STATS 8: Introduction to Biostatistics

Hypothesis Testing

Babak Shahbaba
Department of Statistics, UCI
Hypothesis

• In general, many scientific investigations start by expressing a hypothesis.

• For example, Mackowiak et al (1992) hypothesized that the average normal (i.e., for healthy people) body temperature is less than the widely accepted value of 98.6°F.

• If we denote the population mean of normal body temperature as \(\mu \), then we can express this hypothesis as \(\mu < 98.6 \).
Null and alternative hypotheses

- The null hypothesis usually reflects the “status quo” or “nothing of interest”.

- In contrast, we refer to our hypothesis (i.e., the hypothesis we are investigating through a scientific study) as the alternative hypothesis and denote it as H_A.

- For hypothesis testing, we focus on the null hypothesis since it tends to be simpler.
Null and alternative hypotheses

• Consider the body temperature example, where we want to examine the null hypothesis $H_0 : \mu = 98.6$ against the alternative hypothesis $H_A : \mu < 98.6$.

• To start, suppose that $\sigma^2 = 1$ is known.

• Further, suppose that we have randomly selected a sample of 25 healthy people from the population and measured their body temperature.
Hypothesis testing for the population mean

- To decide whether we should reject the null hypothesis, we quantify the empirical support (provided by the observed data) against the null hypothesis using some statistics.

- We use statistics to evaluate our hypotheses.

- We refer to them as **test statistics**.

- For a statistic to be considered as a test statistic, its sampling distribution must be fully known (exactly or approximately) under the null hypothesis.

- We refer to the distribution of test statistics under the null hypothesis as the **null distribution**.
Hypothesis testing for the population mean

- To evaluate hypotheses regarding the population mean, we use the sample mean \bar{X} as the test statistic.

$$\bar{X} \sim N(\mu, \sigma^2/n).$$

- For the above example,

$$\bar{X} \sim N(\mu, 1/25).$$

- If the null hypothesis is true, then

$$\bar{X} \sim N(98.6, 1/25).$$
Hypothesis testing for the population mean

• In reality, we have one value, \bar{x}, for the sample mean.

• We can use this value to quantify the evidence of departure from the null hypothesis.

• Suppose that from our sample of 25 people we find that the sample mean is $\bar{x} = 98.4$.
Hypothesis testing for the population mean

- To evaluate the null hypothesis \(H_0 : \mu = 98.6 \) versus the alternative \(H_A : \mu < 98.6 \), we use the lower tail probability of this value from the null distribution.
Observed significance level

- The *observed significance level* for a test is the probability of values as or more extreme than the observed value, based on the null distribution in the direction supporting the alternative hypothesis.

- This probability is also called the *p-value* and denoted p_{obs}.

- For the above example,

$$p_{\text{obs}} = P(\bar{X} \leq \bar{x} | H_0),$$
In practice, it is more common to use the standardized version of the sample mean as our test statistic.

We know that if a random variable is normally distributed (as it is the case for \bar{X}), subtracting the mean and dividing by standard deviation creates a new random variable with standard normal distribution,

$$Z \sim N(0, 1).$$

We refer to the standardized value of the observed test statistic as the **z-score**,

$$z = \frac{\bar{x} - \mu_0}{\sigma/\sqrt{n}} = \frac{98.4 - 98.6}{0.2} = -1.$$
z-test

- We refer to the corresponding hypothesis test of the population mean as the **z-test**.

- In a z-test, instead of comparing the observed sample mean \bar{x} to the population mean according to the null hypothesis, we compare the z-score to 0.
Interpretation of p-value

- The p-value is the conditional probability of extreme values (as or more extreme than what has been observed) of the test statistic assuming that the null hypothesis is true.

- When the p-value is small, say 0.01 for example, it is rare to find values as extreme as what we have observed (or more so).

- As the p-value increases, it indicates that there is a good chance to find more extreme values (for the test statistic) than what has been observed.

- Then, we would be more reluctant to reject the null hypothesis.

- A common mistake is to regard the p-value as the probability of null given the observed test statistic: $P(H_0|\bar{x})$.
One-sided vs. two-sided hypothesis testing

- The alternative hypothesis $H_A : \mu < 98.6$ or $H_A : \mu > 98.6$ are called *one-sided* alternatives.

- For these hypotheses, $p_{\text{obs}} = P(Z \leq z)$ and $p_{\text{obs}} = P(Z \geq z)$ respectively.

- In contrast, the alternative hypothesis $H_A : \mu \neq 98.6$ is *two-sided*.

- For the above three alternatives, the null hypothesis is the same, $H_0 : \mu = 98.6$

- In this case, $p_{\text{obs}} = 2 \times P(Z \geq |z|)$.
Hypothesis testing using t-tests

- So far, we have assumed that the population variance σ^2 is known.

- In reality, σ^2 is almost always unknown, and we need to estimate it from the data.

- As before, we estimate σ^2 using the sample variance S^2.

- Similar to our approach for finding confidence intervals, we account for this additional source of uncertainty by using the t-distribution with $n - 1$ degrees of freedom instead of the standard normal distribution.

- The hypothesis testing procedure is then called the t-test.
Hypothesis testing using \(t \)-tests

- Using the observed values of \(\bar{X} \) and \(S \), the observed value of the test statistic is obtained as follows:

\[
t = \frac{\bar{X} - \mu_0}{s/\sqrt{n}}.
\]

- We refer to \(t \) as the \(t \)-score.

- Then,

\[
\begin{align*}
\text{if } H_A : \mu < \mu_0, & \quad p_{\text{obs}} = P(T \leq t), \\
\text{if } H_A : \mu > \mu_0, & \quad p_{\text{obs}} = P(T \geq t), \\
\text{if } H_A : \mu \neq \mu_0, & \quad p_{\text{obs}} = 2 \times P(T \geq |t|),
\end{align*}
\]

- Here, \(T \) has a \(t \)-distribution with \(n - 1 \) degrees of freedom, and \(t \) is our observed \(t \)-score.
Hypothesis testing for population proportion

- For a binary random variable X with possible values 0 and 1, we are typically interested in evaluating hypotheses regarding the population proportion of the outcome of interest, denoted as $X = 1$.

- As discussed before, the population proportion is the same as the population mean for such binary variables.

- So we follow the same procedure as described above.

- More specifically, we use the z-test for hypothesis testing.
Hypothesis testing for population proportion

- Note that we do not use t-test, because for binary random variable, population variance is $\sigma^2 = \mu(1 - \mu)$.

- Therefore, by setting $\mu = \mu_0$ according to the null hypothesis, we also specify the population variance as $\sigma^2 = \mu_0(1 - \mu_0)$.
Hypothesis testing for population proportion

- If we assume that the null hypothesis is true, we have
 \[\bar{X} | H_0 \sim N(\mu_0, \mu_0(1 - \mu_0)/n). \]

- This means that
 \[Z = \frac{\bar{X} - \mu_0}{\sqrt{\mu_0(1 - \mu_0)/n}} \sim N(0, 1). \]

- As a result, we obtain the z-score as follows:
 \[z = \frac{p - \mu_0}{\sqrt{\mu_0(1 - \mu_0)/n}}, \]
 where \(p \) is the sample proportion (mean).