STATS8: Introduction to Biostatistics

Probability

Babak Shahbaba Department of Statistics, UCI

Introduction

- We have used plots and summary statistics to learn about the distribution of variables and to investigate their relationships.
- We now want to generalize our findings to the population.
- However, we almost always remain uncertain about the true distributions and relationships in the population.
- Therefore, when we generalize our findings from a sample to the whole population, we should explicitly specify the extent of our uncertainty.
- · We now discuss probability as a measure of uncertainty.
- We use some examples from genetics.

Some Commonly Used Genetic Terms

- Gene
- Single Nucleotide Polymorphisms (SNPs)
- Alleles
- Genotype
- Homozygous vs. heterozygous
- Phenotype
- Recessive vs. dominant

Random phenomena and their sample space

- A phenomenon is called *random* if its outcome (value) cannot be determined with certainty before it occurs.
- For example, coin tossing and genotypes are random phenomena.
- The collection of all possible outcomes S is called the sample space.

Coin tossing: $S = \{H, T\},\$

Die rolling: $S = \{1, 2, 3, 4, 5, 6\},\$

Bi-allelic gene: $S = \{A, a\},\$

Genotype: $S = \{AA, Aa, aa\}.$

Probability

- To each possible outcome in the sample space, we assign a probability P, which represents how certain we are about the occurrence of the corresponding outcome.
- For an outcome o, we denote the probability as P(o), where $0 \le P(o) \le 1$.
- The total probability of all outcomes in the sample space is always 1.

Coin tossing:
$$P(H) + P(T) = 1$$
,
Die rolling: $P(1) + P(2) + P(3) + P(4) + P(5) + P(6) = 1$.

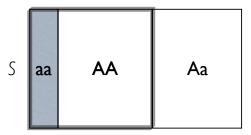
• Therefore, if the outcomes are equally probable, the probability of each outcome is $1/n_S$, where n_S is the number of possible outcomes.

Random events

- An event is a subset of the sample space S.
- A possible event for die rolling is $E = \{1, 3, 5\}$. This is the event of rolling an odd number.
- For the genotype example, $E = \{AA, aa\}$ is the event that a person is homozygous.
- An event occurs when any outcome within that event occurs.
- We denote the probability of event E as P(E).
- The probability of an event is the sum of the probabilities for all individual outcomes included in that event.

Example

- As a running example, we consider a bi-allelic gene A with two alleles A and a.
- We assume that allele a is recessive and causes a specific disease.
- Then only people with the genotype aa have the disease.



Example

We can define four events as follows:

The homozygous event: $HM = \{AA, aa\},$ The heterozygous event: $HT = \{Aa\},$ The no-disease event: $ND = \{AA, Aa\},$ The disease event: $D = \{aa\}.$

• Assume that the probabilities for different genotypes are P(AA) = 0.49, P(Aa) = 0.42, and P(aa) = 0.09.

• Then,

$$P(HM) = 0.49 + 0.09 = 0.58,$$

 $P(HT) = 0.42,$
 $P(ND) = 0.49 + 0.42 = 0.91,$
 $P(D) = 0.09.$

Complement

- For any event *E*, we define its **complement**, *E^c*, as the set of all outcomes that are in the sample space *S* but not in *E*.
- For the gene-disease example, the complement of the homozygous event $HM = \{AA, aa\}$ is the heterozygous event $\{Aa\}$; we show this as $HM^c = HT$.
- Likewise, the complement of the disease event, $D = \{aa\}$, is the no-disease event, $ND = \{AA, Aa\}$; we show this as $D^c = ND$.
- The probability of the complement event is 1 minus the probability of the event:

$$P(E^c) = 1 - P(E).$$

Union

- For two events E₁ and E₂ in a sample space S, we define their union E₁ ∪ E₂ as the set of all outcomes that are at least in one of the events.
- The union E₁ ∪ E₂ is an event by itself, and it occurs when either E₁ or E₂ (or both) occurs.
- For example, the union of the heterozygous event, HT, and the disease event, D, is $\{Aa\} \cup \{aa\} = \{Aa, aa\}$.
- When possible, we can identify the outcomes in the union of the two events and find the probability by adding the probabilities of those outcomes.

Intersection

- For two events E₁ and E₂ in a sample space S, we define their intersection E₁ ∩ E₂ as the set of outcomes that are in both events.
- The intersection $E_1 \cap E_2$ is an event by itself, and it occurs when both E_1 and E_2 occur.
- The intersection of the heterozygous event and the no-disease event is $HM \cap ND = \{AA\}$.
- When possible, we can identify the outcomes in the union of the two events and find the probability by adding the probabilities of those outcomes.

Joint vs. marginal probability

- We refer to the probability of the intersection of two events, $P(E_1 \cap E_2)$, as their **joint probability**.
- In contrast, we refer to probabilities $P(E_1)$ and $P(E_2)$ as the marginal probabilities of events E_1 and E_2 .
- For any two events E_1 and E_2 , we have

$$P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1 \cap E_2).$$

- That is, the probability of the union P(E₁ ∪ E₂) is the sum of their marginal probabilities minus their joint probability.
- The union of the heterozygous and the no-disease events is

$$P(HM \cup ND) = P(HM) + P(ND) - P(HM \cap ND)$$

= 0.58 + 0.91 - 0.49 = 1.

Disjoint events

- Two events are called disjoint or mutually exclusive if they
 never occur together: if we know that one of them has
 occurred, we can conclude that the other event has not.
- Disjoint events have no elements (outcomes) in common, and their intersection is the empty set.
- For the above example, if a person is heterozygous, we know that he does not have the disease so the two events HT and ND are disjoint.

Disjoint events

• For two disjoint events E_1 and E_2 , the probability of their intersection (i.e., their joint probability) is zero:

$$P(E_1 \cap E_2) = P(\phi) = 0$$

 Therefore, the probability of the union of the two disjoint events is simply the sum of their marginal probabilities:

$$P(E_1 \cup E_2) = P(E_1) + P(E_2)$$

• In general, if we have multiple disjoint events, E_1 , E_2 , ..., E_n , then the probability of their union is the sum of the marginal probabilities:

$$P(E_1 \cup E_2 \cup ... \cup E_n) = P(E_1) + P(E_2) + ... + P(E_n)$$

Partition

- When two or more events are disjoint and their union is the sample space S, we say that the events form a partition of the sample space.
- Two complementary events *E* and *E^c* always form a partition of the sample space since they are disjoint and their union is the sample space.

Conditional probability

- Ver often, we need to discuss possible changes in the probability of one event based on our knowledge regarding the occurrence of another event.
- The **conditional probability**, denoted $P(E_1|E_2)$, is the probability of event E_1 given that another event E_2 has occurred.
- The conditional probability of event E_1 given event E_2 can be calculated as follows: (assuming $P(E_2) \neq 0$)

$$P(E_1|E_2) = \frac{P(E_1 \cap E_2)}{P(E_2)}.$$

 This is the joint probability of the two events divided by the marginal probability of the event on which we are conditioning.

Conditional probability

- Consider the gene-disease example. Suppose we know that a person is homozygous and are interested in the probability that this person has the disease, P(D|HM).
- The probability of the intersection of D and HM is $P(D \cap HM) = P(\{aa\}) = 0.09$.
- Therefore, the conditional probability of having the disease knowing that the genotype is homozygous can be obtained as follows:

$$P(D|HM) = \frac{P(D \cap HM)}{P(HM)} = \frac{0.09}{0.58} = 0.16.$$

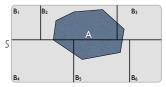
• In this case, the probability of the disease has increased from P(D) = 0.09 to P(D|HM) = 0.16.

The law of total probability

 By rearranging the equation for conditional probabilities, we have

$$P(E_1 \cap E_2) = P(E_1|E_2)P(E_2).$$

• Now suppose that a set of K events B_1, B_2, \ldots, B_K forms a partition of the sample space.



Using the above equation, we have

$$P(A) = P(A|B_1)P(B_1) + \cdots + P(A|B_K)P(B_K).$$

• This is known as the law of total probability

Independent events

 Two events E₁ and E₂ are independent if our knowledge of the occurrence of one event does not change the probability of occurrence of the other event.

$$P(E_1|E_2) = P(E_1),$$

 $P(E_2|E_1) = P(E_2).$

• For example, if a disease is not genetic, knowing a person has a specific genotype (e.g., AA) does not change the probability of having that disease.

Independent events

• When two events E_1 and E_2 are independent, the probability that E_1 and E_2 occur simultaneously, i.e., their joint probability, is the product of their marginal probabilities:

$$P(E_1 \cap E_2) = P(E_1) \times P(E_2).$$

 Therefore, the probability of the union of two independent events is as follows:

$$P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1) \times P(E_2).$$

Bayes' theorem

- Sometimes, we know the conditional probability of E_1 given E_2 , but we are interested in the conditional probability of E_2 given E_1 .
- For example, suppose that the probability of having lung cancer is P(C) = 0.001 and that the probability of being a smoker is P(SM) = 0.25.
- Further, suppose we know that if a person has lung cancer, the probability of being a smoker increases to P(SM|C) = 0.40.
- We are, however, interested in the probability of developing lung cancer if a person is a smoker, P(C|SM).

Bayes' theorem

• In general, for two events E_1 and E_2 , the following equation shows the relationship between $P(E_2|E_1)$ and $P(E_1|E_2)$:

$$P(E_2|E_1) = \frac{P(E_1|E_2)P(E_2)}{P(E_1)}.$$

- This formula is known as Bayes' theorem or Bayes' rule.
- For the above example,

$$P(C|SM) = \frac{P(SM|C)P(C)}{P(SM)} = \frac{0.4 \times 0.001}{0.25} = 0.0016.$$

• Therefore, the probability of lung cancer for smokers increases from 0.001 to 0.0016.