuristic
works very well for energy reduction. Motivated by this, we
developed an even simpler heuristic for data partitioning.
Figure 5 shows a very simple single step heuristic. If we
define k = mini−cache size

page size
, then the first k pages with the

maximum number of accesses are mapped to the mini-cache,
and the rest are mapped to the main cache. This partition
aims to achieve energy reduction while making sure that
there is no performance loss (for high associativity mini-
caches). Note that for this heuristic we do not need to sort
the list of all the pages. Only k pages with the highest
number of accesses are required. If the number of pages is
m, then the time complexity of selecting the k pages with
highest accesses is O(km). Thus the complexity of heuristic
is only O(n + km), which can be approximated to O(n),
since both k and m are very small as compared to n.

Heuristic OM2N(Pages P)
01: M = φ, m = φ, U = P
02: while (U �= φ)
03: p = U.pop()
04: M1 = M + p, m1 = m, U1 = U
05: while (U1 �= φ)
06: p′ = U1.pop()
07: cost1′ = evaluatePartitionCost(M1 + p′, m1)
08: cost2′ = evaluatePartitionCost(M1, m1 + p′)
09: if (cost1′ ≤ cost2′) M1+ = p′ else m1+ = p′
10: endwhile
11: M2 = M, m2 = m + p, U2 = U
12: while (U2 �= φ)
13: p′ = U2.pop()
14: cost1′ = evaluatePartitionCost(M2 + p′, m2)
15: cost2′ = evaluatePartitionCost(M2, m2 + p′)
16: if (cost1′ ≤ cost2′) M2+ = p′ else m2+ = p′
17: endwhile
18: cost1 = evaluatePartitionCost(M1, m1)
19: cost2 = evaluatePartitionCost(M2, m2)
20: if (cost1 ≤ cost2) M+ = p else m+ = p
21: endwhile
22: return M, m

Figure 4: Heuristic OM2N

Heuristic ON(Pages P)
01: M = φ, m = φ

02: for (i = 0; i < mini−cache size
page size

; i + +)

03: m+ = U.pop()
05: endFor
06: M = U
07: return M, m

Figure 5: Heuristic ON

6. EXPERIMENTAL FRAMEWORK

mini-cache
2KB

SDRAM

SDRAM

main cache
32KB

Processor
Core Memory

Controller

XScale
PXA255

Figure 6: Modeled memory subsystem

We have developed a framework that employs data par-
titioning algorithms described in Section 5 to optimize the
memory latency or the memory subsystem energy consump-
tion of applications. We have modified sim-safe simulator
from SimpleScalar toolset [1] to obtain the number of ac-
cesses to each data memory page. This implements our
Page Access Information Extractor in Figure 2. In order
to estimate the performance/energy of an application for a
given mapping of data memory pages to the main cache and
the mini-cache, we have developed performance and energy
models of memory subsystem of a popular PDA, HP iPAQ
h4300 [6].

Figure 6 shows the memory subsystem of the iPAQ that
we have modeled. The iPAQ uses the Intel PXA255 pro-
cessor [7] with the XScale core [8], which has a 32KB main
cache and 2KB mini-cache. PXA255 also has an on-chip
memory controller that communicates with PC100 compat-

Input pin capacitance 3.5 pF
Input/output pin capacitance 5 pF
Bus wire length 2.6 in
PCB characterisitc Impedance, Zo 60 Ω
Relative permitivity of PCB dielectric, εr 4.4
Capacitance per unit length, Co 2.34 pF/in
Capacitance per trace 6.17 pF
Bus energy per burst 9.46 nJ

Table 1: External Memory Bus Parameters

SDRAM current Idd 100 mA
SDRAM supply voltage Vdd 2.5 V
Memory bus frequency fmem 100 MHz
Number of memory cycles/burst Ncyc 13
SDRAM energy per read/write burst Embst 32.5 nJ

Table 2: SDRAM Energy Parameters

ible SDRAMs via off-chip bus. We have modeled the low-
power 32MB Micron MT48V8M32LF [14] SDRAM as the
off-chip memory. Since the iPAQ has 64MB of memory, we
have modeled two SDRAMs.

We use the memory latency as the performance metric.
We estimate the memory latency as (Am + AM) + MP ×
(Mm +MM), where Am and AM are the number of accesses,
and Mm and MM are the number of misses in the mini-
cache and the main cache respectively. We obtain these
numbers using sim-cache simulator [1], modified to model
horizontally partitioned caches. The miss penalty MP was
estimated as 25 processor cycles, taking into account the
processor frequency (400 MHz), memory bus frequency (100
MHz), the SDRAM access latency in power-down mode (6
memory cycles), and the memory controller delay (1 proces-
sor cycle).

We use the memory subsystem energy consumption as the
energy metric. There are three components in our estimate
of memory energy consumption: energy consumed by the
caches, energy consumed by off-chip busses, and the energy
consumed by the main memory (SDRAMs). We compute
the energy consumed in the caches using the access and miss
statistics from the modified sim-cache results. The energy
consumed per access for each of the caches is computed using
eCACTI [13]. As compared to CACTI [16], eCACTI pro-
vides better energy estimates for high associativity caches,
since it models sense-amps more accurately and scales de-
vice widths according to the capacitive loads. We have used
linear extrapolation on cache size to estimate energy con-
sumption of the mini-cache, since both CACTI and eCACTI
do not model caches with less than 8 sets.

We use the PCB and layout recommendations of PXA255
and Intel 440MX chipset [9] and the relation between Zo, Co

and εr [10], to compute the the energy consumed by the ex-
ternal memory bus in a read/write burst as shown in Table 1.

We used the parameters shown in Table 2 from the MI-
CRON MT48V8M32LF SDRAM to compute the energy con-
sumed by the SDRAM per read/write burst operation (cache
line read/write), also shown in Table 2.

We perform our experiments on applications from MiBench
suite [5] and an implementation of H.263 encoder[3]. To
compile our benchmarks we used GCC with all optimiza-
tions turned on.

7. EXPERIMENTS

7.1 Optimizing for Energy is different than
optimizing for Performance

Our first experiment investigates the difference in optimiz-
ing for energy and optimizing for performance on the mem-
ory subsystem described in Section 6. We find the partition
that results in the least memory latency, and the partition
that results in the least energy consumption. Figure 7(a)

plots Ebr−Ebe
Ebe

, where Ebr is the memory subsystem energy

consumption of the partition that results in least memory
latency, and Ebe is the memory subsystem energy consump-
tion by the partition that results in least memory subsystem
energy consumption. For the first five benchmarks (susan -
gsm dec), the number of pages in the footprint were small,
so we could explore all the partitions. For the last seven
benchmarks (jpeg - dijkstra), we took the partition found by
the OM2N heuristic as the best partition. As we present
later, OM2N gives very close-to-optimal results in the cases
when we were able to search optimally. The graph essen-
tially plots the increase in energy if you choose the best
performance partition as your design point. The increase in
the energy consumption is up to 130% and on average 58%
for this set of benchmarks.

Figure 7(b) plots Rbe−Rbr
Rbe

, where Rbe is the memory la-

tency (in cycles) of the best energy partition, and Rbr is
the memory latency of the best performing partition. This
graph shows the increase in memory latency when you choose
the best energy partition, as compared to using the best per-
formance partition. The increase in memory latency is on
average 1.7% and 5.8% in the worst case for this set of bench-
marks. Thus choosing the best energy partition results in
significant energy savings at a minimal loss in performance.

7.2 Simple Greedy Heuristics work well for
Energy Optimization

Next we find out the effectiveness of various data parti-
tioning heuristics. Figure 8(a) plots Ebase−Emin

Ebase
for each

heuristic, where Ebase is the energy consumed in the base
case, i.e. when all the data is mapped to the main cache. No
page is mapped to the mini-cache, and Emin is the energy of
the minimum energy partition as computed by the heuristic.
The rightmost black bars in the first five benchmarks (su-
san - gsm dec) represent the energy savings achieved by the
optimal search. The optimal search can achieve on average
55% savings in the energy consumed by the memory subsys-
tem. It can also be seen that for these benchmarks, heuristic
OM2N achieves close-to-optimal (within 2%) results. Thus
we did not feel the need to investigate more complex heuris-
tics. Instead we developed low-complexity heuristics aimed
at achieving energy savings. The OMN heuristic achieves up
to 62% and on average 50% savings in the energy consumed
by the memory subsystem. Thus simple greedy heuristics
work well to reduce the energy consumption. These heuris-
tics have lower complexity than the O(m3n) heuristic sug-
gested in [19] for performance improvement.

In practice, such high complexity algorithms are unlikely
to be used due to their large runtimes. For example, for
the jpeg benchmark, the optimal algorithm would take more
than 5,000 years, our OM2N heurtistic takes a few days, the
OMN heuristic takes a few hours, and the ON heuristic takes
a few minutes to find the optimal partition. Clearly there

is a need for low complexity, yet effective data partitioning
heuristics.

Furthermore as we have noted that the energy optimal
partitions incur minimal loss in performance, therefore for
several design domains, it makes sense to use the energy
optimal partition. Energy optimal partition saves significant
energy at minimal cost. Even the single step ON heuristic
is also able to achieve up to 57% and on average 35% energy
reduction.

Figure 8(b) plots the goodness of the ON and OMN heuris-
tic in obtaining energy reduction. The goodness of an heuris-
tic is defined as energy reduction achieved by the heuristic
as compared to the maximum energy reduction that was

possible, i.e.
(EMain−Ealg)

(EMain−Ebest)
, where EMain is the energy con-

sumption when all the pages are mapped to the main cache,
Ealg is the energy consumption of the best energy partition
that the heuristic found and Ebest is the energy consump-
tion of the best energy partition. For the last seven bench-
marks for which we could not perform the optimal search,
we assume the partition found by the heuristic OM2N as the
best energy partition. The graph shows that OMN heuristic
could obtain on average 97% of the possible energy reduc-
tion, while ON could achieve on average 64% of the pos-
sible energy reduction. It is important to note here that
GCC compiler for XScale does not exploit the mini-cache at
all. The ON heuristic provides a simple yet effective way to
exploit the mini-cache without incurring any performance
penalty (for high associativity mini-cache).

7.3 Sensitivity Analysis

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

64:32:1:l 16:32:4:l 2:32:32:f 8:32:32:f 16:32:32:f

Cache configurations

%
 E

n
er

g
y

S
av

in
g

s

ON

OMN

OM2N

OPT

Figure 9: Sensitivity analysis

Next we performed sensitivity analysis of our partition-
ing algorithms to various cache configurations. Figure 9
plots the average energy savings achieved by the heuristics
across several cache configurations on the first five bench-
marks. A cache configuration is specified as no of sets :
linesize in bytes : associativity : replacement policy. The
first configuration is a direct mapped 2KB cache, while the
second configuration is a 4-way set associative 2KB cache.
The third configuration is the original configuration, i.e. a
32-way set associative 2KB cache. The fourth configuration
is a 32-way, 8KB cache and the fifth configuration corre-
sponds to a 32-way 16KB cache.

In the first two configurations, we vary the associativity of
the cache while keeping the size constant, and in the last two
configurations, we vary the size of the cache while keeping
the associativity constant. For all cache configurations, the
difference between the energy consumption of the minimum

0%

20%

40%

60%

80%

100%

120%

140%

susan

adpcm_enc

adpcm_dec

gsm_enc

gsm_dec
jpeg

lame
h263

blowfis
h_enc

blowfis
h_dec

dijkstra

average

Benchmarks

%
 E

n
er

g
y

D
if

fe
re

n
ce

0%

1%

2%

3%

4%

5%

6%

7%

susan
adpcm_enc

adpcm_dec
gsm_enc

gsm_dec jpeg lame h263

blowfish_enc

blowfish_dec
dijkstra

average

Benchmarks

%
 D

if
fe

re
n

ce
 in

 m
em

o
ry

 la
te

n
cy

(a) Difference in energy consumption between the best (b) Difference in energy consumption between the best
performance partition and the best energy partition performance partition and the best energy partition

Figure 7: Optimizing for performance is different than optimizing for energy

0%

10%

20%

30%

40%

50%

60%

70%

susan
adpcm_enc

adpcm_dec
gsm_enc

gsm_dec jpeg lame h263

blowfish_enc

blowfish_dec
dijkstra

average

Benchmarks

%
 E

n
er

g
y

S
av

in
g

s

ON

OMN

OM2N

OPT

0%

20%

40%

60%

80%

100%

120%

susan
adpcm_enc

adpcm_dec
gsm_enc

gsm_dec jpeg lame h263

blowfish_enc

blowfish_dec
dijkstra

average

Benchmarks

G
o

o
d

n
es

s

ON

OMN

(a) Energy savings achieved by various heuristics (b) Goodness of various heuristics

Figure 8: Greedy Heuristics work well for energy Optimization

energy partition found by OM2N, OMN and the optimal
algorithm is no more than 2%.

Decreasing the associativity increases the energy reduc-
tion, because of the decrease in the energy per access. But
for the direct mapped cache, the performance begins to de-
teriorate, thereby increasing the energy consumption. As we
increase the cache size, the energy per access of the mini-
cache increases, therefore there is no improvement in the to-
tal achievable energy reduction. The best mini-cache config-
uration for the energy reduction in horizontally partitioned
caches for our set of benchmark is the second configuration,
i.e. a 4-way set associative 2KB cache.

Thus although the energy gains achieved by changing cache
parameters vary, greedy heuristics are able to consistently
achieve near optimal results.

8. SUMMARY
Horizontally partitioned caches are a simple yet powerful

architectural feature popular in modern embedded proces-
sors to improve the performance and energy consumption.
Existing compilation techniques to exploit the mini-cache
are complex and concentrate on performance improvements.
Our experimental results on a HP iPAQ h4300-like memory
subsystem show that memory subsystem energy reductions
of up to 130% can be achieved by optimizing for energy.
The fact that optimizing for energy results in only a min-
imal 1.7% performance loss (on average) further motivates
the need of optimizations aimed at energy reduction. We
proposed and evaluated several data partitioning heuristics
aimed at energy reduction. We showed that simple greedy

heuristics are effective and achieve up to 97% of the possi-
ble energy reduction, and that this trend extends to various
cache configurations.

Our future work includes exploring the effectiveness of
data partitioning heuristics over a wider range of memory
architecture parameters.

9. REFERENCES
[1] D. Burger and T. M. Austin. The simplescalar tool set, version

2.0. SIGARCH Comput. Archit. News, 25(3):13–25, 1997.

[2] L. T. Clark, E. J. Hoffman, M. Biyani, Y. Liao, S. Strazdus,
M. Morrow, K. E. Velarde, and M. A. Yarch. An embedded
32-b microprocessor core for low-power and high-performance
applications. IEEE Journal of Solid State Circuits,
36(11):1599–1608, 2001.

[3] K. O. Lillevold et al. H.263 test model simulation software.
Telenor R&D, 1995.

[4] A. Gonzalez, C. Aliagas, and M. Valero. A data cache with
multiple caching strategies tuned to different types of locality.
In ICS ’95: Proceedings of the 9th international conference
on Supercomputing, pages 338–347, New York, NY, USA, 1995.
ACM Press.

[5] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin,
T. Mudge, and R. B. Brown. MiBench: A free, commercially
representative embedded benchmark suite. In IEEE Workshop
in workload characterization, 2001.

[6] Hewlett Packard, http://www..hp.com. HP iPAQ h4000 Series
- System Specifications.

[7] Intel Corporation, http://www.intel.com/design/pca/
applicationsprocessors/manuals/278693.htm. Intel PXA255
Processor: Developer’s Manual.

[8] Intel Corporation,
http://www.intel.com/design/intelxscale/273473.htm. Intel
XScale(R) Core: Developer’s Manual.

[9] Intel Corporation, http://www.intel.com/
design/mobile/desguide/251012.htm. LV/ULV Mobile Intel
Pentium III Processor-M and LV/ULV Mobile Intel Celeron

Processor (0.13u) /Intel 440MX Chipset: Platform Design
Guide, 2002.

[10] IPC-D-317A Design Guidelines for Electronic Packaging
Utilizing High-Speed Techniques, 1995.

[11] T. L. Johnson and W. mei W. Hwu. Run-time adaptive cache
hierarchy management via reference analysis. In ISCA, pages
315–326, 1997.

[12] H.-H. S. Lee and G. S. Tyson. Region-based caching: an
energy-delay efficient memory architecture for embedded
processors. In CASES ’00: Proceedings of the 2000
international conference on Compilers, architecture, and
synthesis for embedded systems, pages 120–127, New York,
NY, USA, 2000. ACM Press.

[13] M. Mamidipaka and N. Dutt. eCACTI: An enhanced power
estimation model for on-chip caches. In Technical Report
TR-04-28, CECS, UCI, 2004.

[14] Micron Technology Inc.,
http://www.micron.com/products/dram/mobilesdram/.
MICRON Mobile SDRAM MT48V8M32LF Datasheet, 2005.

[15] J. A. Rivers, E. S. Tam, G. S. Tyson, E. S. Davidson, and
M. Farrens. Utilizing reuse information in data cache
management. In ICS ’98: Proceedings of the 12th
international conference on Supercomputing, pages 449–456,
New York, NY, USA, 1998. ACM Press.

[16] P. Shivakumar and N. Jouppi. Cacti 3.0: An integrated cache
timing, power, and area model. In WRL Technical Report
2001/2, 2001.

[17] G. Tyson, M. Farrens, J. Matthews, and A. R. Pleszkun. A
modified approach to data cache management. In MICRO 28:
Proceedings of the 28th annual international symposium on
Microarchitecture, pages 93–103, Los Alamitos, CA, USA,
1995. IEEE Computer Society Press.

[18] O. S. Unsal, I. Koren, C. M. Krishna, and C. A. Moritz. The
minimax cache: An energy-efficient framework for media
processors. In HPCA ’02: Proceedings of the Eighth
International Symposium on High-Performance Computer
Architecture (HPCA’02), page 131, Washington, DC, USA,
2002. IEEE Computer Society.

[19] R. Xu and Z. Li. Using cache mapping to improve memory
performance of handheld devices. Performance Analysis of
Systems and Software, 2004 IEEE International Symposium
on - ISPASS, pages 106–114, 2004.

