
Query Planning with Limited Source Capabilities

(Extended Version)

Chen Li
Department of Computer Science

Stanford University
chenli@cs.stanford.edu

Edward Y. Chang
Electrical & Computer Engineering

University of California
echang@ece.ucsb.edu

Abstract

In information-integration systems, sources may have diverse and limited query capabilities.
In this paper we show that because sources have restrictions on retrieving their information,
sources not mentioned in a query can contribute to the query result, since they can provide
useful bindings. In some cases we can access sources repeatedly to retrieve bindings to answer a
query, and query planning thus becomes considerably more challenging. We �nd all the obtain-
able answers to a query by translating the query and source descriptions to a simple recursive
Datalog program, and evaluating the program on the source relations. This program often ac-
cesses sources that are not in the query. Some of these accesses are essential, as they provide
bindings that let us query sources, which we could not do otherwise. However, some of these
accesses can be proven not to add anything to the query's answer. We show in which cases
these o�-query accesses are useless, and prove that in these cases we can compute the complete
answer to the query by using only the sources in the query. In the cases where o�-query accesses
are necessary, we propose an algorithm for �nding all the useful sources for a query. We thus
solve the optimization problem of eliminating the unnecessary source accesses, and optimize the
program to answer the query.

Keywords: information-integration systems, limited source capabilities, Datalog programs.

1 Introduction

The rapid growth of the Internet is giving us access to an unprecedented number of heterogeneous

information sources. Many information-integration systems (e.g., TSIMMIS [CGMH+94], the Infor-

mation Manifold [LRO96], Garlic [RS97], Infomaster [GKD97], Disco [TRV98], Tukwila [IFF+99],

and InfoSleuth [JBB+97]) have been proposed to support seamless access to these heterogeneous

data sources. To perform queries on these sources, many studies [Dus97, LMSS95, Qia96, RSU95]

construct answers to queries using views. These approaches are closely related to query-containment

algorithms for conjunctive queries and for Datalog programs [Ull97].

In heterogeneous environments, especially in the context of World Wide Web, sources may have

diverse and limited query capabilities. For example, many Web bookstores like amazon.com [Ama]

and barnesandnoble.com [Bar] provide some search forms. A user �lls out a form by specifying

the values of some attributes, e.g., book title, author name, publisher, ISBN, so that the source

can return the books satisfying the query conditions. These sources do not accept queries such

as \return the information about all the books you know about." There are many reasons for

1

the source restrictions, including the concerns of e�ciency and security, and the limitations of the

interfaces supplied by the sources.

In this paper, we consider a practical information-integration problem: querying sources with

limited capabilities. We �rst show that because sources have restrictions on retrieving their infor-

mation, sources not directly mentioned in a query can contribute to the query result, as shown by

the following example.

EXAMPLE 1.1 Suppose that we want to compare the average prices of the books sold by

amazon.com and barnesandnoble.com. Since both sources require each source query to specify

at least one value of ISBN, author, or title, we cannot retrieve all their information about books.

On the other hand, although we may have some known book information such as some authors, book

titles, and ISBNs, the available information may not be enough to sample the two sources. How-

ever, assume that we have the access to the source prenticehall.com. We can retrieve from this

source the authors of books published by Prentice Hall, and use these authors to query amazon.com

and barnesandnoble.com. After retrieving the books, we can compare the average prices of the

two sources.1 2

Example 1.1 suggests that we can use the source prenticehall.com to retrieve some bindings

for the author domain, and use the bindings to answer the query, although this source is not

mentioned directly in the query. In some cases, as shown by the motivating example in Section 2,

we can access sources repeatedly to obtain bindings to compute more results to a query. In Section 3

we propose a framework of query planning in integration systems with source restrictions. In the

framework, source descriptions and a query are translated into a Datalog program, and we compute

the maximal answer to the query by evaluating the program on the source relations. Datalog is

used in the query planning since the planning process for a query can be recursive, although the

query itself is not.

Being able to obtain the maximal results is desirable. However, the challenge is to return the

results with the minimum cost. In other words, we do not want to involve all sources blindly during

the plan-generation process. In Section 4 we show that in some cases a query does not need any

bindings from o�-query sources. In these cases we prove that the complete answer to the query

can be computed by using only the sources in the query. In the cases where it is necessary to

access o�-query sources, we show in Section 5 that not all the sources that contribute bindings

to the query are really necessary. We thus want to include judiciously only those sources that

provide some values at a place where they are needed. We develop an algorithm for �nding all

the useful sources for a query. We solve the optimization problem of eliminating the unnecessary

source accesses, and optimize the program to answer the query (Section 6).

We discuss in Section 7 how to explore other possibilities of obtaining bindings, e.g., by using

cached data and domain knowledge. In the cases where a user may be interested in a partial answer

to a query, we do not need to compute the maximal answer, which may be expensive to retrieve.

We discuss how to compute a partial answer to a query, and the tradeo� between the number of

results and the cost of an execution plan.

1We use this example to illustrate the idea of accessing sources not in a query to obtain bindings. If we consider
the possibility that bookstores and publishers may have deals, a better strategy would be: use the authors from
prenticehall.com to retrieve book titles from the two bookstore sources, then use these titles to retrieve more
authors. After several iterations, we average the prices of the books that are not published by Prentice Hall.

2

In this study we focus on a class of connection queries. A connection query is a natural join

of distinct source views with the necessary selection and projection. (The details are described in

Section 2.) Here we are taking the following universal-relation-like assumption [Ull89]: di�erent

attributes that share the same name in di�erent views have the same meaning. However, universal-

relation study did not consider restrictions of retrieving information from relations. In addition,

as we will see in Section 2.2, a connection query can be generated in general cases, where our

techniques are applicable.

Here is a summary of the contributions of this study:

1. We show that in information-integration systems, sources not in a query can contribute to

the query result because of source restrictions. In some cases, we can obtain bindings by

accessing sources repeatedly to answer a query, thus query planning in the presence of source

restrictions becomes considerably more challenging.

2. We propose a query-planning framework, in which source descriptions and a query are trans-

lated into a Datalog program. We evaluate the program on the source relations to compute

the maximal obtainable answer to the query.

3. We show how to decide whether accessing o�-query sources is necessary. In the cases where

it is not necessary, we prove that the complete answer to the query can be computed by using

only the sources in the query.

4. In the cases where we need other sources to contribute bindings, we propose an algorithm

for �nding the useful sources and constructing an e�cient Datalog program to compute the

answer.

1.1 Related Work

There are two approaches to information integration [Dus97]:

1. The source-centric approach: Both user queries and source views are in terms of some global

views. For each user query, the integration system needs to plan how to answer the query

using source views. The Information Manifold and Infomaster follow this approach.

2. The query-centric approach: User queries are in terms of views synthesized at a mediator

[Wie92] that are de�ned on source views. After view expansion [LYV+98] at the mediator,

the query is translated to a logical plan that is composed of the source views. TSIMMIS

follows this approach, and we follow this approach in this paper.

[Ull97] is a good survey on the di�erences between these two approaches. Many studies have

been done by taking the source-centric approach. For example, Qian [Qia96] discussed how to use

query folding to rewrite queries using views without considering limited source capabilities. Ra-

jaraman, Sagiv, and Ullman [RSU95] proposed algorithms for answering queries using views with

binding patterns. Duschka and Levy [DL97] considered source restrictions by translating source

binding patterns into rules in a Datalog program, assuming that all attributes share the same do-

main. The paper did not discuss how to trim useless sources, thus it may generate programs that

are not e�cient to evaluate. Other studies [ASU79a, ASU79b, CM77, CKPS95, SY80] discussed

3

conjunctive-query rewriting and optimization without considering the restrictions of retrieving in-

formation from relations.

By taking the query-centric approach, [LYV+98] showed how to generate an executable plan

of a query based on source restrictions. If the complete answer to the query cannot be retrieved,

[LYV+98] would not answer the query, but would claim that an executable plan does not exist.

In this case, our approach can still compute a partial answer. Although we take the query-centric

approach in this study, our techniques for �nding useful sources are also applicable to the source-

centric approach, since when source views are the same as global predicates, the query-centric

approach in [DL97] and our framework generate equivalent Datalog programs. Other related studies

include how to optimize conjunctive queries with source restrictions [FLMS99, YLUGM99], how to

describe source capabilities using a powerful language [VP97], how to compute mediator capabilities

given source capabilities [YLGMU99], and how to convert data at mediators [CDSS98].

2 Preliminaries

In this section, we present our motivating example and introduce the notation used throughout the

paper.

EXAMPLE 2.1 Assume that we are building a system that integrates the information from four

sources of musical CDs, as shown in Table 1. Sources s1 and s2 have information about CDs and

their songs; sources s3 and s4 have information about CDs, their artists, and their prices. To

simplify the notation, we use attribute Song for song title and attribute Cd for CD title. The

\Must Bind" column in the table indicates the attributes that must be speci�ed at a source. For

instance, every query sent to s2 must provide a CD title. In other words, without the information

about CD titles, source s2 cannot be queried to produce answers.

Source Contents Must Bind

s1 v1(Song; Cd) Song

s2 v2(Song; Cd) Cd

s3 v3(Cd; Artist; Price) Cd

s4 v4(Cd; Artist; Price) Artist

Table 1: Four sources of musical CDs

Source-view schemas can be represented by a hypergraph [Ull89], in which each node is an

attribute and each hyperedge is a source view. The hypergraph of the four source views is shown in

Figure 1, which also shows the tuples at each source. To simply the presentation, we use symbols

ti, cj , and ak to represent a song title, CD, or artist, respectively. For instance, the source view

v1(Song; Cd) contains two tuples: <t1; c1> and <t2; c3>. The �gure also shows the adornments of

the attributes in each source view: b means that the attribute must be bound, f means that the

attribute can be free.

Suppose a user wants to �nd the prices of the CDs that contain a song titled t1. The answer can

be obtained by taking the union of the following four joins: v11v3, v11v4, v21v3, and v21v4, and

performing a selection Song = t1 and then a projection onto the attribute Price. There are four

CDs containing the song: <c1; a1; $15>, <c1; a1; $13>, <c5; a5; $11>, and <c4; a3; $10>. Therefore,

without considering the source restrictions, the answer is f$15; $13; $11; $10g. However, due to the

4

CdSong Artist Price

v2(Song; Cd)
f b

v4(Cd;Artist; Price)
f b f

v3(Cd;Artist; Price)
b f f

v1(Song; Cd)
b f

< t1; c4 >
< t1; c5 >
< t2; c2 >

< t1; c1 >
< t2; c3 >

< c1; a1; $15 >
< c3; a3; $14 >

< c1; a1; $13 >
< c2; a1; $12 >
< c5; a5; $11 >
< c4; a3; $10 >

Figure 1: The hypergraph representation

limited source capabilities, only the $15 can be computed if we process each join in the query at

one time (as in [HKWY97, LRO96, LYV+98]). The reason is that, v11v3 yields the $15 in the

answer; v11v4 cannot be executed by using only v1 and v4, since v4 requires that attribute Artist

be speci�ed, but we cannot bind this attribute using only these two source views. Similarly, neither

of the other two joins can be executed. As a consequence, the user misses the cheaper source for

CD c1 and entirely misses CDs c4 and c5. 2

In this study, we �rst propose a framework that can retrieve more results from sources with bind-

ing restrictions. Instead of considering each join individually, our framework involves other sources

not in a join to produce more bindings to answer the join. For instance, when joining v1 and v4, we

also consider the information provided by v2 and v3. As we will see in Section 3.3, our framework

can �nd two additional CDs containing the song titled t1: <c1; a1; $13> and <c4; a3; $10>, and

return two additional tuples: $13 and $10. If the user wants to �nd the cheapest CD, our approach

can save $5 for the user!

2.1 Source Views

Now we give the notation used throughout the paper. Let an integration system have n sources,

say, s1; : : : ; sn. Assume that each source si provides its data in the form of a relational view vi. If

sources have other data models, we can use wrappers [HGMN+97] to create the simple relational

view of data. In the case where one source has multiple relations, we can represent this source with

multiple logical sources each of which exports only one relational view.

We assume that di�erences in ontologies, vocabularies, and formats used by sources have been

resolved. In particular, if two sources share an attribute name, we assume that the attributes

are equivalent (i.e., wrappers take care of any di�erences). Related research [MW97, PGMW95]

suggests ways to deal with ontology and format di�erences. We assume that the schemas of the

source views are de�ned on a global set of attributes. Each view schema is a list of global attributes,

and di�erent source views may share the same schema. For instance, in Example 2.1, we have four

global attributes: Song, Title, Artist, and Price; source views v1 and v2 share the same schema

(Song; Cd).

The query capability of each source is described as a template with a binding pattern [Ull89]

representing the possible query forms that the source can accept. The adornments for the attributes

in the binding pattern include b (the attribute must be bound) and f (the attribute can be free).

For simplicity of exposition, we assume that each view has one template. We use vi to stand for

both the source view and its adorned template, and we believe the distinction should be clear in

5

context. Let A(vi) denote the attributes in a source view vi, and let B(vi) and F(vi) be the set of

bound and free attributes in the adorned template of vi, respectively. For instance, in Example 2.1,

B(v1) = fSongg, F(v1) = fCdg, and A(v1) = fSong; Cdg. Let V denote the source views with

their adornments, A(V) be the attributes in V , and R be an instance of the source relations of V.

2.2 Queries

A user query is represented in the form

Q = <I; O; C>

where I is a list of input assignments of the form attribute = constant, O is a list of output

attributes whose values the user is interested in, and C is a list of connections. Each connection is

a set of source views that connect the input attributes and the output attributes. As we will see

shortly, we interprate a connection as the natural join of the views in the connection. The following

are some possible ways in which C could be generated:

1. It is generated by query expansion at a mediator, as in TSIMMIS [LYV+98].

2. It is generated by a minimal-connection algorithm, as in universal-relation systems [Ull89].

3. It is speci�ed explicitly by the user.

For instance, the query in Example 2.1 can be represented as

Q = <fSong = t1g; fPriceg; fT1; T2; T3; T4g>

in which the four connections are: T1 = fv1; v3g, T2 = fv1; v4g, T3 = fv2; v3g, and T4 = fv2; v4g.

Note that there can be multiple input attributes and multiple output attributes in a query. Let

I(Q) and O(Q) respectively denote the input attributes and the output attributes of query Q.

I(Q) and O(Q) do not overlap because the user does not need to choose an attribute as an output

attribute if its value is known. Let A(T) be all the attributes in a connection T .

2.3 The Answer to a Query

Suppose that T is a connection in query Q. For those tuples in the natural join of the relations

in T that satisfy the input constraints in Q, their projections onto the output attributes are the

complete answer for connection T . The union of the answers for all the connections in Q is the

complete answer to query Q. Due to the limited source capabilities, the obtainable answer to a

query is the maximal answer to the query that can be retrieved from the sources, using only the

initial bindings in the query and the source relations R.

The complete answer to a user query could be retrieved if the sources did not have limited query

capabilities. However, we may get only a partial answer to the query due to the source restrictions.

For instance, in Example 2.1, the complete answer to the query is f$15; $13; $11; $10g, while as we

will see in Section 3.3, the obtainable answer is f$15; $13; $10g. In some cases, we cannot retrieve

any answer to a query, even though the complete answer to the query is not empty. The following

example is a case in point.

6

Figure 2: The source views in Example 2.2

EXAMPLE 2.2 Consider the two source views v1(A;B) and v2(B;C) in Figure 2. Suppose

that v1 has one tuple <a0; b0> and v2 has one tuple <b0; c0>. Assume that a user query is

Q = <fA = a0g; fCg; fTg>, in which the only connection T = fv1; v2g. The complete answer to

Q is fc0g, but the obtainable answer is empty, since we cannot obtain any binding of B. 2

Given source descriptions and a query, if the complete answer to the query cannot be computed,

our framework collects as much information as possible to answer the query. In the rest of this

paper, unless otherwise speci�ed, the term the answer for a connectionmeans the obtainable answer

for the connection, and the answer to a query is the union of the obtainable answers for all the

connections in the query.

3 Query Planning

In this section, we propose a framework of query planning in the presence of source restrictions. In

the framework source descriptions and a query are translated into a Datalog program, which can

be evaluated on source relations to answer the query. We also discuss the e�ciency of the program.

3.1 Constructing the Program �(Q;V)

Given source descriptions V and a query Q, we translate them into a Datalog program, denoted

�(Q;V), that incorporates the source restrictions and the query, and thus can be evaluated on the

source relations. For instance, Figure 3 shows the Datalog program �(Q;V) for the query and

the source views in Example 2.1. We use names beginning with lower case letters for constants

and predicate names, and names beginning with upper case letters for variables. Note that this

program is recursive, though query Q is not.

r1: ans(P) :- bv1(t1; C); bv3(C; A; P) r9: bv3(C; A; P) :- cd(C); v3(C; A; P)
r2: ans(P) :- bv1(t1; C); bv4(C; A; P) r10: price(P) :- cd(C); v3(C; A; P)
r3: ans(P) :- bv2(t1; C); bv3(C; A; P) r11: artist(A) :- cd(C); v3(C; A; P)
r4: ans(P) :- bv2(t1; C); bv4(C; A; P) r12: bv4(C; A; P) :- artist(A); v4(C; A; P)
r5: bv1(S; C) :- song(S); v1(S; C) r13: cd(C) :- artist(A); v4(C; A; P)
r6: cd(C) :- song(S); v1(S; C) r14: price(P) :- artist(A); v4(C; A; P)
r7: bv2(S; C) :- cd(C); v2(S; C) r15: song(t1) :-

r8: song(S) :- cd(C); v2(S; C)

Figure 3: The Datalog program �(Q;V) in Example 2.1

Let us look at the details of how the program �(Q;V) is constructed. For each source view

vi, we introduce an EDB predicate ([Ull89]) vi and an IDB predicate bvi (called the �-predicate of

vi). Predicate vi represents all the tuples at source si, and bvi represents the obtainable tuples at si.
Introduce a goal predicate ans to store the answer to the query: the arguments of ans correspond

to the output attributes O(Q) in Q.

7

Let T = fv1; : : : ; vkg be a connection in Q. The following rule is the connection rule of T :

ans(O(Q)) :- cv1(A(v1)); : : : ;cvk(A(vk))

where the arguments in predicate ans are the corresponding attributes in O(Q). For each argument

in bvi, if the corresponding attribute in view vi is an input attribute of Q, this argument is replaced

by the initial value of the attribute in Q. Otherwise, a variable corresponding to the attribute

name is used as an argument in predicate bvi. For instance, in Figure 3, rules r1, r2, r3, and r4 are

the connection rules of the connections T1, T2, T3, and T4, respectively.

Decide the domains of all the attributes in the source views, i.e., group the attributes into sets

while the attributes in each set share the same domain. Introduce a unary domain predicate for

each domain to represent all its possible values that can be deduced.2 In Figure 3, we use the

predicates song, cd, artist, and price to represent the domains of song titles, CD titles, artists, and

prices, respectively.

Suppose that source view vi has m attributes, say A1; : : : ; Am. Assume the adornment of vi
says that the arguments in positions 1; : : : ; p need to be bound, and the arguments in positions

p+ 1; : : : ; m can be free. The following rule is the �-rule of vi:

cvi(A1; : : : ; Am) :- domA1(A1); : : : ; domAp(Ap); vi(A1; : : : ; Am)

in which each domAj (j = 1; : : : ; p) is the domain predicate for attribute Aj . For k = p + 1; : : : ; l,

the following rule is a domain rule of vi:

domAk(Ak) :- domA1(A1); : : : ; domAp(Ap); vi(A1; : : : ; Am)

For instance, rule r9 in Figure 3 is the �-rule of v3; rules r10 and r11 are the domain rules of v3.

Assume that Ai = ai is in the assignment list I of Q, the following rule is the fact rule of

attribute Ai:

domAi(ai) :-

For instance, rule r15 in Figure 3 is a fact rule of attribute Song, since we know from the query

that t1 is a song title.

The program �(Q;V) is constructed in three steps:

1. Write the connection rule for each connection in Q.

2. Write the �-rule and the domain rules for each source view in V .

3. Write the fact rule for each input attribute in Q.

In Figure 3, rules r1, r2, r3, and r4 are the connection rules of T1, T2, T3, and T4, respectively.

Rule r5 is the �-rule of v1, and r6 is the domain rule of v1. Similarly, rules r7 to r14 are the

�-rules and the domain rules of the other three source views. Finally, r15 is the fact rule of the

input attribute Song. Recall that the source views in each connection link the input attributes and

the output attributes in the query. Based on how program �(Q;V) is constructed, we have the

following proposition:

2The idea of domain predicates is borrowed from [DL97]. However, in our framework, di�erent domains have
di�erent domain predicates, while in [DL97] only one domain predicate was used for all attributes.

8

Proposition 3.1 Given source descriptions V and a query Q, the program �(Q;V) is a safe

([Ull89]) Datalog program. 2

3.2 Binding Assumptions

During the construction of the program �(Q;V), we make the following important assumptions:

1. Each binding for an attribute must be from the domain of this attribute;

2. If a source view requires a value, say, a string, as its �rst argument, we will not allow the

strategy of trying all the possible strings to \test" the source;

3. Rather we assume that any binding is either obtained from the user query, or from a tuple

returned by another source query.

We use Example 2.1 to explain these assumptions in details. The �rst assumption says that we

would not use an artist name as a binding for attribute Song. Notice that if two attributes have

the same type, they can still be from two di�erent domains. For example, the attributes Song and

Cd share the same string type, but they have two di�erent domains; the domain of Song is all song

titles, and the domain of Cd is all CD titles.

Source view v3(Cd;Artist; Price) requires that a source query to source s3 give a CD title. The

second assumption says that we would not allow the following naive \strategy": generate all possible

strings to test whether s3 has CDs with these strings as titles. This approach is too ine�cient to

be practical, since there will be an in�nite number of strings that need to be generated to test s3.

The third assumption says that each bound value of an attribute A must either be derived from

the user query, or be a value of A in a tuple returned by another source query. For instance, if c1
is a CD title returned from source s1, and Cd = c2 is an initial binding in a query, then we know

that c1 and c2 are two CD titles, and they can be used to query source s3. In Section 7 we will

discuss other possibilities of obtaining bindings.

3.3 Evaluating the Program �(Q;V)

We evaluate the Datalog program �(Q;V) on the source relations R to compute the facts for pred-

icate ans. Note that the vi's are the only EDB predicates in �(Q;V). However, in an integration

system, we do not know the tuples at each source before sending source queries. Now we show how

to evaluate �(Q;V) to answer the query.

To evaluate the domain rules and the �-rule of a source view vi, predicate vi is \populated" by

source queries to si. Suppose that the right-hand side of its domain rules and its �-rule is:

domA1(A1); : : : ; domAp(Ap); vi(A1; : : : ; Am)

Once we know that (a1; : : : ; ap) are the values of the domAj 's (j = 1; : : : ; p), respectively, we

can send a query vi(a1; : : : ; ap; Ap+1; : : : ; Am) to source si. This source query is guaranteed to be

executable, since it satis�es the binding requirements of vi. The results of this source query add

more tuples to the predicate bvi (for the �-rule) and the predicates domAj 's (for the domain rules).

9

After the evaluation of the program terminates, the facts for the domain predicates include all

the obtainable values of the corresponding domains. Similarly, the �-predicate facts are all the

obtainable tuples at the sources. Since �(Q;V) includes the connection rules for the connections

in query Q, the facts for the goal predicate ans form the maximum answer to Q. Thus, we have

proved the following theorem:

Theorem 3.1 Given source descriptions V and a query Q, for any source relations R of V, if we

evaluate �(Q;V) on R, the set of facts for the predicate ans is the obtainable answer to Q. 2

Order Source Query Returned Tuple(s) New Bindings(s)

1 v1(t1; C) <t1; c1> Cd = c1
2 v3(c1; A; P) <c1; a1; $15> Artist = a1
3 v4(C; a1; P) <c1; a1; $13>,<c2; a1; $12> Cd = c2
4 v2(S; c2) <t2; c2> Song = t2
5 v1(t2; C) <t2; c3> Cd = c3
6 v3(c3; A; P) <c3; a3; $14> Artist = a3
7 v4(C; a3; P) <c4; a3; $10> Cd = c4
8 v2(S; c4) <t1; c4>

Table 2: Evaluating the program in Figure 3

IDBs Results IDBs Results

bv1 <t1; c1><t2; c3> song t1; t2
bv2 <t1; c4><t2; c2> cd c1; c2; c3; c4
bv3 <c1; a1; $15><c3; a3; $14> artist a1; a3
bv4 <c1; a1; $13><c2; a1; $12><c4; a3; $10> price $15; $14; $13; $12;$10
ans $15; $13; $10

Table 3: Results

Table 2 shows how to evaluate the program in Figure 3 to compute the answer to the query in

Example 2.1, and Table 3 shows the results. As expected, the program computes all the possible

values of song titles, CD titles, artists, and prices that can be retrieved from the four sources and

the query, as well as all the obtainable tuples at the sources. The set of ans facts is the answer to

the query. Therefore, our approach returns two more tuples, $13 and $10, than the approach in

Section 2. Note that we cannot retrieve the tuple <t1; c5> of v2 and the tuple <c5; a5; $11> of v4,

since we cannot retrieve the value a5 for attribute Artist, no matter what legal source queries we

execute.

3.4 E�ciency of the Program

The program �(Q;V) is constructed in a brute-force way, and it needs to be optimized. In particu-

lar, for each connection T in the query, the program may access views that are not in T . However,

some of these o�-connection accesses do not add anything to the query's answer. In the next

two sections we discuss how to decide whether accessing o�-connection views is necessary, and if

necessary, what source views should be accessed.

10

4 Accessing O�-connection Views

In this section we discuss how to decide whether accessing o�-connection views is necessary to

compute the answer for a connection. In the case where it is necessary, we prove that the complete

answer for the connection can be computed by using only the sources in the connection.

4.1 An Example

The following example shows that accessing all the views not mentioned in a connection is not

always necessary to compute the maximal obtainable answer for the connection.

v3(C;D)
b f

v5(E;F)

b f
v1(A;C)

b f

v2(A;B;C)
f f b

f f
v4(C;E)

A D

E F

B

C

Figure 4: Source views in Example 4.1

EXAMPLE 4.1 Consider the �ve source views in Figure 4. Suppose that a user submits a query

Q = <fA = a0g; fDg; fT1; T2g>, which has two connections T1 = fv1; v3g, T2 = fv2; v3g. That is,

the user knows that the value of A is a0, and wants to get the associated D values using v11v3

and v21v3. Assume that di�erent attributes have di�erent domains. The corresponding Datalog

program �(Q;V) is shown in Figure 5. For instance, rule r1 is the connection rule of connection

T1; rules r3 and r4 are the �-rule and the domain rule of source view v1, respectively.

r1: ans(D) :- bv1(a0; C); bv3(C; D) r9: domD(D) :- domC(C); v3(C; D)
r2: ans(D) :- bv2(a0; B; C); bv3(C; D) r10: bv4(C; E) :- v4(C; E)
r3: bv1(A; C) :- domA(A); v1(A; C) r11: domC(C) :- v4(C; E)
r4: domC(C) :- domA(A); v1(A; C) r12: domE(E) :- v4(C; E)
r5: bv2(A; B; C) :- domC(C); v2(A; B; C) r13: bv5(E; F) :- domE(E); v5(E; F)
r6: domA(A) :- domC(C); v2(A; B; C) r14: domF(F) :- domE(E); v5(E; F)
r7: domB(B) :- domC(C); v2(A; B; C) r15: domA(a0) :-

r8: bv3(C; D) :- domC(C); v3(C; D)

Figure 5: The Datalog program �(Q;V) in Example 4.1

Consider connection T1. The program �(Q;V) accesses the three views that are not in T1

during the evaluation of the program. However, these o�-connection accesses do not contribute to

T1's results. The reason is that, suppose t = <d> is a tuple in the complete answer for T1, and

t comes from tuple t1 = <a0; c> of v1 and tuple t3 = <c; d> of v3. By sending a query v1(a0; C)

to s1 we can retrieve the tuple t1. With the new binding C = c we can send a query v3(c;D) to

s3, and retrieve tuple t3. Therefore, by using only the views in connection T1 we can compute its

complete answer.

11

Consider connection T2. Since we cannot get any binding for the attribute C by using only the

two views in T2, we need v2 and v4 to contribute more C bindings. Thus these two o�-connection

views are useful to T2. On the other hand, v5(E; F) does not contribute to T2's results, because

though source queries to s5 bind more E and F values, these new bindings do not help obtain more

answers for T2. 2

In general, given a connection T in a query Q, we need to decide whether accessing the views

outside T is necessary. Before giving the solution, we �rst introduce some notation.

4.2 Forward-closure

De�nition 4.1 (forward-closure) Given a set of source views W � V and a set of attributes

X � A(V), the forward-closure of X given W , denoted f-closure(X;W), is a set of the source views

in W such that, starting from the attributes in X as the initial bindings, the binding requirements

of these source views are satis�ed by using only the source views in W . 2

In other words, f-closure(X;W) can be computed as follows: At the beginning, only the at-

tributes in X are bound, and f-closure(X;W) is empty. At each step, for each source view

v 2 W � f-closure(X;W), check whether B(v), the bound attributes of v, is a subset of the bound

attributes so far. If so, add v to f-closure(X;W), and each attribute in F(v), the free attributes of

v, becomes bound. Repeat this process until no more source views can be added to f-closure(X;W).

Let A(f-closure(X;W)) denote all the attributes of the source views in f-closure(X;W). Therefore,

A(f-closure(X;W)) includes all the attributes that can be bound eventually by using the source

views in W starting from the initial bindings in X .

EXAMPLE 4.2 In Example 4.1, f-closure(fAg; fv1; v2; v3g) = fv1; v2; v3g, because we can use the

bound attribute A to get tuples of v1 and then bind C, which is the only bound attribute of v2 and

v3. In Example 2.1, f-closure(fSongg; fv1; v4g) = fv1g, and f-closure(fSongg; fv1; v3g) = fv1; v3g.

2

4.3 Independent Connections

A connection T in query Q is independent if

f-closure(I(Q); T) = T

That is, the binding requirements of the source views in the connection can be satis�ed by using

only these source views starting from the initial bindings in I(Q). In other words, if connection

T = fw1; : : : ; wkg is independent, then there exists an executable sequence of all the source views in

connection T : wi1 ; : : : ; wik , such that B(wi1) � I(Q), and for j = 2; : : : ; k, B(wij) � I(Q)[A(wi1) [

: : :[A(wij�1); i.e., the binding requirements of each source view in the sequence can be satis�ed by

the initial bindings in Q and the source views before it. For instance, the connection T1 = fv1; v3g

in Example 4.1 is independent since it has an executable sequence: v1; v3. The following theorem

shows that an independent connection does not require bindings from views outside the connection.

Theorem 4.1 If connection T is independent, then for any source relations R, we can compute

the complete answer for T by using only the source views in T . 2

12

Proof: Suppose that connection T has k source views, and it has an executable sequence v1; : : : ; vk.

Consider each tuple t in the complete answer for T . Assume that tuple t comes from tuples t1; : : : ; tk
of source views v1; : : : ; vk, respectively. Since v1; : : : ; vk is an executable sequence, the binding

requirements of v1 are satis�ed by I(Q), i.e., B(v1) � I(Q). Thus, we can send a source query to

s1 by binding the attributes in B(v1) to their initial values in Q, and retrieve the tuple t1 from v1.

We then use the bound values of I(Q) [F(v1) to send s2 a source query to get tuple t2. Repeat

this process following the executable sequence, until we retrieve all the ti's. Therefore, by using

only the views in T , we can retrieve the tuple t in the complete answer for the connection.

Theorem 4.2 If connection T is not independent, then there exists an instance of the source

relations R, such that some tuples in the complete answer for T cannot be obtained. 2

Proof: If connection T is not independent, i.e., f-closure(I(Q); T) 6= T , we construct an instance of

source relations R, such that a tuple in the complete answer for the connection cannot be obtained.

Let A(T) = fA1; : : : ; Ang be the set of attributes in T . Let tuple t = (a1; : : : ; an), where ai is a

distinct value for attribute Ai. If Ai is in I(Q), then its value in t, ai, is its initial value in Q. Each

view vi in T has only one tuple ti, which is the projection of t onto the attributes A(vi). Other

sources are empty. Then the projection of t onto O(Q) is in the complete answer for T . However,

since f-closure(I(Q); T) 6= T and all other sources are empty, we cannot get the necessary bindings

to retrieve the tuples ti's, and we cannot compute any answer for connection T .

Theorem 4.1 suggests that if a connection T is independent, we can compute the complete answer

for T by using only the source views in T . In addition, Theorem 4.2 suggests that if connection

T is not independent, there can be an instance of the source relations, such that some tuples in

the complete answer for the connection cannot be retrieved. Many related studies (e.g., [FLMS99,

LYV+98]) consider the case where a connection in a query is independent. If the connection is

not independent, their algorithms give up attempting to answer the connection. However, our

framework can still compute a partial answer for the connection by accessing o�-connection views.

In the next section, we will discuss how to decide what source views need to be accessed.

5 Finding the Relevant Source Views of a Connection

If a connection T is not independent, we may get more bindings by accessing views not in T .

Some of the o�-connection accesses are actually essential, as they provide bindings that let us ask

queries of the views in the connection, which we could not do otherwise. However, some of these

o�-connection accesses can be proven not to add anything to the query's results. In this section,

we discuss how to eliminate the unnecessary view accesses. We �rst give the formal de�nition of

relevant source views of a connection, and then propose an algorithm for �nding all the relevant

source views of a connection. To simplify the presentation, in the rest of the paper we assume that

di�erent attributes are from di�erent domains.

5.1 Relevant Source Views of a Connection

Given source descriptions V , a query Q, and a connection T in Q, a source view v 2 V is a relevant

source view of connection T if for some source relations R, removing v from V can change the

13

obtainable answer for connection T ; otherwise, v is irrelevant to connection T . In other words, a

source view v is relevant to a connection T if we can miss some answers for T if we do not use v.

Note that whether a source view is relevant to a connection does not depend on other connections

in the query. In Example 4.1, the relevant source views of connection T1 are the two views in T1,

while the relevant source views of connection T2 are v1, v2, v3, and v4.

Given source descriptions V , a query Q, and a connection T in Q, we need to solve the following

problem: how to �nd all the relevant source views of T? The following example shows the challenge

of this problem: not all the views that contribute bindings to a connection are relevant to the

connection.

v1(A;B;C)
b f f

v4(H;D)
f f

A

C G

B D

H J

FE v2(B;D;E; F)
b b b f

v5(J; E)
f f

v3(C;D;E;G)
b b f f

Figure 6: The source views in Example 5.1

EXAMPLE 5.1 Consider the �ve source views in Figure 6. Suppose that a user submits a query

Q = <fA = ag; fF;Gg; fTg>, which has one connection T = fv1; v2; v3g. That is, the user knows

the value of A is a, and wants to get the associatedD and E values using v11v21v3. The connection

T is not independent, because we cannot bind the attributes D and E by using only the views in

T starting from the initial binding in Q. We need other source views to bind D and E, so that we

can query s2 and s3 to retrieve tuples. Thus, v4 and v5 may be useful since they provide bindings

of D and E.

However, though view v5 can bind attribute E, it is not relevant to connection T . To illustrate

the reason, we prove that using only v1, v2, v3, and v4, we can compute all the obtainable answer for

T . Suppose tuple t = <f; g> is in the obtainable answer, and t comes from tuple t1 = <a; b; c> of

v1, tuple t2 = <b; d; e; f> of v2, and tuple t3 = <c; d; e; g> of v3. Since the initial value of A in the

query is a, we can send a source query v1(a; B; C) to retrieve tuple t1 from v1. Because attribute

D is not in I(Q), and only v4 (with the binding pattern ff) takes D as a free attribute, then the

value d of D must be derived from the result of a source query to s4, which includes a tuple whose

D value is d. With C = c and D = d, we can retrieve tuple t3 from v3 by sending a source query

v3(c; d; E;G), and then retrieve tuple t2 from v2 by sending a source query v2(b; d; e; F). Therefore,

without using v5, we can get the tuple t in the obtainable answer for connection T . The proof also

shows that without using v4, we cannot get any answer for T . 2

As there may be many source views with di�erent schemas and binding patterns, it becomes

challenging to decide what source views can really contribute to the results of a connection. Before

giving the algorithm for �nding all the relevant source views of a connection, we require a series of

de�nitions.

14

5.2 Queryable Source Views

A source view v is queryable if it is in f-closure(I(Q);V). All the queryable source views are those

that we may eventually query, starting from the initial bindings in I(Q), and perhaps using several

preliminary queries to other sources in order to get the bindings we need for these source views.

Let Vq denote all the queryable source views in V , and A(Vq) be all the attributes in Vq.

Lemma 5.1 If attribute A is in A(Vq), then either A is in I(Q), or there exists an executable

sequence of source views, such that A is a free attribute of the tail in the sequence. 2

Proof: If attribute A is not in I(Q), since A is in A(Vq), there must exist a source view v

in Vq, such that A is in F(v). Based on how Vq = f-closure(I(Q);V) is computed, there must

exist an executable sequence of source views in which v is the tail. This sequence can be obtained

by backtracking from v following the reverse order in which these source views are added into

f-closure(I(Q);V).

We cannot get any tuples from a nonqueryable source view, no matter what the source relations

are. If a connection contains a nonqueryable source view, we cannot get any answer for this

connection. Thus we need to consider only the queryable connections in Q, i.e., the connections

that do not have any nonqueryable source view. Clearly an independent connection is also a

queryable connection, but not vice versa. For instance, in Example 4.1, connection T2 is queryable,

since both v2 and v3 are queryable source views, but T2 is not independent.

5.3 Kernel, BF-chain, and Backward-closure

De�nition 5.1 (kernel) Assume T is a queryable connection in query Q. A set of attributes

K � A(T) is a kernel of T if

f-closure(K [I(Q); T) = T

and by removing any attribute A from K, f-closure((K� fAg)[I(Q); T) 6= T . 2

Intuitively, a kernel K of connection T is a minimal set of attributes in A(T) such that, if the

attributes in K have been bound, together with the initial bindings in I(Q), we can bind all the

attributes A(T) by using only the source views in T . In Example 4.1, fCg is a kernel of connection

T2, because f-closure(fCg[I(Q); T2) = f-closure(fC;Ag; T2) = T2. In Example 5.1, fDg is a kernel

of the connection T , while fD;Eg is not. Since a kernel of a connection must be minimal, it cannot

share any attribute with I(Q).

We can get a kernel of connection T by shrinking the set of attributes X = A(T) � I(Q)

as much as we can while X satis�es: f-closure(X [I(Q); T) = T . When X cannot be smaller,

it will be a kernel of T . An independent connection has only one kernel: the empty set �. A

nonindependent connection must have only nonempty kernels. It may have multiple kernels, as

shown by the following example.

EXAMPLE 5.2 Figure 7 shows a hypergraph of four source views. The binding patterns for

v1(A;B;C), v2(C;D;E), and v3(E; F;A) are all bff , and the binding pattern for v4(E;G) is ff .

Assume a user query is Q = <fB = b0g; fA;C;Eg; fTg>, in which the only connection is T =

15

A

B

C D E

F

G

v1(A,B,C)
v3(E,F,A)

v4(E,G)v2(C,D,E)

 b f f
 b f f

 f fb f f

Figure 7: Multiple kernels of a connection

fv1; v2; v3g. T has three kernels: fAg, fCg, and fEg. For instance, fAg is a kernel because

f-closure(fAg [I(Q); T) = f-closure(fA;Bg; fv1; v2; v3g) = fv1; v2; v3g = T . 2

De�nition 5.2 (BF-chain) A sequence of queryable source views w1; : : : ; wk (i.e., each wi 2 Vq)

forms a BF-chain (bound-free chain) if for i = 1; : : : ; k� 1, F(wi)\B(wi+1) 6= �. The source views

w1 and wk are the head and the tail of the BF-chain, respectively. 2

In other words, for every two adjacent source views in a BF-chain, the free attributes of the

�rst one overlap with the bound attributes of the second, and thus the �rst source view contributes

bindings to the second one. In Example 4.1, (v4; v2; v1; v3) is a BF-chain, in which v4 is the head

and v3 is the tail.

De�nition 5.3 (backward-closure) Suppose that A is an attribute in A(Vq). The backward-

closure of A, denoted b-closure(A), is the set of queryable source views that can be \backtracked"

from A by following some BF-chain in a reverse order, in which A is a free attribute of the tail in

each BF-chain. 2

More precisely, b-closure(A) can be computed as follows: Start by setting b-closure(A) to those

source views in Vq that take A as a free attribute. For each view v 2 Vq � b-closure(A), if there

is a view w 2 b-closure(A) such that F(v) \ B(w) 6= �, then add v to b-closure(A). Repeat

this process until no more queryable source views can be added to b-closure(A). In Example 4.1,

the backward-closure of attribute C is fv1; v2; v4g. The backward-closure of a set of attributes

X � A(Vq), denoted b-closure(X), is the union of all the backward-closures of the attributes in X ,

i.e., b-closure(X) =
S
A2X b-closure(A).

By the de�nitions of kernel, BF-chain, and backward-closure, we have the following lemmas and

theorem.

Lemma 5.2 If K is a kernel of a queryable connection T and A is an attribute in K, then A is

not in A(f-closure((K�fAg)[I(Q); T)). That is, starting from the attributes of (K�fAg)[I(Q)

as the initial bindings, we cannot bind attribute A by using only the source views in T . 2

Proof: Suppose that attribute A is in K, and A is also in A(f-closure((K�fAg)[I(Q); T)). Then

starting from the attributes of (K�fAg)[I(Q) as the initial bindings, we can bind attribute A by

using only the source views in T . Therefore, we can bind all the attributes in K, and then bind all

16

the attributes in A(T) (since K is a kernel of T). Thus, K � fAg would be a kernel of connection

T . Then K could not be a kernel since it is not minimal.

Lemma 5.3 If A1 and A2 are two attributes, and there is a BF-chain such that A1 is a bound

attribute of the head and A2 is a free attribute of the tail, then b-closure(A1) � b-closure(A2). 2

Proof: Since A2 is a free attribute of the BF-chain tail, we can backtrack from A2 along the BF-

chain until we reach A1 in the head. Thus all the views on the BF-chain are in b-closure(A2). Based

on how b-closure(A2) is computed, all the views in b-closure(A1) are also added into b-closure(A2)

during the computation of b-closure(A2). Therefore, b-closure(A1) � b-closure(A2).

Lemma 5.4 If connection T has two di�erent kernels K1, K2, then b-closure(K1) = b-closure(K2).

2

I(Q)

bound A1

A2

tail

free

head

BF-Chain

K1

K2X(P)

(attributes on

...connection T)

Figure 8: Proof of Lemma 5.4

Proof: The main idea of the proof is shown in Figure 8. Since connection T has two di�erent

kernels, T cannot be independent, and both K1 and K2 are not empty. Since K1 is a kernel of T ,

for each attribute in K1, say A1, by Lemma 5.2, we have A1 62 A(f-closure((K1 � fAg)[I(Q); T)).

We also have f-closure(K1 [I(Q); T) = T , while f-closure((K1 � fA1g)[I(Q); T) 6= T .

A(f-closure((K1 � fA1g)[I(Q); T))

cannot be a subset of K2, because otherwise starting from the attributes of (K1 � fA1g)[I(Q) as

initial bindings and using only the source views in T , we could bind all the attributes in K2, and

then bind all the attributes in T (since K2 is a kernel of T), and K1 � fA1g would be a kernel.

Let A2 be an attribute in K2 that is not in A(f-closure(K1 � fA1g) [I(Q); T)). As shown in

Figure 8, since A2 must be in A(f-closure(K1)[I(Q); T)), then either A2 = A1, or there must exist

a BF-chain, such that all the source views on the BF-chain are in T , and the head of the BF-chain

takes A1 as a bound attribute, and the tail takes A2 as a free attribute. Note that in Figure 8, the

attributes in I(Q) may overlap with the attributes on the BF-chain.

If A2 = A1, then b-closure(A1) = b-closure(A2) � b-closure(K2). If A2 6= A1, then the above

BF-chain exists. By Lemma 5.3, b-closure(A1) � b-closure(A2) � b-closure(K2). Then we have

b-closure(K1) � b-closure(K2), since b-closure(K1) =
S
A2K1

(b-closure(A)). Similarly, we can prove

b-closure(K2) � b-closure(K1). Therefore, b-closure(K1) = b-closure(K2).

17

Lemma 5.4 shows that if a connection has multiple kernels, then the backward-closures of all

these kernels are the same. For instance, in Example 5.2, the connection T = fv1; v2; v3g has three

kernels: fAg, fCg, and fEg, and they have the same backward-closure: fv1; v2; v3; v4g.

5.4 Finding Relevant Source Views of a Connection

Now we show how to �nd all the relevant source views of a connection by giving the following

theorem:

Theorem 5.1 If K is a kernel of a queryable connection T , then b-closure(K) [T are all the

relevant source views of connection T . 2

of B2

of Bj
b-closure

�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�

�
�

�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�

�
�

of B1

b-closure

b-closure

A1 B1 A2 A3 B2 Bj

I(Q) Kernel K

vi
w2

w1
Connection T

Figure 9: The backward-closure of a kernel of a queryable connection

We will give the proof shortly. Using Theorem 5.1, for a queryable connection T , we can

�nd all its relevant source views by computing b-closure(K) [T . If T is independent, then it has

only one kernel, the empty set �, whose backward-closure is empty. Thus only the source views

in T are relevant to T , and this claim is consistent with Theorem 4.1. If the connection is not

independent, as shown in Figure 9, we �nd a kernel K of T (the Bi's in the �gure), and compute

the backward-closure b-closure(K). Then we �nd the relevant source views of T by taking the union

of b-closure(K) and T . Note that the backward-closures of di�erent attributes in the kernel may

overlap, and they may also overlap with the source views in T .

The Proof of Theorem 5.1

Proof: We need to prove that, for a kernel K of a queryable connection T :

1. All the source views that are not in b-closure(K) [T are irrelevant to T .

2. Every source view on T is relevant to T .

3. Every source view in b-closure(K) is relevant to T .

Proof of (1) We need to show that, by considering only the source views in b-closure(K) [T ,

we can get the obtainable answer for connection T . Suppose T = fv1; : : : ; vkg. For each tuple

t in the obtainable answer for T , assume that t comes from the tuples t1; : : : ; tk of source views

18

v1; : : : ; vk, respectively. The values of the attributes I(Q) in these ti's must be their initial values

in Q. Now consider the attributes in K and how their values in the ti's are derived. These values

must be obtained by some source queries using a set of source views, say V1, whose free attributes

include K. By the de�nition of b-closure(K), the source views in V1 must be in b-closure(K). In

order to send source queries to the sources of V1, the binding requirements of the views in V1 must

be satis�ed. Let A be the attributes of V1 such that the values of A are not the initial values in Q.

Then the values of A must be obtained using a set of source views, say V2, whose free attributes

include A. Clearly the source views in V2 are also in b-closure(K). We can see that all the source

views used to derive the values of the attributes K in the ti's are in b-closure(K). After we get

these values, following the same idea as in the proof of Theorem 4.1, we can get tuple t in the

obtainable answer for T by using only the source views in T . Therefore, by using the source views

in b-closure(K)[T , we can get all the tuples in the obtainable answer for T .

Proof of (2) By Lemma 5.1, we can construct an instance of source relations R such that

the obtainable answer for T is not empty. But if we remove any source view in T , the obtainable

answer for T becomes empty.

Proof of (3) For every source view vi in b-closure(K), we prove that vi is relevant to connection

T by constructing an instance of source relations R, such that without using vi, we cannot get a

tuple in the obtainable answer for T . By the de�nition of b-closure(K), there must be a BF-chain,

as shown in Figure 9, such that the head of the BF-chain is vi, and the tail (denoted w1 in the

�gure) takes an attribute in K (denoted B1) as a free attribute.

R is constructed in four steps. Start by setting all the source relations to empty. In step 1,

populate the relations in connection T following the same idea as in the proof of Theorem 4.2. Let

b1, b2, . . . be the values of attributes B1, B2, . . . in Figure 9, and t be the projection of the join of

these tuples onto the attributes O(Q). After we �nish the construction of R, tuple t will be in the

obtainable answer for T .

In step 2, as shown in Figure 10, populate the source relations on the BF-chain from vi to w1

in such a way that only following this BF-chain we can get the value b1 of attribute B1. Follow

the same idea as in the proof of Theorem 4.2 to populate the source relations on the BF-chain,

except that the B1 value in the tuple of w1 is b1. For each source view wj on the BF-chain, wj

may have a set of bound attributes Z(wj) � B(wj) that do not overlap with the free attributes of

the previous source view on the BF-chain. For view vi, Z(vi) = B(vi). For instance, in Figure 10,

region I includes the attributes of F(w1), region II includes the attributes of F(w2), and region III

includes the attributes Z(w1) = B(w1)� F(w2). Regarding the attributes in Z(wj) \ I(Q), their

values in the tuple of wj in step 2 are their initial values in Q. The values of all other attributes in

Z(wj)� I(Q) in the tuples are some new distinct values.

w2

t2
w1 t1

B1

D

Free

w3Free

Bound

Bound
Free

vi

Bound
Free

Free

Bound

wk

...

E

ti

III
I II

Bound

Figure 10: Populating the relations on the BF-chain in Figure 9.

19

In step 3, for each source view wj on the BF-chain, if Z(wj)� I(Q) is not empty, consider each

attribute A in it. By Lemma 5.1, there exists an executable sequence of source views such that A

is a free attribute of the tail. Populate the source relations of this sequence following the same idea

as in the proof of Theorem 4.2, except that the value of A in the tuple of the tail is the value of A

in the tuple of wj that we chose in step 2.

In step 4, consider each attribute in K�fB1g, say Bj . By Lemma 5.1, there exists an executable

sequence of source views such that Bj is a free attribute of the tail. Populate the source relations

of this sequence following the same idea as in the proof of Theorem 4.2, except that the value of

Bj in the tuple of the tail is bj , which is the value that we chose for Bj in step 1.

After these four steps, it is possible that more than one tuple has been added to a source

relation. Based on how the relations are populated, all the source views that are populated are in

b-closure(K)[T , and we can get the bi's for the Bi's in the connection by using all these populated

source views. Following the same idea of the proof of Theorem 4.1, we can prove that by using all

these source views, we can get tuple t in the obtainable answer for T .

Note that the only shared values among these source relations are those initial values in Q,

those bi's in connection T , and the values of the attributes in some Z(wj)� I(Q) during step 2, in

which wj is a source view on the BF-chain from vi to w1. Since K is a kernel of T , B1 cannot be

bound by using only the source views in T starting from the initial bindings in I(Q). On the other

hand, without using value b1 of B1, we cannot get tuple t in the answer for T . Based on how R

is constructed, the only way to get b1 of B1 is to use the source relations on the BF-chain from vi

to w1, plus those source views that are populated in step 3. Without using view vi, we cannot get

the value b1 of B1, so we cannot get tuple t in the answer for T . Therefore, vi is a relevant source

view of connection T .

5.5 The Algorithm FIND REL

Using Theorem 5.1, we give the algorithm FIND REL that �nds all the relevant source views of a

queryable connection in a query. The algorithm is shown in Figure 11.

The Algorithm FIND REL

Input: Source views V , a query Q, a queryable connection T in Q.
Output: All the relevant source views of T .
METHOD:

1. Compute all the queryable source views Vq = f-closure(I(Q);V);

2. Compute a kernel K of connection T ;

3. Compute the backward-closure b-closure(K).

Return b-closure(K) [T as all the relevant source views of connection T .

Figure 11: The algorithm FIND REL

Let us analyze the complexity of the algorithm. Suppose that there are n source views in V.

Consider a queryable connection T with m source views and k attributes. Assume it takes O(1)

time to check whether a set of attributes is a subset of another set of attributes. As described in

Section 5.2, we can get all the queryable source views by computing f-closure(I(Q);V). Step 1 thus

20

can be done in O(n2) time. Step 2 can be done by following the approach described in Section 5.3,

which shrinks the attributes in A(T)� I(Q) as much as they can be shrunk. Since for each set of

attributes X � A(T)� I(Q), it takes O(m2) time to compute f-closure(X [I(Q); T), step 2 can

be done in O(km2) time.

In step 3, for each attribute A in a kernel K of T , b-closure(A) can be computed in O(n2)

time because during the computation, we can keep a set of attributes Ab as the union of the

B(wi)'s for every wi, where wi is a source view in b-closure(A) that has been computed so far.

At each step, for each queryable source view v that is not in the current b-closure(A), we check

whether F(v) \ Ab 6= �. If so, v is added to b-closure(A). Thus step 3 can be done in O(kn2)

time. Therefore, the total time complexity of �nding the relevant source views of the connection is

O(n2) + O(km2) +O(kn2) = O(k(m2 + n2)) = O(kn2).

6 Constructing an E�cient Program

In this section we show how to use the algorithm FIND REL to construct a more e�cient program

than that constructed by the algorithm in Section 3, and show how to remove some useless rules

in the program.

Given source descriptions V and a query Q, we can �nd the relevant source views of all the

connections in Q as follows:

1. Compute all the queryable source views Vq = f-closure(I(Q);V);

2. Remove the nonqueryable connections, i.e., the connections that have a nonqueryable view;

3. Compute the relevant views for each queryable connection by calling the algorithm FIND REL;

4. Take the union of all these relevant source views.

We use only these relevant source views (denoted Vr) of query Q to construct a Datalog program

�(Q;Vr) in the same way as �(Q;V) is constructed. For instance, in Example 4.1, all the �ve source

views are queryable. By calling the algorithm FIND REL we �nd that views v1 and v3 are relevant

to connection T1; views v1, v2, v3, and v4 are relevant to connection T2. Therefore, the relevant

views for both connections are v1, v2, v3, and v4. We use these four views to construct a more

e�cient program, which can be obtained by dropping the rules r13 and r14 in Figure 5.

In addition, some useless rules in the program �(Q;Vr) can be removed since they do not

contribute to the answer. For instance, in Example 4.1, the user is not interested in the B and E

values, so rules r7 and r12 in Figure 5 can be dropped. Rules r9 and r10 can also be removed since

the predicates in their heads are not used by other rules. Figure 12 shows the optimized program

that can compute the same answer as before, and the new program is more e�cient to evaluate.

In general, the useless rules in �(Q;Vr) can be found as follows: Scan through all the rules in

the program �(Q;Vr), except for the connection rules. For each rule r, check whether the IDB

predicate in its head is used by other rules in the program. If not, rule r is useless and can be

removed from the program. Repeat this process until no useless rules can be found in the program.

21

r1: ans(D) :- bv1(a0; C); bv3(C; D) r6: domA(A) :- domC(C); v2(A; B; C)
r2: ans(D) :- bv2(a0; B; C); bv3(C; D) r8: bv3(C; D) :- domC(C); v3(C; D)
r3: bv1(A; C) :- domA(A); v1(A; C) r11: domC(C) :- v4(C; E)
r4: domC(C) :- domA(A); v1(A; C) r15: domA(a0) :-

r5: bv2(A; B; C) :- domC(C); v2(A; B; C)

Figure 12: The optimized Datalog program in Example 4.1

7 Discussions

In this section we explore other possibilities for obtaining bindings during the query planning of

a user query, e.g., by using cached data and domain knowledge. We also discuss how to answer a

query when the user is interested in a partial answer, not necessarily the maximal answer.

7.1 Obtaining Bindings

Theorem 4.1 suggests that accessing o�-connection views is only necessary for nonindependent

connections. So far, we have assumed that the bindings of a domain are either from a user query or

from other source queries. If cached data are available, they can be incorporated into the program

�(Q;V) for a query Q and source descriptions V . Suppose that we have a cached tuple ti(a1; : : : ; an)

for source view vi(A1; : : : ; An). The following rules are added to the program �(Q;V):

bv1(a1; : : : ; an) :-
domAi(ai) :- (i = 1; : : : ; n)

The predicates domA1,. . . ,domAn are the domain predicates for the attributes A1,. . . ,An, re-

spectively. The �rst rule says that tuple ti(a1; : : : ; an) is a obtained tuple of source view vi. The

other fact rules represent the bindings for the corresponding domains. The new rules can contribute

more answers to the query. Some views that were nonqueryable when we considered only the initial

bindings in Q may now become queryable with the new bindings from the cached data. In general,

if we have some information about a domain, we can always incorporate the information into the

program �(Q;V) by adding the corresponding fact rules.

We may also obtain bindings by using some known domain knowledge. For example, suppose

that we have a source view student(name; dept; GPA) with the binding pattern bbf . That is, every

query to this source must supply a name and a department of a student, so that the student's GPA

can be returned. Assume we know that all the students at the source are in four departments: fCS,

EE, Physics, Chemistryg. Then we can use these four departments as bindings for attribute dept

to query the source, and we do not need other sources to contribute bindings for this attribute.

7.2 Computing a Partial Answer

In some cases a user may be interested in a partial answer to a query. Thus we do not need to

compute the maximal answer, which may be expensive to retrieve. Theorem 4.1 suggests that if

a connection is independent, its complete answer can be computed by using only the views in the

query. If a connection T is not independent, we can �nd a kernel K of T . We access some sources

in b-closure(K) to obtain bindings for the attributes in K, and compute a partial answer for the

22

connection. Notice that we may access only a subset of the backward-closure of K, since we are

not interested in the maximal answer for T . In addition, we need to consider the tradeo� between

the number of results and the number of source accesses. The more sources we access, the more

bindings we can retrieve, and the more answers we can compute for the connection. We decide how

many source queries to send based on how many results the user is interested in.

8 Conclusion

In information-integration systems, especially in the context of World Wide Web, sources may have

restrictions on retrieving their information, because they have diverse and limited query capabilities.

We need to consider the source restrictions while answering a user query, since we may not be able to

retrieve all the data from the sources. In this paper we showed that sources not directly mentioned

in a query can contribute to the query result, since they provide useful bindings to the query. In

some cases we can access sources repeatedly to compute more results to the query. We proposed

a framework of query planning in the presence of source restrictions. In the framework, a user

query and source descriptions are translated into a Datalog program, and we evaluate the program

on the source relations to compute the maximal obtainable answer to the query. Our framework

supports recursive query planning because of the expressive power of Datalog. In addition, we

showed that accessing o�-query sources is not always necessary. In the case where these o�-query

accesses do not contribute to the query results, we proved that the complete answer to the query

can be computed by using only the views in the query. In the case where o�-query accesses are

necessary, we gave an algorithm for �nding all the relevant sources to the query. By using this

algorithm we can trim the unnecessary view accesses and construct an e�cient Datalog program

to compute the answer. Currently we are investigating how to evaluate the program to compute

the answer to a query e�ciently.

Acknowledgments: We thank Je� Ullman for his valuable comments on this material.

References

[Ama] Amazon.com. http://www.amazon.com/.

[ASU79a] Alfred V. Aho, Yehoshua Sagiv, and Je�rey D. Ullman. E�cient optimization of

a class of relational expressions. ACM Transactions on Database Systems (TODS),

4(4):435{454, 1979.

[ASU79b] Alfred V. Aho, Yehoshua Sagiv, and Je�rey D. Ullman. Equivalences among relational

expressions. SIAM Journal on Computing, 8(2):218{246, 1979.

[Bar] Barnesandnoble.com. http://www.barnesandnoble.com/.

[CDSS98] Sophie Cluet, Claude Delobel, Jerome Simeon, and Katarzyna Smaga. Your mediators

need data conversion! ACM SIGMOD Conference, pages 177{188, 1998.

[CGMH+94] Sudarshan S. Chawathe, Hector Garcia-Molina, Joachim Hammer, Kelly Ireland,

Yannis Papakonstantinou, Je�rey D. Ullman, and Jennifer Widom. The TSIMMIS

project: Integration of heterogeneous information sources. IPSJ, pages 7{18, 1994.

23

[CKPS95] Surajit Chaudhuri, Ravi Krishnamurthy, Spyros Potamianos, and Kyuseok Shim.

Optimizing queries with materialized views. International Conference on Data Engi-

neering (ICDE), pages 190{200, 1995.

[CM77] Ashok K. Chandra and Philip M. Merlin. Optimal implementation of conjunctive

queries in relational data bases. STOC, pages 77{90, 1977.

[DL97] Oliver M. Duschka and Alon Y. Levy. Recursive plans for information gathering.

Proceedings of the Fifteenth International Joint Conference on Arti�cial Intelligence,

IJCAI-97, 1997.

[Dus97] Oliver M. Duschka. Query planning and optimization in information integration.

Thesis, Computer Science Department, Stanford University, 1997.

[FLMS99] Daniela Florescu, Alon Levy, Ioana Manolescu, and Dan Suciu. Query optimization

in the presence of limited access patterns. ACM SIGMOD Conference, pages 311{322,

1999.

[GKD97] Michael R. Genesereth, Arthur M. Keller, and Oliver M. Duschka. Infomaster: An

information integration system. ACM SIGMOD Conference, pages 539{542, 1997.

[HGMN+97] Joachim Hammer, Hector Garcia-Molina, Svetlozar Nestorov, Ramana Yerneni,

Markus M. Breunig, and Vasilis Vassalos. Template-based wrappers in the TSIM-

MIS system. ACM SIGMOD Conference, pages 532{535, 1997.

[HKWY97] Laura M. Haas, Donald Kossmann, Edward L. Wimmers, and Jun Yang. Optimizing

queries across diverse data sources. Very Large Data Bases (VLDB) Conference,

pages 276{285, 1997.

[IFF+99] Zachary Ives, Daniela Florescu, Marc Friedman, Alon Levy, and Dan Weld. An

adaptive query execution engine for data integration. ACM SIGMOD Conference,

pages 299{310, 1999.

[JBB+97] Roberto J. Bayardo Jr., Bill Bohrer, Richard S. Brice, Andrzej Cichocki, Jerry Fowler,

Abdelsalam Helal, Vipul Kashyap, Tomasz Ksiezyk, Gale Martin, Marian H. Nodine,

Mosfeq Rashid, Marek Rusinkiewicz, Ray Shea, C. Unnikrishnan, Amy Unruh, and

Darrell Woelk. Infosleuth: Semantic integration of information in open and dynamic

environments (experience paper). ACM SIGMOD Conference, pages 195{206, 1997.

[LMSS95] Alon Y. Levy, Alberto O. Mendelzon, Yehoshua Sagiv, and Divesh Srivastava. An-

swering queries using views. ACM Symposium on Principles of Database Systems

(PODS), pages 95{104, 1995.

[LRO96] Alon Y. Levy, Anand Rajaraman, and Joann J. Ordille. Querying heterogeneous

information sources using source descriptions. Very Large Data Bases (VLDB) Con-

ference, pages 251{262, 1996.

[LYV+98] Chen Li, Ramana Yerneni, Vasilis Vassalos, Hector Garcia-Molina, Yannis Papakon-

stantinou, Je�rey D. Ullman, and Murty Valiveti. Capability based mediation in

TSIMMIS. ACM SIGMOD Conference, pages 564{566, 1998.

24

[MW97] David A. Maluf and Gio Wiederhold. Abstraction of representation for interoperation.

International Syposium on Methodologies for Intelligent Systems (ISMIS), pages 441{

455, 1997.

[PGMW95] Yannis Papakonstantinou, Hector Garcia-Molina, and Jennifer Widom. Object ex-

change across heterogeneous information sources. International Conference on Data

Engineering (ICDE), pages 251{260, 1995.

[Qia96] Xiaolei Qian. Query folding. International Conference on Data Engineering (ICDE),

pages 48{55, 1996.

[RS97] Mary Tork Roth and Peter M. Schwarz. Don't scrap it, wrap it! A wrapper archi-

tecture for legacy data sources. Very Large Data Bases (VLDB) Conference, pages

266{275, 1997.

[RSU95] Anand Rajaraman, Yehoshua Sagiv, and Je�rey D. Ullman. Answering queries using

templates with binding patterns. ACM Symposium on Principles of Database Systems

(PODS), pages 105{112, 1995.

[SY80] Yehoshua Sagiv and Mihalis Yannakakis. Equivalences among relational expressions

with the union and di�erence operators. Journal of the ACM, 27(4):633{655, 1980.

[TRV98] Anthony Tomasic, Louiqa Raschid, and Patrick Valduriez. Scaling access to het-

erogeneous data sources with DISCO. IEEE Transactions on Knowledge and Data

Engineering, 10(5):808{823, 1998.

[Ull89] Je�rey D. Ullman. Principles of Database and Knowledge-base Systems, Volumes II:

The New Technologies. Computer Science Press, New York, 1989.

[Ull97] Je�rey D. Ullman. Information integration using logical views. International Confer-

ence on Database Theory (ICDT), pages 19{40, 1997.

[VP97] Vasilis Vassalos and Yannis Papakonstantinou. Describing and using query capabilities

of heterogeneous sources. Very Large Data Bases (VLDB) Conference, pages 256{265,

1997.

[Wie92] Gio Wiederhold. Mediators in the architecture of future information systems. IEEE

Computer, 25(3):38{49, 1992.

[YLGMU99] Ramana Yerneni, Chen Li, Hector Garcia-Molina, and Je�rey D. Ullman. Computing

capabilities of mediators. ACM SIGMOD Conference, pages 443{454, 1999.

[YLUGM99] Ramana Yerneni, Chen Li, Je�rey D. Ullman, and Hector Garcia-Molina. Optimizing

large join queries in mediation systems. International Conference on Database Theory

(ICDT), pages 348{364, 1999.

25

