What is a cloud?

SLAs

Web Services

Virtualization
eCommerce + Infrastructure

- **Self-service and “zero touch.”**
 - Scalable automatic rental of resource intensive goods

- **Transactional and asynchronous**
 - Interaction with the site is transactional
 - Delivery is asynchronous

- **Site integrity and site availability are critical**
 - Individual transactions can fail but the site cannot

- **Customer requests must be isolated**
 - Service venue must manage competing needs

- **Scale out for request volume, scale up for request weight**
Open-source Cloud Infrastructure

• **Idea:** Develop an open-source, freely available cloud platform for commodity hardware and software environments
 – Stimulate interest and build community knowledge
 – Quickly identify useful innovations
 – Act to dampen the “hype”

• **First-principles cloud implementation**
 – Not a refactorization of previously developed technology

• **Build from mature open source technologies**
 – J2EE, MySQL, Web Services are high quality and scalable as open source
What’s in a name?

- **Elastic Utility Computing Architecture Linking Your Programs To Useful Systems**
- Web services based implementation of elastic/utility/cloud computing infrastructure
 - Linux image hosting ala Amazon
- **How do we know if it is a cloud?**
 - Try and emulate an existing cloud: Amazon AWS
- Functions as a software overlay
 - Existing installation should not be violated (too much)
- Focus on installation and maintenance
 - “System Administrators are people too.”
Goals for Eucalyptus

• Foster greater understanding and uptake of cloud computing
 – Provide a vehicle for extending what is known about the utility model of computing

• Experimentation vehicle prior to buying commercial services
 – Provide development, debugging, and “tech preview” platform for Public Clouds

• Homogenize local IT environment with Public Clouds
 – AWS functionality locally makes moving using Amazon AWS easier, cheaper, and more sustainable

• Provide a basic software development platform for the open source community
 – E.g. the “Linux Experience”

• Not designed as a replacement technology for AWS or any other Public Cloud service
Requirements

- **Implement cloud abstractions and semantics**
 - Must be a cloud (inaugurably)

- **Simple**
 - Must be transparent and easy to understand

- **Scalable**
 - Interesting effects are observed at scale (e.g. not an SDK)

- **Extensible**
 - Must promote experimentation

- **Non-invasive**
 - Must not violate local control policies

- **System Portable**
 - Must not mandate a system software stack change

- **Configurable**
 - Must be able to run in the maximal number of settings

- **Easy**
 - To distribute, install, secure, and maintain
The Elements of Cloud Style

• The terms SaaS, PaaS, and IaaS are often viewed as creating a pain in the...

• SaaS (Software as a Service)
 – Applications exporting network-facing user interfaces
 – User transfers data to the cloud

• PaaS (Platform as a Service)
 – Program or scripting runtime exports network-facing interfaces
 – Internal platform services available
 – User transfers program code and data to the cloud

• IaaS (Infrastructure as a Service)
 – Resource provisioning services export network-facing interfaces
 – Internal platform services available
 – User transfers code, data, and environment to the cloud
Why IaaS?

- **Applications are often multi-technology**
 - System “images” for different technologies can be combined
 - Multiple language technologies at different revision levels

- **Legacy support**
 - System images that mimic bare metal deployments can be used
 - Legacies are archived with the environment necessary to run them

- **Transparency**
 - Debugging and performance tuning can go down to the hypervisor

- **QoS containers**
 - QoS is implemented in the infrastructure today => familiar

- **Anti-lock in**
 - If clouds fail, a return path to bare metal is available
Why not IaaS?

- **Self-service pushes system administration tasks to the end-user**
 - Users must understand dynamic resource provisioning
- **QoS hard to optimize at a fine-grained level**
 - A machine is a pretty big QoS bundle
- **Heterogeneity is powerful but hard to manage**
 - Multi-technology development and maintenance is a tough software engineering problem
- **Tenancy density and cloud platform optimization**
 - Less optimization potential at the VM level
Three Research Questions for IaaS

• *How can a cloud resolve the tension between elasticity and specialization?*
• *What is the best development model for hybrid clouds?*
• *How should cloud software be organized within an application?*
Elasticity and Specialization

- **Elasticity** measures the ability of the cloud to map a single user request to different resources.
 - AWS VM can be implemented on a wide variety of infrastructure configurations
 - Simple device model is necessary for OS elasticity

- **Most data centers use specialization to encode “process”**
 - Technology lifecycle
 - User priority
 - Workload priority
 - QoS

- **The more elastic, the less specialized, but the less specialized, the less customized**
Hybrid Clouds

• **Public Cloud**
 – Flat ID Management system and “limitless” scale
 – “roll forward” development
 • Craft a new VM when a run time exception occurs
 • Garbage collect asynchronously

• **Private Cloud**
 – Complex access controls and limited resources/quotas
 – Resource management throughout the stack is critical

• *How can one application live comfortably in both worlds?*
• **Software stacks are losing their “polarity” in clouds**
 – File system on top of NoSQL on top of Put/Get on top of File system on top of…
 – “The Stack is Lost.”

• **New Model: The Service Ensemble**
 – Applications are composed of service graphs not layered stacks

• **What software engineering principles make sense?**
 – Communication is asynchronous
 – Failures are common
 – Whole “machines” can be composed dynamically
Three Questions we have Answered

• *How is Cloud Computing Different from other Approaches?*
• *Why use a private cloud?*
• *Can the “cloudification” of applications be automated?*
It is and It isn’t

- **Cloud:** Elastic eCommerce-style service venue for resource access and automatic configuration
- **Not Cloud:**
 - Data Center Virtualization
 - synchronous
 - Not user scalable
 - Grid
 - Policy federated
 - Inelastic
 - One user, many resources
 - Peer2Peer
 - Lack of administratable abstractions
Why Private Clouds?

- **Technology Lifecycle Independence**
 - Lost of OS, Communication, Hardware, Data, Virtualization in the data center
 - One platform to remain stable as these technologies age and roll forward

- **Separation of support concerns**
 - “Below” the cloud platform managed by administrators
 - “Above” the cloud platform managed by users
 - Infrastructure support externalized toward the users

- **On-boarding Ecosystem**
 - Isolation properties imply the “Linux Distro of the Future.”
“Cloudification” of Applications

• **Step 1: Configuration must be discovered**
 – Metadata service
 – Templating

• **Step 2: SLA is in the abstraction and not in the configuration**
 – Examples:
 • Network interface and not IP address carries QoS
 • Block device and not the specific volume carries the DB QoS

• **It is not, at present, possible to map arbitrary Data Center semantics onto an elastic cloud model**
 – Requires some human intervention
The Case for Open Source

- Linux is the operating system platform of choice for machines because...
 - Hardware portable
 - Separates software lifecycle from hardware lifecycle
 - Prevents lock-in
 - Vast ecosystem of software
 - Linux distros provide QA (free or paid)
 - Transparent
 - Possible to own the source code for everything
 - Fast to remediate
 - Open source web community is often faster than paid support
 - Cost effective
 - Possible to mix free and paid offerings fluidly
OSS and The Next Data Center

- If…
 - the most mature eCommerce technologies are open source
- And…
 - Enterprise IT prefers open source platforms for deployment at scale
- And…
 - Private Clouds are the next platform for IT
- Then…
 - The On-premise Private Cloud will be built from Open Source
Happening Already?
Thanks!

• Thanks to our original research sponsors…

[Logos of UCSB, VGrADS, NSF]

• …and to our new commercial friends

[Logos of Benchmark Capital, NEA, BV Capital]

www.eucalyptus.com
805-845-8000
rich@eucalyptus.com