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Protein domains are the basic macroscopic units of protein tertiary structure. Being able to parse
protein chains into different domains is important for protein classification and for understanding

protein structure, function, and evolution. Here we use machine learning algorithms, in the form of
recursive neural networks, to develop a protein domain predictor called DOMpro. DOMpro predicts
protein domains using a combination of evolutionary information in the form of profiles, predicted
secondary structure, and predicted relative solvent accessibility. DOMpro is trained and tested on a
curated dataset derived from the CATH database. DOMpro correctly predicts the number of domains
for 69% of the combined dataset of single and multi-domain chains. Of the single domain proteins,
79% are correctly predicted as having no domain boundaries. The total number of domains is correctly
predicted for 43% of the multi-domain proteins. DOMpro is able to correctly predict both the domain
number and domain boundary location for 25% of the two domain chains. DOMpro is a member of
the SCRATCH suite of predictors available through http://www.igb.uci.edu/servers/psss.html.
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1. Introduction

Domains are considered the basic macroscopic units of protein tertiary structure. Most defi-

nitions of domains rely on different criteria ranging from the ability to fold independently, to

evolutionary conservation, to discrete functionality 7. A domain can span an entire polypep-

tide chain or be a subunit of a polypeptide chain that can fold into a stable tertiary structure

independently of any other domain 12. While many domains are comprised of a single contin-

uous polypeptide segment, in some cases domains may be comprised of several discontinuous

segments.

The identification of domains is an important step for protein classification and for the

study/prediction of protein structure, function, and evolution. The topology of secondary struc-

ture elements in a domain is used by human experts or automated systems in structural clas-

sification databases such as FSSP-Dali Domain Dictionary 8,9, SCOP 17, and CATH 19. The

prediction of protein tertiary structure, especially ab initio prediction, can be improved by using

domain boundary information 5 and applying prediction methods separately to each domain.

However, the identification of protein domains based on sequence alone remains a challenging

problem.

A number of methods have been developed to identify protein domains starting from the pri-

mary sequence. Some of these methods use a sequence alignment approach whereby domains are

identified by aligning the target sequence against sequences in a domain classification database
14. Other methods use alignments of secondary structure 15. In these methods, domains are

assigned by aligning the predicted secondary structure of a target sequence against the sec-

ondary structure of chains in CATH with known domain boundaries. Tertiary structure folding

approaches such as SnapDRAGON 6 average several hundred predictions obtained from coarse

ab initio simulations of protein folding for a given sequence to assign its domain content. One

drawback to such approaches is that they are very computationally intensive. Statistical meth-
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ods such as Domain Guess by Size (DGS) 24 predict the likelihood of domain boundaries within

a given sequence based on statistical distributions of chain and domain lengths.

The prediction of domains using machine learning techniques is aided by the availability

of large, high quality domain classification databases such as CATH, SCOP and DaliDD. Two

recently published algorithms attempt to predict domain boundaries using neural networks 13,18.

The networks used by Nagarajan and Yona (2004) incorporate the position specific physio-

chemical properties of amino acid and predicted secondary structure. Liu and Rost (2004)

use neural networks with amino acid composition , positional evolutionary conservation, and

predicted secondary structure and solvent accessibility.

Here we describe DOMpro, a novel machine learning approach for predicting domains,

which uses profiles along with predicted secondary structure and solvent accessibility in a

1D-recursive neural network (1D-RNN). These networks are also used for prediction of the

secondary structure and solvent accessibility 21,22 in our SCRATCH suite of servers 2. Unlike

previous neural network-based approaches 13,18, the direct use of profiles in DOMpro is based

on the assumption that sequence motifs and their level of conservation in the boundary regions

are different from those found in the rest of the protein. The final assignment of protein domains

is the result of post-processing and statistical inference on the output of the recursive neural

network.

2. Methods

2.1. Data

DOMpro is trained and tested on a curated dataset derived from annotated domains in the

CATH domain database, version 2.5.1. Because the CATH database contains only the sequences

of domain regions, sequences from the PDB 4 must be incorporated to reconstruct entire chains.

Once the chains are reconstructed, short sequences (< 40 residues) are filtered out.

We then use UniqueProt 16 to reduce the sequence redundancy in the dataset. We ensure

that no pair of sequences in the dataset have a HSSP value greater than 5. The HSSP value

between two sequences is a measure of their similarity and takes into account both sequence

identity and sequence length. A HSSP value of 5 corresponds roughly to a sequence identity of

25% in a global alignment of length 250.

Finally, secondary structure classification and relative solvent accessibility are predicted for

each chain using SSpro and ACCpro 21,22,2. Using predicted, rather than true secondary struc-

ture and solvent accessibility which are easily-obtainable by the DSSP program 11, introduces

additional robustness in the predictor, especially when it is applied to sequences with little or

no homology to sequences in the PDB. To leverage evolutionary information, PSI-BLAST 1 is

used to generate profiles by aligning all chains against the Non-Redundant (NR) database, as

in 10,23,21.

After redundancy reduction, our curated dataset contains 355 multi-domain chains and 963

single domain chains. The ratio of single to multi-domain chains reflects the skewed distribution

of single domain chains in the PDB 4. Figure 1 shows the frequency of single and multiple

domain chains in the redundancy-reduced dataset. Figure 2 shows the distribution of chain

lengths among single and multi-domain chains.

Because the recursive neural networks are trained to recognize domain boundaries, only

multi-domain proteins are used during the training process. During the training and testing

of the neural networks on multi-domain proteins, ten fold cross-validation is used. Additional

testing is performed on single domain proteins using models trained with multi-domain proteins.

2.2. Input and Output of Neural Networks

The problem of predicting domain boundary can be viewed as a binary classification problem for

each residue along one dimensional (1D) protein chain. The residue at position i is labelled as
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Fig. 1. Frequency of single and multi-domain chains in the redundancy-reduced dataset.
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Fig. 2. Distribution of the lengths of single and multi-domain chains in the redundancy-reduced dataset.

within domain boundary regions or not. Specifically, the target class for each residue is defined as

follows. Residues within 20 amino acids of a domain boundary are considered domain boundary

residues and all other residues are considered non-boundary residues. A variety of machine

learning methods can be applied to this problem, such as probabilistic graphical models, kernel

methods, and neural networks. DOMpro employs 1D recursive neural networks (1D-RNN)2.

For each chain, our input is 1D array I, where the size of I is equal to the number of residues in

the chain and each entry Ii is a vector of dimension 25 encoding the profile as well as secondary

structure and relative solvent accessibility at position i. Specifically, twenty of the values are

real numbers which correspond to the amino acid profile. The other five values are binary. Three
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of the values correspond to the predicted secondary structure class (Helix, Strand, or Coil) of

the residue and the other two correspond to the predicted relative solvent accessibility of the

residue (i.e., under or over 25% exposed).

The training target for each chain is a 1D binary array T , whereby each Ti equals 0 or 1

depending on whether residue at position i is within boundary region or not. Neural networks

or other machine learning methods can be trained on the data set to learn a mapping from

the input array I onto an output array O, whereby Oi is the predicted probability that residue

at position i is within domain boundary region. The goal is to make the output O as close as

possible to the target T .

2.3. The Architecture of 1D-Recursive Neural Networks (1D-RNNs)

The architecture of 1D-RNNs used in this study is derived from the theory of probabilistic

graphical models, but use a neural network parameterization to speed up belief propagation

and learning 2. 1D-RNNs combine the flexibility of Bayesian networks with the fast, convenient,

parameterization of artificial neural networks without the drawbacks of standard feedforward

neural networks with fixed input size. Under this architecture, the output Oi depends on the

entire input I instead of a local fixed-width window centered at position i. Thus, 1D-RNNs

can handle inputs with variable length and allow classification decisions to be made based on

contextual long-ranged information outside of the traditional local input window.

The architecture of the 1D-RNN is described in figures 3 and 4 and is associated with

a set of input variables Ii, a forward HF
i and backward HB

i chain of hidden variables, and

a set Oi of output variables. In terms of probabilistic graphical models (Bayesian networks),

this architecture has the connectivity pattern of an input-output HMM 3, augmented with a

backward chain of hidden states. The backward chain is of course optional and used here to

capture the spatial, rather than temporal, properties of biological sequences.
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Fig. 3. 1D-RNN associated with input variables, output variables, and both forward and backward chains of
hidden variables.

The relationship between the variables can be modeled using three separate neural networks

to compute the output, forward, and backward variables respectively. These neural networks are

replicated at each position i;(i.e., weight sharing). One fairly general form of weight sharing is to

assume stationarity for the output, forward, and backward networks, which finally leads to a 1D-

RNN architectures, previously named bidirectional RNN architecture (BRNN), implemented

using three neural networks NO, NF , and NB in the form
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Oi = NO(Ii, H
F
i , HB

i )

HF
i = NF (Ii, H

F
i−1)

HB
i = NB(Ii, H

B
i+1)

(1)

as depicted in Figure 4. In this form, the output depends on the local input Ii at position i, the

forward (upstream) hidden context HF
i ∈ IRn and the backward (downstream) hidden context

HB
i ∈ IRm, with usually m = n. The boundary conditions for HF

i and HB
i can be set to 0,

i.e. HF
0 = HB

N+1 = 0 where N is the length of the sequence being processed. Alternatively

these boundaries can also be treated as a learnable parameter. Intuitively, we can think of NF

and NB in terms of two “wheels” that can be rolled along the sequence. For the prediction at

position i, we roll the wheels in opposite directions starting from the N- and C- terminus and

up to position i. Then we combine the wheel outputs at position i together with the input Ii

to compute the output prediction Oi using NO.
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Fig. 4. A 1D-RNN architecture with a left (forward) and right (backward) context associated with two recurrent
networks (wheels).

The output Oi for each residue position i is computed by two normalized-exponential units,

equivalent to one logistic output unit. The error function is the relative entropy between the

true distribution and the predicted distribution.

All the weights of the 1D-RNN architecture, including the weights in the recurrent wheels,

are trained in supervised fashion using a generalized form of gradient descent on the error

function, derived by unfolding the wheels in space.

2.4. Post-Processing of 1D-RNN Output

The raw output from the 1D-RNN is quite noisy (See Figure 5). DOMpro uses smoothing to

help correct for the random noise that is the result of false positive hits. The smoothing is

accomplished by averaging over a window of length three around each position. Figure 5 shows

how this smoothing technique helps to reduce the noise found in the raw output of the 1D-

RNN. After smoothing, a domain state (boundary/not boundary) is assigned to each residue

by thresholding the networks output at .5.

While smoothing the neural network output helps correct for random spikes, it does not

necessarily create the long, continuous segments of boundary residues that are required for

domain assignment. Therefore, further inference on the output is required.
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Fig. 5. Smoothing of raw output from 1D-RNN
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Fig. 6. Histogram of length distributions of false and true positive boundary regions

DOMpro infers domain boundary regions from residues predicted as domain boundaries

by pattern matching on the discretized output. Any section of the output which matches the

regular expression pattern ((B+N{0,m})*B+) is considered a domain boundary region, where B

is a predicted boundary residue, N is a predicted non-boundary residue and m is the maximum

separation between two boundary residues which should be merged into one region.

Once DOMpro has inferred all possible domain boundary regions, we need to identify false

positive domain boundary regions. DOMpro considers the boundary region’s length a measure

of its signal strength. Figure 6 shows that there is a clear difference between the length distri-

butions of true domain boundary regions and false domain boundary regions. Based on these

statistics, domain boundary regions shorter than three residues are considered false positive hits

and are ignored. The target sequence is then cut into domain segments at the middle residue

of each boundary region. A target sequence with no predicted domain boundaries is classified

as a single domain chain.

The final step of DOMpro is to assign domain numbers to each predicted domain segment.

One naive method is to assign each domain segment to a separate domain. However, this method

fails to identify discontinuous domains. One possible strategy to overcome this problem is to
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combine predicted domain segment information with predicted contact map information in

order to assign domain numbers. To handle discontinuous domains comprising two ore more

disjoint segments, the predicted contact map from CMAPpro 2 is used to decide whether non-

adjacent segments have a sufficient number of residue-residue contacts to be considered a single

domain. The latter strategy is currently under development.

3. Results
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Fig. 7. Frequency of under and over prediction of the number of domains by DOMpro and a naive predictor

The first step in evaluating a domain predictor is to compare the predicted number of

domains to the true number of domains. DOMpro correctly predicted the number of domains

for 69% of the combined dataset of single and multi-domain proteins. 79% of the single domain

proteins were correctly predicted as having no domain boundaries. The number of domains is

correctly predicted for 43% of the multi-domain proteins. Figure 7 shows the relative frequency

of under and over prediction of the number of domains by DOMpro in addition to a predictor

based solely on the chain lengths. This simple predictor classifies a chain as having one domain

if its length is less than 220 residues, two domains if its length is between 220 and 400 residues,

three domains if its length is between 400 and 600 residues and four domains if its length is

greater than 600 residues. These thresholds come from statistics on the number of residues per

domain.

DOMpro is able to correctly predict both the domain number and domain boundary location

for 20% of the multi-domain chains. For the evaluation of multi-domain chains, we consider that

a domain boundary has been correctly identified if the predicted domain boundary is within

20 residues of the true domain boundary, as annotated in the CATH database.

The comparison of domain predictors is complicated by the existence of several domain

datasets/databases which sometimes conflict with each other. Thus, the performance of a pre-

dictor on a dataset other than its training dataset is limited by the percentage of agreement

between the training and testing datasets. With this caveat in mind, we observe that DOMpro
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is able to correctly predict 25% of the two domain proteins in our dataset derived from CATH.

This is in comparison to CHOPnet 13 which achieves 19% accuracy on a different dataset de-

rived from CATH and SCOP. CHOPnet is reported to correctly predict the number of domains

for 38% of the proteins, versus 43% for DOMpro. For single domain proteins, the performance of

SnapDRAGON 6 is 44%, the performance of CHOPnet is 70%, and the performance of DOM-

pro is 79%. Thus, within the limitations of such comparisons, the performance of DOMpro is

comparable to that of current ab inito domain predictors.

4. Conclusions

We have created DOMpro, an ab initio predictor of protein domains using recursive neural

networks that leverages evolutionary information in the form of profiles and predicted secondary

structure and relative solvent accessibility. DOMpro raw output is filtered in order to produce

the final domain segmentation and assignment. Our analysis shows that DOMpro achieves a

level of performances that is better or comparable to the level of current ab initio domain

boundary predictors.

Domain prediction, however, remains a challenging problem. A 25% correct performance

on prediction of two-domain proteins is encouraging but not sufficient and clearly there is

room for improvement. We are currently adding a module to DOMpro to use homology for

domain assignment for proteins that are homologous to known structures in the PDB and

CATH databases. We are also training ensembles of predictors, although in preliminary experi-

ments we did not see much improvement from using ensembles. In addition, we are focusing on

the prediction/classification of discontinuous domains. To overcome the current limitations of

DOMpro and the naive assignment of domain numbers, we are experimenting with the use of

predicted contact maps, as well as domain length statistics, in deciding domain boundaries and

whether or not two non-adjacent domain segments should be joined. The contact maps are pre-

dicted using 2D-RNNs 20,2. The basic idea is that domains should be associated with a higher

raltive density of contacts. Likewise, two discontinuous segments with the proper length statis-

tics and with a sufficient number of inter-segment residue-residue contacts might be predicted

as belonging to the same domain.
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