An Efficient Compiler Technique for Code Size Reduction using
Reduced Bit-width ISAs *

Ashok Halambi

Aviral Shrivastava Partha Biswas

Nikil Dutt Alex Nicolau

Center for Embedded Computer Systems
Department of Information and Computer Science
University of California, Irvine, CA 92697-3425, USA

Abstract

For many embedded applications, program code size
is a critical design factor. One promising approach for
reducing code size is to employ a ”dual instruction set”,
where processor architectures support a normal (usually
32 bit) Instruction Set, and a narrow, space-efficient
(usually 16 bit) Instruction Set with a limited set of op-
codes and access to a limited set of registers. This fea-
ture, however, requires compilers that can reduce code
size by compiling for both Instruction Sets. FExisting
compiler techniques operate at the function-level gran-
ularity and are unable to make the trade-off between in-
creased register pressure (resulting in more spills) and
decreased code size. We present a profitability based
compiler heuristic that operates at the instruction-level
granularity and is able to effectively take advantage of
both Instruction Sets. We also demonstrate improved
code size reduction, for the MIPS 32/16 bit ISA, using
our technique. Qur approach more than doubles the
code size reduction achieved by existing compilers.

1 Introduction

Programmable RISC processors are increasingly be-
ing used to design modern embedded systems. FEx-
amples of such systems include consumer electronics
items, cell-phones, printers, modems etc. Using RISC
processors in such systems offers the advantage of in-
creased design flexibility, high computing power and
low on-chip power consumption. However, RISC pro-
cessor systems suffer from the problem of poor code
density which may require more ROM for storing pro-
gram code. As a large part of the IC area is devoted

*This work was partially supported by grants from NSF
(MIP-9708067),DARPA (F33615-00-C-1632) and a Motorola Fel-
lowship.

to the ROM, this is a severe limitation for large vol-
ume, cost sensitive embedded systems mentioned ear-
lier. Consequently, there is a lot of interest in reducing
program code size to decrease ROM size.

One popular architectural modification to achieve
code size reduction is the “dual Instruction-Set” fea-
ture, with the processor capable of executing two dif-
ferent Instruction-Sets (IS). One, the “normal” set,
contains the original IS, and the other, the “reduced
bit-width” set, encodes the most commonly used in-
structions using fewer bits. A very good example is
the ARM processor with a 32-bit IS and a 16-bit IS
called the Thumb IS. Other processors with a similar
feature include the MIPS 32/16 bit TinyRISC, STMi-
cro’s ST100 and the ARC Tangent processor. We term
this feature the “reduced bit-width Instruction Set
Architecture” (rISA).

Processors with this feature dynamically expand
(decompress) the narrow rISA instructions into cor-
responding normal instructions. This decompression
usually occurs during the decode stage. Typically, each
rISA instruction has an equivalent instruction in the
normal IS. This makes decompression simple and can
usually be done without any cycle penalty. As the
decompression engine converts rISA instructions into
normal instructions, no other hardware is needed to
execute rISA instructions. Thus, the main advantage
of rISA lies in achieving good code size reduction with
minimal hardware additions. However, as more rISA
instructions are required to implement the same task,
rISA code has slightly lower performance compared to
normal code. Experiments conducted using the ARM
processor show a 30% reduction in code size, with min-
imal performance penalty for small functions. [9]

The rISA IS, because of bit-width restrictions, en-
codes only a subset of the normal instructions and al-
lows access to only a small subset of registers. For
example, the ARM Thumb allows access to 8 registers

(out of 16 general-purpose ARM registers). Produc-
ing code optimized for rISA thus involves making a
trade-off between smaller code size (due to greater code
density) and increased number of instructions due to
higher register pressure (resulting in more spills). In
this paper we propose an approach that makes this
trade-off in order to achieve code size reduction for
rISA.

In Section 2 we introduce the problem of code gener-
ation for rISA architectures, and also outline our tech-
nique for solving it. In Section 3 we describe previ-
ous work on architectures and compiler techniques for
rISA. In Section 4 we present the salient features of
an architecture that supports rISA. Section 5 describes
our compiler technique for such architectures while Sec-
tion 6 discusses the profitability heuristic used in our
technique. Section 7 presents some experiments con-
ducted on the MIPS 32/16 architecture and Section 8
concludes the paper.

2 Problem Description

While it is possible to manually achieve good code
size reduction using rISA; code generation for rISA
(termed rISAization) is a challenging task requiring the
compiler to take various factors into account. For ex-
ample, some operations (such as multiply-accumulate)
may require multiple rISA instructions to implement.
Further, due to the limited availability of registers, the
compiler may need to insert spills (or register moves)
thus decreasing the benefits of rISAization.

Existing compilers rISAize programs on a function-
by-function basis. A function is rISAized if all its in-
structions can be converted to rISA instructions and if
it is profitable (in terms of decreased code size) to con-
vert, the entire function. A major drawback of rISAiz-
ing at the function level granularity is that the compiler
misses out on the opportunity to achieve greater code
size reduction by selectively rISAizing sections of the
function. For example, it is possible that rISAizing the
whole function is not profitable, but rISAizing sections
of the function results in an overall code size reduc-
tion. Another drawback of current approaches is that
rISAization is done either as a post-pass during assem-
bly generation or as a separate instruction selection
phase. A technique that can work in conjunction with
Instruction Scheduling and Register Allocation may be
able to produce better results (both in terms of code-
size and performance).

In this paper, we propose a compiler integrated rl-
SAization technique, that operates at the instruction-
level granularity and is able to selectively rISAize re-
gions of functions to achieve better code size.

3 Related Work

Several RISC processors for embedded systems sup-
port dual Instruction Sets. The ARM7TDMI processor
[1] from ARM Inc. features a 32-bit IS and a 16-bit IS
extension called the Thumb[9]. Switching between the
two Instruction Sets is accomplished through the use
of explicit mode change (between Normal and Thumb)
instructions. A decompression engine converts Thumb
instructions to normal instructions during the decode
stage. Thumb instructions are able to access only 8
general purpose registers (out of a possible 16 in nor-
mal mode) and can encode only small immediate val-
ues. Experimental results show a compression factor
of 30% with 10% - 15% decrease in performance using
the Thumb IS.

The MIPS ISA features a 16-bit extension called
MIPS16 IS[10]. MIPS16 IS contains an extend op-
code which extends the values of immediate operands
that were otherwise not representable because of bit-
width constraints. There are no explicit mode change
instructions to switch between the 32-bit and 16-bit
IS. Rather, code alignment dictates the mode of execu-
tion. If a routine is not aligned at the word boundary,
it is assumed to be composed of MIPS16 instructions.
Experimental results show code size reduction of up to
40% using MIPS16 ISA.

The ST100 Core[13] from ST Microelectronics is a
32-bit Microcontroller/DSP architecture which hosts a
complete 32-bit instruction set (GP32) as well as a 16-
bit DSP instruction set (GP16) for code compaction.
Switching between instruction sets is performed by
software instructions or by an external event.

The Tangent-A5 configurable RISC processor from
ARCJ2] also supports dual Instruction Sets. However,
instead of using a decompressor to expand 16-bit in-
structions to 32-bit instructions, the Tangent processor
executes the 16-bit instructions natively.

The ARM Thumb IS was redesigned by Kwon et.
al.[14] to compress more instructions and further im-
prove the efficiency of code size reduction. This new IS
called Partitioned Register Extension (PARE)[4], re-
duces the width of the destination field and uses the
saved bit(s) for the immediate addressing field. The
register file is split into (possibly overlapping) parti-
tions, and each 16-bit instructions can only write to
a particular partition. This reduces the number of
bits required to specify the destination register. With
a PARE-aware compiler, the authors claim to have
achieved a compression ratio comparable to Thumb
and MIPS16.

While there has been considerable research in the de-
sign of architectures which have dual instruction sets -

a full length set and a rISA set, the compiler techniques
employed to generate code targeted for such architec-
tures are rudimentary. Most existing compilers either
rely on user guidance or perform a simple analysis to
determine which routines of the application to code
using rISA instructions. These approaches, which op-
erate at the routine level granularity, are unable to rec-
ognize opportunities for code size optimization within
regions of routines.

In this paper, we present a compiler technique to
produce optimized code for dual IS architectures that
operates at the instruction-level granularity. Our tech-
nique, is able to aggressively reduce code size by imple-
menting sub-regions of functions using higher density
rISA operations. To our knowledge, this is a unique
feature of our technique that has not been addressed
by previous published work.

4 Architecture Model

In this section we briefly mention the salient features
of the rISA (Reduced bit-width Instruction Set Archi-
tecture) processor model. rISA instructions are space
efficient encodings of most frequently used normal in-
structions. The rISA IS may be “complete”, i.e. con-
taining rISA instructions corresponding to each class
of normal instructions, or may contain a strict subset
of the class of normal instructions. The number of op-
codes in the rISA IS also affects the number of bits
available to address register (and immediate) operands
in the instructions. Every rISA model implements a
trade-off between more opcodes and access to more reg-
isters. Our technique is capable of efficient compilation
for all types of the rISA model.

As rISA processors can operate in either the rISA
mode or in the normal mode, a mechanism to spec-
ify the mode is necessary. For most rISA processors,
this is accomplished using explicit instructions that
change the mode of execution. We term an instruc-
tion in the normal IS that changes mode from nor-
mal to rISA the mz instruction, and an instruction in
the rISA IS that changes mode from rISA to normal
the rISA_mz instruction. The MIPS16 ISA has an in-
teresting mechanism for specifying mode changes. All
functions encoded using MIPS16 instructions begin at
the half word boundary. Thus, calls (and returns) to
half word aligned addresses also change the mode from
normal to rISA. We assume a rISA model with explicit
mode change instructions, as we require the ability to
change modes within functions.

In order to mitigate the problem of limited bits to
specify the operands (both register and immediate) a
number of modifications to the basic rISA model have

been proposed. A very useful technique to increase the
number of useful registers in rISA mode is to implement
a rISA_move instruction that can access all registers’.
A technique to increase the size of the immediate value
operand is to implement an extend operation that com-
pletes the immediate field of the succeeding instruction.

In the next section, we describe our compiler tech-
nique to efficiently compile for architectures that sup-
port the rISA model described above. For simplicity
of discussion, we assume that the size of a normal in-
struction is 4 bytes, and that of a rISA instruction is 2
bytes. Note, however, that the sizes are not a restric-
tion in our technique.

5 Compiler Flow

Source File
C/C++
gee-Front End } fffffffff - Generic
Instruction Set

_-~"| (3-address code)

Instruction Selection Pass-| }

Al Augmented

[Profitability Analysis } ———————— > Instruction Set

(With rl SA Blocks)

Instruction Selection Pass-|1)/

RN Target
Instruction Set
(Register Allocation } 7777777777 (Normal +rISA)
Assembly
Normal + rlSA

Figure 1. EXPRESS compiler flow

We implemented our rISA compiler technique in
the EXPRESS retargetable compiler. EXPRESS [8] is
an optimizing, memory-aware, Instruction Level Paral-
lelizing (ILP) compiler. EXPRESS uses the EXPRES-
SION ADL [6] to retarget itself to a wide class of pro-
cessor architectures and memory systems. The inputs
to EXPRESS are the application specified in C, and
the processor architecture specified in EXPRESSION.

IThis is possible because a move has only two operands and
hence has more bits to address each operand.

The front-end is GCC based and performs some of con-
ventional optimizations. The core transformations in
EXPRESS include RDLP[12] — a loop pipelining tech-
nique, TiP8§ : Trailblazing Percolation Scheduling[11] —
a speculative code motion technique, Instruction Selec-
tion and Register Allocation. The back-end generates
assembly code for the processor ISA.

EXPRESS uses a tree pattern matching based algo-
rithm for Instruction Selection. A tree of generic in-
structions is converted to a tree of target instructions.
In case a tree of generic instructions can be replaced
by more than one target instruction tree, the one with
lower cost is selected. The cost of a tree depends upon
the user’s relative importance of performance and code-
size. Our approach towards compiling for rISA, looks
at the rISA conversion as a natural part of the Instruc-
tion Selection process. The Instruction Selection phase
uses a profitability heuristic to guide the decisions of
which section of a function to convert to rISA instruc-
tions, and which ones to normal target instructions.
Figure 1 shows the phases of the EXPRESS compiler
with our rISAization technique.

rISAization involves the following tasks: (1) decid-
ing whether a section of code can be converted to rISA
instructions, (2) deciding whether it is profitable to rI-
SAize the section, (3) choosing the appropriate (best)
rISA instructions, and (4) inserting the mode change
instructions. Tasks (1) and (3) are best accomplished
as part of the Instruction Selection process. How-
ever, a major difficulty associated with this approach is
that the Instruction Selection phase operates on trees
of instructions (created by following data dependency
chains) rather than on contiguous regions of code while
task (2) can only be performed on sequential sections
of the function.

In order to solve this problem, we divide Instruction
Selection for rISA into two phases. In the first phase
instructions that can be converted to rISA are marked.
A group of contiguous marked instructions then forms
a rISA Block. A profitability function analyzes each
rISA Block and decides whether it is profitable to rl-
SAize the block of instructions. The profitability anal-
ysis algorithm is discussed in greater detail in Section 6.

In the second phase of Instruction Selection, all
generic instructions within profitable rISA blocks are
replaced with rISA instructions and all other instruc-
tions are replaced with normal target instructions. Re-
placing a generic instruction with a rISA instruction
involves both selecting the appropriate rISA opcode,
and also restricting the operand variables to the set of
rISA registers.

The actual register allocation of variables is done
during the Register Allocation phase. The EXPRESS

compiler implements a modified version of Chaitin’s so-
lution [3] to Register Allocation. Since code blocks that
have been converted to rISA typically have a higher
register pressure (due to limited availability of regis-
ters), higher priority is given to rISA variables during
register allocation.

In the next section, we discuss in greater detail the
profitability analysis algorithm which determines if it
is useful to rISAize a rISA block. In Section 7 we
present experiments demonstrating the efficacy of our
approach.

6 Profitability Analysis

rISAizing a block of instructions impacts both the

code size and the performance of the program. In our
technique, this impact is estimated using a profitabil-
ity analysis (PA) function. The PA function estimates
the difference in code size (CS) and performance (PF)
if the block were to be implemented in rISA mode as
compared to normal mode. The compiler (or user) can
then use these estimates to trade-off between perfor-
mance and code size benefits for the program. Below
we describe how the PA function measures the esti-
mated impact on code size and performance. A de-
tailed description of the PA function can be found in
[5].
Code Size (CS): Figure 2 shows the portion of the
PA function that estimates the code size reduction due
to rISA. Ideally, converting a block of code to rISA
instructions reduces the size of the block by half. How-
ever, the conversion typically incurs an overhead that
reduces the amount of compression. This overhead is
composed of three factors:

Mode Change Instructions (CS1): Before every
block of rISA instructions, a mz (Mode Change from
normal to rISA) instruction is needed. This causes an
increase in code size by one full length instruction. At
the end of every rISA block, a rISA_maz (Mode Change
from rISA to normal) instruction is needed, causing an
increase in code size by the size of the rISA instruction.
Thus for an architecture with normal instruction length
of 4 bytes and rISA instruction of 2 bytes, CS1 =4 +
2 = 6bytes.

NOP (CS2): Most architectures require that nor-
mal instructions be aligned at word boundaries. How-
ever, rISAizing a block with odd number of instruc-
tions? will cause the succeeding normal instruction to
be mis-aligned. In such cases, an extra rISA_nop (No-
operation instruction) needs to be added inside the
rISA block. We conservatively estimate that each rISA
block needs a rISA nop instruction. C'S2 = 2bytes.

2Including the rISA_mx instruction

1 Estimate_CodeSize Reduction (Block bl)
2. {
3. CS1 = Size_Of(mx) + Size_Of(risa_mx);
4. CS2 = Size Of(risa_nop);
5 CS3 = Extra_Spill_Reload_Estimate(bl);
6. return Size Block(bl, NORMAL) - Size Block(bl, rISA) - CS1- CS2 - CS3;
7.}
8. Extra_Spill_Reload_Estimate(Block hl);
9. {
/I Estimate spill code if the block is rlSAized.
10. extra_rlSA_reg_press= Avg_Reg_Press(bl, rISA_vars) - K1* NUM_rISA_REGS;
11 if (extra_rISA_reg_press > 0)
12. avail_non_rISA_regs= TOTAL_REGS - NUM_rISA_REGS;
13. rISA_spills = (extra_rISA_reg_press) * (bl.num_instrs/ Avg_Live Len(bl));
14. else
15. avail_non_rISA_regs= TOTAL_REGS- NUM_rISA_REGS - extra rISA_reg_press,
16. rISA_spills=0;
17. extra_non_rISA_reg_press = Avg_Reg_Press(bl, non_rISA_vars) - K1 * avail_non_rISA_regs,
18. if (extra_non_rISA_reg_press > 0)
19. non_rISA_spills = extra_non_rISA_reg_press;
20. else non_rISA_spills=0;
21. spill_code_ if_rISA =rISA_spills* SIZE_rISA_INSTR + non_rISA_spills* SIZE_NORMAL_INSTR;
/I Estimate spill code if the block is not rl SAized.
22. extra_normal_reg_press = Avg_Reg_Press(bl, all_vars) - K1* TOTAL_REGS;
23. if (extra_normal_reg_press > 0)
24. normal_spills = extra_normal_reg_press* (bl.num_instrs/ Avg_Live_Len(bl));
25. else norma_spills=0;
26. spill_code_if_normal =normal_spills* SIZE_ NORMAL_INSTR;
27. extra_spill_code = spill_code if_rISA - spill_code if_normal;
28. extra_reload_code =K2* extra spill_code* Avg_Uses Per_Def(bl);
29. return extra_spill_code + extra reload_code;
30. }

TOTAL_REGS=8, NUM_rISA_REGS=8, SIZE rISA_INSTR=2bytes, SIZE_ NORMAL_INSTR=4 bytes.

K1, and K2 are control constants.

Figure 2. Heuristic to estimate the code size reduction.

Spills/Reloads (CS3): Due to limited availabil-
ity of registers, rISAizing a block may require a large
amount of spilling (either to memory or to non-rISA
registers). As this greatly impacts both code size and
performance it is important to accurately estimate the
number of spills (and reloads) due to rISAization. The
PA function estimates the number of spills and reloads
due to the rISA block by calculating the average regis-
ter pressure® due to the variables in the block.

The first step is to calculate the amount of spill code
inserted if the block is rISAized (line 21 in Figure 2).
The block may contain variables that need to be allo-

3Register Pressure is defined as the number of variables live
at the point in the program.

cated to the rISA register set and variables that can
be allocated to any registers. Thus, rISA spill code is
estimated as the total of spills due to rISA variables
(lines 10-16) and spills due to non rISA variables (lines
17-20). The constant K1 can be used to control the
importance of spill code in estimation.

The function Avg_Reg_Press returns the average reg-
ister pressure for variables of a particular type (rISA
or non rISA) in a block. The function Avg_Live_Len
returns the average distance between the definition of
a variable in a block and its last use (i.e. its life-time).
In a block, the extra register pressure (that causes
spilling) is the difference between Avg Reg Press and
the number of available registers (lines 10, 17, 22).

Each spill reduces the register pressure by 1 for the life
time of the variable. So, a block with size num_instrs
requires num_instrs/Avg_Live_Len spills to reduce the
register pressure by 1. Thus, the number of spills re-
quired to mitigate the register pressure is equal to the
extra register pressure multiplied by the number of
spills required to reduce register pressure by 1 (lines
13, 19, 24).

The next step is to estimate the total number of
spills if the block is not converted to rISA instructions
(line 26). This is accomplished in a manner similar to
that of estimation of rISA variables.

As each spill also requires reloads to bring the vari-
able to a register before its use, it is necessary to also
calculate the number of extra reloads due to conver-
sion to rISA. The PA function estimates the number
of reloads as a factor of number of spills in the rISA
Block. The constant K2 can be used to control the
importance of reload code in estimation.

The total reduction in code size of the block due to

rISAization (line 6) is
CS = NumlInstrs(RisaBlock)*2—CS1—-CS2—-CS3.
A CS value greater than zero implies that converting
the block to rISA instructions is profitable in terms of
code size.
Performance (PF): The impact of converting a block
of instructions into rISA on performance is difficult to
estimate. This is especially true if the architecture
incorporates a complex instruction memory hierarchy
(with caches). Our technique makes a crude estimate
of the performance impact based on the latency of the
extra instructions (due to the spills/reloads, and due
to the mode change instructions). A more accurate
estimate can be made by also considering the instruc-
tion caches and the placement of the blocks in program
memory.

7 Experiments

In this section we present results from experiments
conducted on the MIPS 32-bit/MIPS 16-bit machine
model. We measured the code size reduction for some
benchmarks using our technique and the gcc compiler
for the MIPS 32/16-bit ISA. The benchmarks were cho-
sen from the Livermore Loops suite of mainly numer-
ical computation kernels. Table 1 shows the code size
reductions obtained using EXPRESS and gcc for the
MIPS 32/16-bit ISA. GCC was run on the benchmarks

using the -Os option to optimize for code size.
Columns 2-3 show the size of code (in bytes) pro-

duced by GCC, while columns 4-5 show the size of
code produced by EXPRESS. As can be seen, the reg-
ular code size for MIPS32 produced by both compilers

Bmarks GCC code size EXPRESS code size
MIPS32 | MIPS16 % MIPS32 | MIPS16 T
hydro 140 126 10 132 80 39
ccg 216 190 12 280 166 41
prod 100 74 26 76 48 37
band 164 140 15 156 94 40
tri 108 88 19 100 54 45
Ire 152 124 18 176 118 33
state 264 234 11 232 160 31
adii 696 728 -5 752 510 32
pred 248 228 8 144 110 24
dpred 256 222 13 264 134 49
sum 108 76 30 92 48 48
diff 100 62 38 80 42 48
2dpic 348 270 22 288 162 44
ldpic 488 570 -17 428 256 40
fort 860 714 17 1008 616 39
ehydro 876 852 3 1068 634 41
Ire 192 166 14 192 128 33
dot 288 452 -57 344 234 32
mult 172 152 12 184 114 38
planck 188 202 -7 184 138 25
ihydro 324 300 7 344 236 31
min 120 78 35 128 88 31

Table 1. Code Size reduction using GCC and EX-
PRESS

(columns 2, 4) is comparable. However, EXPRESS is
able to compress code much more effectively as com-
pared to gce. In fact, for some benchmarks (1dpic,
dot) the MIPS16 code produced by gcc is much worse
as compared to MIPS32 code while EXPRESS is able
to achieve code size reduction. This is primarily be-
cause EXPRESS is able to selectively compress sec-
tions of the function and thus avoid inserting a large
number of spills. For benchmarks where both compil-
ers achieved lower code size for MIPS16, EXPRESS
was able to achieve code size reduction of 38%, while
gce was able to achieve a reduction of 14%, on an av-
erage. These experiments demonstrate effectiveness of
our technique in rISAizing functions as compared to
existing approaches. By operating at the instruction-
level granularity, our technique is able to accurately
estimate the impact of rISAization and also to selec-
tively rISAize only profitable (in terms of code size)
sections of functions.

We used SIMPRESS]7], a cycle-accurate simulator,
to measure the performance impact due to rISAization.
We simulated the code generated by EXPRESS on a
variant of the MIPS R4000 processor that was aug-
mented with the rISA MIPS16 Instruction Set. The
memory subsystem was modeled with no caches and a
single cycle latency main memory. The performance
of MIPS16 code is, on an average, 6% lower than that
of MIPS32 code, with the worst case being 24% lower.
For more details, including performance numbers for
individual benchmarks, please refer to [5]. These ex-
perimental results show that our technique is able to
effectively reduce code size using rISA with minimal
performance impact.

8 Summary and Future Work

An architectural feature for improving code density
of RISC processors is the reduced bit-width Instruc-
tion Set Architecture (rISA) extension. While rISA
can potentially achieve huge reduction in code size,
existing compilers are ill-equipped to take advantage
of this feature. In this paper we present a compiler
technique for achieving code size reduction using the
reduced bit-width Instruction Set Architecture (rISA).
The novel features of our technique include (1) its abil-
ity to operate at the instruction-level granularity and
achieve greater code size reduction by selectively con-
verting sections of a function; (2) its integration to an
existing compiler flow and its ability to work in con-
junction with other compiler phases; and (3) a heuris-
tic to estimate the amount of spills/reloads due to re-
stricted availability of registers. This technique has
been integrated into the EXPRESS ILP compiler and
experimental results show the efficacy of our approach
as compared to approaches with function-level gran-
ularity. Our technique is able to generate more than
twice the amount of code size reduction, on an average,
over existing approaches. Future work in this area in-
cludes the problem of compiler-in-the-loop design space
exploration (DSE) of rISA architectures, and efficient
scheduling for such architectures.

References
[1] Advanced RISC Machines Ltd.
(http://www.arm.com). ARM7TTDMI Technical
Manual.

[2] ARC Cores (http://www.arccores.com). ARCtangent-
A5 microprocessor Technical Manual.

[3] P.Briggs, K.D. Cooper, and L. Torczon. Improvements
to graph coloring register allocation. In Proceedings
of SIGPLAN Conference on Programming Language
Design and Implementation, 1994.

[4] I-Cheng Chen C. Lefurgy, P. Bird and T. Mudge. Im-
proving code density using compression techniques. In
IEEE, Proceedings of Micro-30, 1997.

[6] [Omitted for Blind Review]. An efficient compiler tech-
nique for reduced bit-width instruction set architec-
tures. Technical report, [Omitted for Blind Review],
1997.

[6] [Omitted for Blind Review]. = EXPRESSION: A
language for architecture exploration through com-
piler/simulator retargetability. In Proc. of Design Au-
tomation and Test in Europe, 1999.

[7] [Omitted for Blind Review]. V-SAT: A visual specifi-
cation and analysis for system-on-chip exploration. In
Proc. EUROMICRO-99, 1999.

[8] [Omitted for Blind Review]. A customizable compiler
framework for embedded systems. In SCOPES, 2001.

[9] L. Goudge and S. Segars. Thumb: Reducing the cost
of 32-bit risc performance in portable and consumer
applications. In Proceedings of COMPCONY6, 1996.

[10] K. Kissell. MIPS16: High-density MIPS for the embed-
ded market. Technical report, Silicon Graphics MIPS
Group, 1997.

[11] A. Nicolau and S. Novack. Trailblazing: A hierarchical
approach to percolation scheduling. In Proc. of Intn’l
Conf. on Parallel Processsing, 1993.

[12] S. Novack and A. Nicolau. Resource directed loop
pipelining : Exposing just enough parallelism. The
Computer Journal, 1997.

[13] STMicroelectronics (http://www.st.com).
Technical Manual.

ST100

[14] Xiarong Ma Young-Jun Kwon and Hyuk Jae Lee.
PARE: instruction set architecture for efficient code
size reduction. Electronics Letters 25th Nov’99 Vol. 35
No. 24, pages 2098-2099, 1999.

	Main Page
	DATE'02
	Front Matter
	Table of Contents
	Session Index
	Author Index

