STATS 8: Introduction to Biostatistics

Estimation

Babak Shahbaba
Department of Statistics, UCI
Parameter estimation

• We are interested in population mean and population variance, denoted as μ and σ^2 respectively, of a random variable.

• These quantities are unknown in general.

• We refer to these unknown quantities as parameters.

• We discuss statistical methods for parameter estimation.

• Estimation refers to the process of guessing the unknown value of a parameter (e.g., population mean) using the observed data.
Convention

- We use X_1, X_2, \ldots, X_n to denote n possible values of X obtained from a sample randomly selected from the population.

- We treat X_1, X_2, \ldots, X_n themselves as n random variables because their values can change depending on which n individuals we sample.

- We assume the samples are *independent and identically distributed* (IID).

- We use x_1, x_2, \ldots, x_n as the specific set of values we have observed in our sample.

- That is, x_1 is the observed value for X_1, x_2 is the observed value X_2, and so forth.
Point estimation vs. interval estimation

- Sometimes we only provide a single value as our estimate.

- This is called **point estimation**.

- We use $\hat{\mu}$ and $\hat{\sigma}^2$ to denote the point estimates for μ and σ^2.

- Point estimates do not reflect our uncertainty.

- To address this issue, we can present our estimates in terms of a range of possible values (as opposed to a single value).

- This is called **interval estimation**.
Estimating population mean

• Given \(n \) observed values, \(X_1, X_2, \ldots, X_n \), from the population, we can estimate the population mean \(\mu \) with the sample mean:

\[
\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}.
\]

• In this case, we say that \(\bar{X} \) is an estimator for \(\mu \).

• The estimator itself is considered as a random variable since it value can change.

• We usually have only one sample of size \(n \) from the population \(x_1, x_2, \ldots, x_n \).

• Therefore, we only have one value for \(\bar{X} \), which we denote \(\bar{x} \):

\[
\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}.
\]
Law of Large Numbers (LLN)

- The **Law of Large Numbers (LLN)** indicates that (under some general conditions such as independence of observations) the sample mean converges to the population mean ($\bar{X}_n \to \mu$) as the sample size n increases ($n \to \infty$).

- Informally, this means that the difference between the sample mean and the population mean tends to become smaller and smaller as we increase the sample size.

- The Law of Large Numbers provides a theoretical justification for the use of sample mean as an estimator for the population mean.

- The Law of Large Numbers is true regardless of the underlying distribution of the random variable.
Law of Large Numbers (LLN)

- Suppose the true population mean for normal body temperature is 98.4°F.

- Here, the estimate of the population mean is plotted for different sample sizes.
Estimating population variance

- Given \(n \) randomly sampled values \(X_1, X_2, \ldots, X_n \) from the population and their corresponding sample mean \(\bar{X} \), we estimate the population variance as follows:

\[
S^2 = \frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n - 1}.
\]

- The sample standard deviation \(S \) (i.e., square root of \(S^2 \)) is our estimator of the population standard deviation \(\sigma \).

- We regard the estimator \(S^2 \) as a random variable.

- In practice, we usually have one set of observed values, \(x_1, x_2, \ldots, x_n \), and therefore, only one value for \(S^2 \):

\[
s^2 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n - 1}.
\]
Sampling distribution

• As mentioned above, estimators are themselves random variables.

• Probability distributions for estimators are called sampling distributions.

• Here, we are mainly interested in the sampling distribution of \bar{X}.
We start by assuming that the random variable of interest, X, has a normal $N(\mu, \sigma^2)$ distribution.

Further, we assume that the population variance σ^2 is known, so the only parameter we want to estimate is μ.

In this case, $\bar{X} \sim N(\mu, \sigma^2/n)$, where n is the sample size.
Sampling distribution

Figure: Left panel: The (unknown) theoretical distribution of blood pressure, $X \sim N(125, 15^2)$. Right panel: The density curve for the sampling distribution $\bar{X} \sim N(125, 15^2/100)$ along with the histogram of 1000 sample means.
Confidence intervals for the population mean

- It is common to express our point estimate along with its standard deviation to show how much the estimate could vary if different members of population were selected as our sample.

- Alternatively, we can use the point estimate and its standard deviation to express our estimate as a range (interval) of possible values for the unknown parameter.
Confidence intervals for the population mean

- We know that $\bar{X} \sim N(\mu, \sigma^2/n)$.

- Suppose that $\sigma^2 = 15^2$ and sample size is $n = 100$.

- Following the 68–95–99.7% rule, with 0.95 probability, the value of \bar{X} is within 2 standard deviations from its mean, μ, $\mu - 2 \times 1.5 \leq \bar{X} \leq \mu + 2 \times 1.5$.

- In other words, with probability 0.95, $\mu - 3 \leq \bar{X} \leq \mu + 3$.
Confidence intervals for the population mean

• We are, however, interested in estimating the population mean μ (instead of the sample mean \bar{X}).

• By rearranging the terms of the above inequality, we find that with probability 0.95,

$$\bar{X} - 3 \leq \mu \leq \bar{X} + 3.$$

• This means that with probability 0.95, the population mean μ is in the interval $[\bar{X} - 3, \bar{X} + 3]$.
Confidence intervals for the population mean

• In reality, however, we usually have only one sample of \(n \) observations, one sample mean \(\bar{x} \), and one interval \([\bar{x} - 3, \bar{x} + 3]\) for the population mean \(\mu \).

• For the blood pressure example, suppose that we have a sample of \(n = 100 \) people and that the sample mean is \(\bar{x} = 123 \). Therefore, we have one interval as follows:

\[
[\bar{x} - 3, \bar{x} + 3] = [120, 126].
\]

• We refer to this interval as our 95% confidence interval for the population mean \(\mu \).

• In general, when the population variance \(\sigma^2 \) is known, the 95% confidence interval for \(\mu \) is obtained as follows:

\[
[\bar{x} - 2 \times \sigma/\sqrt{n}, \bar{x} + 2 \times \sigma/\sqrt{n}]
\]
z critical value

- In general, for the given confidence level c, we use the standard normal distribution to find the value whose upper tail probability is $(1 - c)/2$.

![Graph](attachment:image.png)

z critical value

- We refer to this value as the z-critical value for the confidence level of c.

- Then with the point estimate \bar{x}, the confidence interval for the population mean at c confidence level is

 \[
 [\bar{x} - z_{crit} \times \sigma/\sqrt{n}, \bar{x} + z_{crit} \times \sigma/\sqrt{n}]
 \]

- We can use R or R-Commander to find z_{crit}.
Standard error

• So far, we have assumed the population variance, σ^2, of the random variable is known.

• However, we almost always need to estimate σ^2 along with the population mean μ.

• For this, we use the sample variance s^2.

• As a result, the standard deviation for \bar{X} is estimated to be s/\sqrt{n}.

• We refer to s/\sqrt{n} as the **standard error** of the sample mean \bar{X}.
Confidence Interval When the Population Variance Is Unknown

• To find confidence intervals for the population mean when the population variance is unknown, we follow similar steps as described above, but

 • instead of σ/\sqrt{n} we use $SE = s/\sqrt{n}$,

 • instead of z_{crit} based on the standard normal distribution, we use t_{crit} obtained from a t-distribution with $n - 1$ degrees of freedom.

• The confidence interval for the population mean at c confidence level is

 $$[ar{x} - t_{crit} \times s/\sqrt{n}, \bar{x} + t_{crit} \times s/\sqrt{n}],$$
Central limit theorem

- So far, we have assumed that the random variable has normal distribution, so the sampling distribution of \bar{X} is normal too.

- If the random variable is not normally distributed, the sampling distribution of \bar{X} can be considered as approximately normal using (under certain conditions) the central limit theorem (CLT):

 \[
 \text{If the random variable } X \text{ has the population mean } \mu \text{ and the population variance } \sigma^2, \text{ then the sampling distribution of } \bar{X} \text{ is approximately normal with mean } \mu \text{ and variance } \frac{\sigma^2}{n}.
 \]

- Note that CLT is true regarding the underlying distribution of X so we can use it for random variables with Bernoulli and Binomial distributions too.
Confidence Interval When for the Population Proportion

- For binary random variables, we use the sample proportion to estimate the population proportion as well as the population variance.

- Therefore, estimating the population variance does not introduce an additional source of uncertainty to our analysis, so we do not need to use a t-distribution instead of the standard normal distribution.

- For the population proportion, the confidence interval is obtained as follows:

$$[p - z_{crit} \times SE, p + z_{crit} \times SE],$$

where

$$SE = \sqrt{p(1 - p)/n}.$$