STATS8: Introduction to Biostatistics

Overview

Babak Shahbaba
Department of Statistics, UCI
The role of statistical analysis in science

- This course discusses some biostatistical methods, which involve applying statistical methods to biological problems.

- We use empirical evidence to study populations and make informed decisions.

- To study a population, we measure a set of characteristics, which we refer to as variables.

- The objective of many scientific studies is to learn about the variation of a specific characteristic (e.g., BMI, disease status) in the population of interest.
The role of statistical analysis in science

• In many studies, we are interested in possible relationships among different variables.

• We refer to the variables that are the main focus of our study as the response (or target) variables.

• In contrast, we call variables that explain or predict the variation in the response variable as explanatory variables or predictors depending on the role of these variables.

• Statistical analysis begins with a scientific problem usually presented in the form of a hypothesis testing or a prediction problem.
Sampling

• To answer our scientific questions, we would, ideally, observe or perform an experiment on all members of the population of interest.

• However, this is usually impossible either physically, ethically, or economically.

• Instead, we select a sample of representative members from the population.

• Then with the methods of statistical inference, the conclusions based on the sample can cautiously be attributed to the whole population.
Sampling

- The samples are selected **randomly** (i.e., with some probability) from the population.

- Unless stated otherwise, these randomly selected members of populations are assumed to be **independent**.

- The selected members (e.g., people, households, cells) are called **sampling units**.

- The individual entities from which we collect information are called **observation units**, or simply **observations**.

- Our sample must be representative of the population, and their environments should be comparable to that of the whole population.
Sampling

• Some sampling schemes:
 • Simple random sampling
 • Stratified sampling
 • Cluster sampling
Observational studies and experiments

- After obtaining the sample, the next step is gathering the relevant information from the selected members.

- In observational studies, researchers are passive examiners, trying to have the least impact on the data collection process.

- Observational studies are quite helpful in detecting relationships among characteristics.

- When studying the relationships between characteristics, it is important to distinguish between association and causality.

- It is usually easier to establish causality by using experiments.

- In experiments, researchers attempt to control the process as much as possible.
Observational studies and experiments

- Retrospective and prospective observational studies
- Case-control studies
- Randomization, replication, and blocking in experiments
- Cross-Sectional, Longitudinal, and Time Series data
Data exploration

• After collecting data, the next step towards statistical inference and decision making is to perform **data exploration**, which involves visualizing and summarizing the data.

• The objective of data visualization is to obtain a high level understanding of the sample and their observed (measured) characteristics.

• To make the data more manageable, we need to further reduce the amount of information in some meaningful ways so that we can focus on the key aspects of the data. **Summary statistics** are used for this purpose.
Data exploration

- Using data exploration techniques, we can learn about the **distribution** of a variable.

- Informally, the distribution of a variable tells us the possible values it can take, the chance of observing those values, and how often we expect to see them in a random sample from the population.

- Through data exploration, we might detect previously unknown patterns and relationships that are worth further investigation.

- We can also identify possible data issues, such as unexpected or unusual measurements, known as **outliers**.
Statistical inference

• We collect data on a sample from the population in order to learn about the whole population.

• For example, Mackowiak, et al. (1992) measure the normal body temperature for 148 people to learn about the normal body temperature for the entire population.

• In this case, we say we are estimating the unknown population average.

• However, the characteristics and relationships in the whole population remain unknown.

• Therefore, there is always some uncertainty associated with our estimations.
Statistical inference

- In Statistics, the mathematical tool to address uncertainty is probability.

- The process of using the data to draw conclusions about the whole population, while acknowledging the extent of our uncertainty about our findings, is called statistical inference.

- The knowledge we acquire from data through statistical inference allows us to make decisions with respect to the scientific problem that motivated our study and our data analysis.
Computation

- We usually use computer programs to perform most of our statistical analysis and inference.

- The computer programs commonly used for this purpose are SAS, STATA, SPSS, MINITAB, MATLAB, and R.

- R is free and arguably the most common software among statisticians.

- For the purpose of this course, we use R-Commander, which allows us to do basic statistical analysis without necessarily learning the programing language of R.

- You are however encouraged to learn R for additional flexibility in your data analysis.