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Abstract. In data integration systems, queries posed to a mediator
need to be translated into a sequence of queries to the underlying data
sources. In a heterogeneous environment, with sources of diverse and
limited query capabilities, not all the translations are feasible. In this
paper, we study the problem of �nding feasible and e�cient query plans
for mediator systems. We consider conjunctive queries on mediators and
model the source capabilities through attribute-binding adornments. We
use a simple cost model that focuses on the major costs in mediation sys-
tems, those involved with sending queries to sources and getting answers
back. Under this metric, we develop two algorithms for source query se-
quencing { one based on a simple greedy strategy and another based
on a partitioning scheme. The �rst algorithm produces optimal plans
in some scenarios, and we show a linear bound on its worst case per-
formance when it misses optimal plans. The second algorithm generates
optimal plans in more scenarios, while having no bound on the margin
by which it misses the optimal plans. We also report on the results of
the experiments that study the performance of the two algorithms.

1 Introduction

Integration systems based on a mediation architecture [31] provide users with
seamless access to data from many heterogeneous sources. Examples of such sys-
tems are TSIMMIS [3], Garlic [8], InformationManifold [14], and DISCO [26]. In
these systems, mediators de�ne integrated views based on the data provided by
the sources. They translate user queries on integrated views into source queries
and postprocessing operations on the source query results. The translation pro-
cess can be quite challenging when integrating a large number of heterogeneous
sources.

One of the important challenges for integration systems is to deal with the di-
verse capabilities of sources in answering queries [8,15, 19]. This problem arises
due to the heterogeneity in sources ranging from simple �le systems to full-
edged relational databases. The problem we address in this paper is how to
generate e�cient mediator query plans that respect the limited and diverse ca-
pabilities of data sources. In particular, we focus our attention on the kind of
queries that are the most expensive in mediation systems, large join queries. We
propose e�cient algorithms to �nd good plans for such queries.



1.1 Cost Model

In many applications, the cost of query processing in mediator systems is dom-
inated by the cost of interacting with the sources. Hence, we focus on the costs
associated with sending queries to sources. Our results are �rst stated using a
very simple cost model where we count the total number of source queries in a
plan as its cost. In spite of the simplicity of the cost model, the optimization
problem we are dealing with remains NP-hard. Later in the paper, we show how
to extend our main results to a more complex cost model that charges a �xed
cost per query plus a variable cost that is proportional to the amount of data
transferred.

1.2 Capabilities-Based Plan Generation

We consider mediator systems, where users pose conjunctive queries over inte-
grated views provided by the mediator. These queries are translated into con-
junctive queries over the source views to arrive at logical query plans. The logical
plans deal only with the content descriptions of the sources. That is, they tell the
mediator which sources provide the relevant data and what postprocessing oper-
ations need to be performed on this data. The logical plans are later translated
into physical plans that specify details such as the order in which the sources are
contacted and the exact queries to be sent. Our goal in this paper is to develop
algorithms that will translate a mediator logical plan into an e�cient, feasible
(does not exceed the source capabilities) physical plan. We illustrate the process
of translating a logical plan into a physical plan by an example.

Example 1. Consider three sources that provide information about movies, and
a mediator that provides an integrated view:

Source Contents Must Bind

S1 R(studio, title) either studio or title
S2 S(title, year) title

S3 T(title, stars) title

Mediator View:
Movie(studio,title,year,stars) :-

R(studio,title), S(title,year), T(title,stars)

The \Must Bind" column indicates what attributes must be speci�ed at
a source. For instance, queries sent to S1 must either provide the title or the
studio. Suppose the user asks for the titles of all movies produced by Paramount
in 1955 in which Gregory Peck starred. That is,

ans(title) :- Movie(`Paramount', title, `1955', `Gregory Peck')

The mediator would translate this query to the logical plan:

ans(title) :- R(`Paramount', title), S(title, `1955'), T(title,

`Gregory Peck')



The logical plan states the information the mediator needs to obtain from the
three sources and how it needs to postprocess this information. In this example,
the mediator needs to join the results of the three source queries on the title
attribute. There are many physical plans that correspond to this logical plan
(based on various join orders and join methods). Some of these plans are feasible
while others are not. Here are two physical plans for this logical plan:

{ Plan P1: Send query R(`Paramount', title) to S1; send query S(title,

`1955') to S2; and send query T(title, `Gregory Peck') to S3. Join the
results of the three source queries on the title attribute and return the
title values to the user.

{ Plan P2: Get the titles of movies produced by Paramount from source S1.
For each returned title t, send a query to S2 to get its year and check if it
is `1955.' If so, send a query to S3 to get the stars of movie t. If the set of
stars contains `Gregory Peck,' return t to the user.

In the above plans, the �rst one is not feasible because the queries to sources
S2 and S3 do not provide a binding for title. The second one is feasible. There
are actually other feasible plans (for instance, we can reverse the S2 and S3
queries of P2). If P2 is the cheapest feasible plan, the mediator may execute it.

As illustrated by the example, we need to solve the following problem: Given
a logical plan and the description of the source capabilities, �nd feasible physical
plans for the logical plan. The central problem is to determine the evaluation or-
der for logical plan subgoals, so that attributes are appropriately bound. Among
all the feasible physical plans, pick the most e�cient one.

1.3 Related Work

The problem of ordering subgoals to �nd the best feasible sequence can be viewed
as the well known join-order problem. More precisely, we can assign in�nite cost
to infeasible sequences and then �nd the best join order.

The join-order problem has been extensively studied in the literature, and
many solutions have been proposed. Some solutions perform a rather exhaustive
enumeration of plans, and hence do not scale well [1, 2, 4, 5, 8, 15, 17, 19,20, 22,
29]. In particular, we are interested in Internet scenarios with many sources
and subgoals, so these schemes are too expensive. Some other solutions reduce
the search space through techniques like simulated annealing, random probes, or
other heuristics [6, 11, 12, 16, 18, 23{25]. While these approaches may generate
e�cient plans in some cases, they do not have any performance guarantees in
terms of the quality of plans generated (i.e., the plans generated by them can be
arbitrarily far from the optimal one). Many of these techniques may even fail to
generate a feasible plan, while the user query does have a feasible plan.

The remaining solutions [10, 13, 21] use speci�c cost models and clever tech-
niques that exploit them to produce optimal join orders e�ciently. While these
solutions are very good for the join-order problem where those cost models are



appropriate, they are hard to adopt in our context because of two di�culties.
The �rst is that it is not clear how to model the feasibility of mediator query
plans in their frameworks. A direct application of their algorithms to the prob-
lem we are studying may end up generating infeasible plans, when a feasible plan
exists. The second di�culty is that when we use cost models that emphasize the
main costs in mediator systems, the optimality guarantees of their algorithms
may not hold.

1.4 Our Solution

In this paper, we develop two algorithms that �nd good feasible plans. The �rst
algorithm runs in O(n2) time, where n is the number of subgoals in the logical
plan. We provide a linear bound on the margin by which this algorithm can miss
the optimal plan. Our second algorithm can guarantee optimal plans in more
scenarios than the �rst, although there is no bounded optimality for its plans.
Both our algorithms are guaranteed to �nd a feasible plan, if the user query has
a feasible plan. Furthermore, we show through experiments that our algorithms
have excellent running time pro�les in a variety of scenarios, and very often �nd
optimal or close-to-optimal plans. This combination of e�cient, scalable algo-
rithms that generate provably good plans is not achieved by previously known
approaches.

2 Preliminaries

In this section, we introduce the notation we use throughout the paper. We also
discuss the cost model used in our optimization algorithms.

2.1 Source Relations and Logical Plans

Let S1, . . . , Sm be m sources in an integration system. To simplify the presen-
tation, we assume that sources provide their data in the form of relations. If
sources have other data models, one could use wrappers [9] to create the simple
relational view of data. Each source is assumed to provide a single relation. If
a source provides multiple relations, we can model it in our framework as a set
of logical sources, all having the same physical source. Example 1 showed three
sources S1, S2 and S3 providing three relations R, S and T respectively.

A query to a source speci�es atomic values to a subset of the source rela-
tion attributes and obtains the corresponding set of tuples. A source supports a
set of access templates on its relation that specify binding adornment require-
ments for source queries.1 In Example 1, source S2 had one access template:

1 We consider source-capabilities described as bf adornment patterns that distinguish
bound (b) and free (f) argument positions [27]. The techniques developed in this
paper can also be employed to solve the problem of mediator query planning when
other source capability description languages are used.



Sbf (title; year), while source S1 had two access templates:Rbf (studio; title)
and Rfb(studio; title).

User queries to the mediator are conjunctive queries on the integrated views
provided by the mediator. Each integrated view is de�ned as a set of conjunctive
queries over the source relations. The user query is translated into a logical plan,
which is a set of conjunctive queries on the source relations. The answer to the
user query is the union of the results of this set of conjunctive queries. Example 1
showed a user query that was a conjunctive query over the Movie view, and it
was translated into a conjunctive query over the source relations.

In order to �nd the best feasible plan for a user query, we assume that the
mediator processes the logical plan one conjunctive query at a time (as in [3, 8,
14]). Thus, we reduce the problem of �nding the best feasible plan for the user
query to the problem of �nding the best feasible plan for a conjunctive query
in the logical plan. In a way, from now on, we assume without loss of generality
that a logical plan has a single conjunctive query over the source relations.

Let the logical plan be H : � C1; C2; : : : ; Cn. We call each Ci a subgoal. Each
subgoal speci�es a query on one of the source relations by binding a subset of
the attributes of the source relation. We refer to the attributes of subgoals in
the logical plan as variables. In Example 1, the logical plan had three subgoals
with four variables, three of which were bound.

2.2 Binding Relations and Source Queries

Given a sequence of n subgoals C1; C2; : : : ; Cn, we de�ne a corresponding se-
quence of n + 1 binding relations I0; I1; : : : ; In. I0 has as its schema the set of
variables bound in the logical plan, and it has a single tuple, denoting the bind-
ings speci�ed in the logical plan. The schema of I1 is the union of the schema of
I0 and the schema of the source relation of C1. Its instance is the join of I0 and
the source relation of C1. Similarly, we de�ne I2 in terms of I1 and the source
relation of C2, and so on. The answer to the conjunctive query is de�ned by a
projection operation on In.

In order to compute a binding relation Ij , we need to join Ij�1 with Cj.
There are two ways to perform this operation:

1. Use I0 to send a query to the source of Cj (by binding a subset of its
attributes); perform the join of the result of this source query with Ij�1 at
the mediator to obtain Ij .

2. For j � 2, use Ij�1 to send a set of queries to the source relation of Cj (by
binding a subset of its attributes); union the results of these source queries;
perform the join of this union relation with Ij�1 to obtain Ij .

We call the �rst kind of source query a block query and the second kind a
parameterized query2. Obviously, answering Cj through the �rst method takes
a single source query, while answering it by the second method can take many

2 A parameterized query is di�erent from a semijoin where one can send multiple
bindings for an attribute in a single query.



source queries. The main reason why we need to consider parameterized queries
is that it may not be possible to answer some of the subgoals in the logical
plan through block queries. This may be because the access templates for the
corresponding source relations require bindings of variables that are not available
in the logical plan. In order to answer these subgoals, we must use parameterized
queries by executing other subgoals and collecting bindings for the required
parameters of Cj.

2.3 The Plan Space

The space of all possible plans for a given user query is de�ned �rst by considering
all sequences of subgoals in its logical plan. In a sequence, we must then decide
on the choice of queries for each subgoal (among the set of block queries and
parameterized queries available for the subgoal). We call a plan in this space
feasible if all the queries in it are answerable by the sources. Note that the
number of feasible physical plans, as well as the number of all plans, for a given
logical plan can be exponential in the number of subgoals in the logical plan.

Note that the space of plans we consider is similar to the space of left-deep-
tree executions of a join query. As stated in the following theorem, we do not
miss feasible plans by not considering bushy-tree executions.

Theorem 1. We do not miss feasible plans because of considering only left-

deep-tree executions of the subgoals.

Proof. For any feasible execution of the logical plan based on a bushy tree of
subgoals, we can construct another feasible execution based on a left-deep tree
of subgoals (with the same leaf order). This is similar to the bound-is-easier

assumption of [28]. See the full version of our paper [32] for a detailed proof.

2.4 The Formal Cost Model

Our cost model is de�ned as follows:

1. The cost of a subgoal in the feasible plan is the number of source queries
needed to answer this subgoal.

2. The cost of a feasible plan is the sum of the costs of all the subgoals in the
plan.

We develop the main results of the paper in the simple cost model presented
above. Later, in Section 5, we will show how to extend these results to more
complex cost models. We also consider more practical cost models in Section 6
where we analyze the performance of our algorithms. Here, we note that even
in the simple cost model that counts only the number of source queries, the
problem of �nding the optimal feasible plan is quite hard.

Theorem 2. The problem of �nding the feasible plan with the minimum number

of source queries is NP-hard.



Proof. We reduce the Vertex Cover problem ([7]) to our problem. Since the
Vertex Cover problem is NP-complete, our problem is NP-hard.

Given a graph G with n vertices V1; : : : ; Vn, we construct a database and a
logical plan as follows. Corresponding to each vertex Vi we de�ne a relation Ri.
For all 1 � i � j � n, if Vi and Vj are connected by an edge in G, Ri and Rj

include the attribute Aij. In addition, we de�ne a special attribute X and two
special relations R0 and Rn+1. In all, we have a total of m+ 1 attributes, where
m is the number of edges in G. The special attribute X is in the schema of all the
relations. The special relation Rn+1 also has all the attributes Aij. That is, R0

has only one attribute and Rn+1 has m+1 attributes. Each relation has a tuple
with a value of 1 for each of its attributes. In addition, all relations except Rn+1

include a second tuple with a value of 2 for all their attributes. Each relation
has a single access template: R0 has no binding requirements, R1 through Rn

require the attribute X to be bound, and Rn+1 requires all of the attributes to
be bound. Finally, the logical plan consists of all the n + 2 relations, with no
variables bound.

It is obvious that the above construction of the database and the logical plan
takes time that is polynomial in the size of G. Now, we show that G has a vertex
cover of size k if and only if the logical plan has a feasible physical plan that
requires (n+ k + 3) source queries.

Suppose G has a vertex cover of size k. Without loss of generality, let it be
V1; : : : ; Vk. Consider the physical plan P that �rst answers the subgoal R0 with a
block query, then answers R1; : : : ; Rk; Rn+1; Rk+1; : : : ; Rn using parameterized
queries. P is a feasible plan because R0 has no binding requirements, R1; : : : ; Rk

need X to be bound and X is available from R0, and R1; : : : ; Rk will bind all the
variables (since V1; : : : ; Vk is a vertex cover). In P , R0 is answered by a single
source query, R1; : : : ; Rk and Rn+1 are answered by two source queries each,
and Rk+1; : : : ; Rn are answered by one source query each. This gives a total of
(n+k+3) source queries for this plan. Thus, we see that if G has a vertex cover
of size k, we have a feasible plan with (n+ k + 3) source queries.

Suppose, there is a feasible plan P 0 with f source queries. In P 0, the �rst
relation must be R0, and this subgoal must be answered by a block query (be-
cause the logical plan does not bind any variables). All the other subgoals must
be answered by parameterized queries. Consider the set of subgoals in P 0 that
are answered before Rn+1 is answered. Let j be the size of this set of subgoals
(excluding R0). Since Rn+1 needs all attributes to be bound, the union of the
schemas of these j subgoals must be the entire attribute set. That is, the vertices
corresponding to these j subgoals form a vertex cover in G. In P 0, each of these j
subgoals takes two source queries, along with Rn+1, while the rest of (n�j) sub-
goals in R1; : : : ; Rn take one source query each. That is, f = 1+2�j+2+(n�j).
From this, we see that we can �nd a vertex cover for G of size (f � n� 3).

Hence, G has a vertex cover of size k if and only if there is a feasible plan
with (n+ k+ 3) source queries. That is, we have reduced the problem of �nding
the minimum vertex cover in a graph to our problem of �nding a feasible plan
with minimum source queries.



In our cost model, it turns out that it is safe to restrict the space of plans to
those based on left-deep-tree executions of the set of subgoals.

Theorem 3. We do not miss the optimal plan by not considering the executions

of the logical plan based on bushy trees of subgoals.

Proof. See the full version of our paper [32] for the proof.

3 The CHAIN Algorithm

In this section, we present the CHAIN algorithm for �nding the best feasible
query plan. This algorithm is based on a greedy strategy of building a single
sequence of subgoals that is feasible and e�cient.

The CHAIN Algorithm

Input: Logical plan { subgoals and bound variables.
Output: Feasible physical plan.

� Initialize:
S  fC1; C2; : : : ; Cng /*set of subgoals in the logical plan*/

B  set of bound variables in the logical plan

L � /* start with an empty sequence */

�Construct the sequence of subgoals:
while (S 6= � ) do
M  in�nity;

N  null;

for each subgoal Ci in S do /* �nd the cheapest subgoal */
if (Ci is answerable with B) then
c CostL(Ci); /* get the cost of this subgoal in sequence L */

if ( c < M ) then
M  c;

N  Ci;

/* If no next answerable subgoal, declare no feasible plan */

if (N = null)
return(�);

/* Add next subgoal to plan */

L L +N ;

S  S � fNg;

B  B [ fvariables of Ng;

�Return the feasible plan:
return(Plan(L)); /* construct plan from sequence L */

Fig. 1. Algorithm CHAIN



As shown in Figure 1, CHAIN starts by �nding all subgoals that are answer-
able with the initial bindings in the logical plan. It then picks the answerable
subgoal with the least cost and computes the additional variables that are now
bound due to the chosen subgoal. It repeats the process of �nding answerable
subgoals, picking the cheapest among them and updating the set of bound vari-
ables, until no more subgoals are left or some subgoals are left but none of them
is answerable. If there are subgoals left over, CHAIN declares that there is no
feasible plan; otherwise it outputs the plan it has constructed.

3.1 Complexity and Optimality of CHAIN

Here we demonstrate: the CHAIN algorithm is very e�cient; it is guaranteed to
�nd feasible plans when they exist; and there is a linear bound on the optimality
of the plans it generates. Due to space limitations, we have not provided proofs
for all the lemmas and theorems. They are available in the full version of the
paper [32].

Lemma 1. CHAIN runs in O(n2) time, where n is the number of subgoals. 3

Lemma 2. CHAIN will generate a feasible plan, if the logical plan has feasible

physical plans.

Lemma 3. If the result of the user query is nonempty, and the number of sub-

goals in the logical plan is less than 3, CHAIN is guaranteed to �nd the optimal

plan.

Lemma 4. CHAIN can miss the optimal plan if the logical plan has more than

2 subgoals.

Proof. We construct a logical plan with 3 subgoals and a database instance that
result in CHAIN generating a suboptimal plan.

Rbff(A;B;D) Sbf (B;E) T bf (D;F )

(1, 1, 1) (1, 1) (4, 1)
(1, 2, 2) (2, 1) (5, 1)
(1, 3, 3) (3, 1) (6, 1)
(1, 1, 4) (4, 1) (7, 1)

Table 1. Database Instance for Lemma 4

Consider a logical planH : �R(1; B;D); S(B;E); T (D;F ) and the database
instance shown in Table 1. For this logical plan and database, CHAIN will gen-
erate the plan: R! S ! T , with a total cost of 1 + 3+ 4 = 8. We observe that
a cheaper feasible plan is: R! T ! S, with a total cost of 1+ 4+ 1 = 6. Thus,
CHAIN misses the optimal plan in this case.

3 We are assuming here that �nding the cost of a subgoal following a partial sequence
takes O(1) time.



It is not di�cult to �nd situations in which the CHAIN algorithmmisses the
optimal plan. However, surprisingly, there is a linear upper bound on how far its
plan can be from the optimal. In fact, we prove a stronger result in Lemma 5.

Lemma 5. Suppose P c is the plan generated by CHAIN for a logical plan with

n subgoals; P o is the optimal plan, and Emax is the cost of the most expensive

subgoal in P o. Then,

Cost(P c) � n �Emax

Fig. 2. Proof for Lemma 5

Proof. Without loss of generality, suppose the sequence of subgoals in P c is
C1; C2; : : : ; Cn. As shown in Figure 2, let the �rst subgoal in P o be Cm1

. Let G1

be the pre�x of P c, such that G1 = C1 : : :Cm1
. When CHAIN chooses C1, the

subgoal Cm1
is also answerable. This implies that the cost of C1 in P c is less

than or equal to the cost of Cm1
in P o. After processing C1 in P c, the subgoal

Cm1
remains answerable and its cost of processing cannot increase. So, if CHAIN

has chosen another subgoal C2 instead of Cm1
, once again we can conclude that

the cost of C2 in P c is not greater than the cost of Cm1
in P o. Finally, at the

end of G1, when Cm1
is processed in P c, we note that the cost of Cm1

in P c is
no more than the cost of Cm1

in P o. Thus, the cost of each subgoal of G1 is less
than or equal to the cost of Cm1

in P o.
We call Cm1

the �rst pivot in P o. We de�ne the next pivot Cm2
in P o as

follows. Cm2
is the �rst subgoal after Cm1

in P o such that Cm2
is not in G1.

Now, we can de�ne the next subsequence G2 of P c such that the last subgoal of
G2 is Cm2

. The cost of each subgoal in G2 is less than or equal to the cost of
Cm2

.
We continue �nding the rest of the pivots Cm3

; : : : ; Cmk
in P o and the cor-

responding subsequences G3; : : : ; Gk in P c. Based on the above argument, we
have

8Ci 2 Gj : (cost of Ci in P
c) � (cost of Cmj

in P o)

From this, it follows that

Cost(P c) =
kX

j=1

X

Ci2Gj

(cost ofCi in P
c) �

kX

j=1

jGjj�(cost ofCmj
inP o) � n�Emax

Theorem 4. CHAIN is n-competitive. That is, the plan generated by CHAIN

can be at most n times as expensive as the optimal plan, where n is the number

of subgoals.



Proof. Follows from Lemma 5.

The cost of the plan generated by CHAIN can be arbitrarily close to the
cost of the optimal plan multiplied by the number of subgoals; i.e., Theorem 4
cannot be improved. However, in many situations CHAIN yields optimal plans
or plans whose cost is very close to that of the optimal plan as demonstrated in
Section 6.

4 The PARTITION Algorithm

In this section, we present another algorithm called PARTITION for �nding
e�cient feasible plans. PARTITION takes a very di�erent approach to solve the
plan generation problem. It is guaranteed to generate optimal plans in more
scenarios than CHAIN but has a worse running time.

4.1 PARTITION

The formal description of PARTITION is available in the full version of the
paper [32]. Here, we present the essential aspects of the algorithm.

The PARTITION algorithm has two phases. In the �rst phase, it organizes
the subgoals into clusters based on the capabilities of the sources. The property
satis�ed by the clusters generated by the �rst phase of PARTITION is as follows.
All the subgoals in the �rst cluster are answerable by block queries; all the
subgoals in each subsequent cluster are answerable by parameterized queries
that use attribute bindings from the subgoals of the earlier clusters. To obtain
the clusters, PARTITION keeps track of the set of bound variables V . Initially,V
is the set of variables bound in the logical plan. The �rst phase of PARTITION is
divided into many rounds (one per cluster). In each round, the set of answerable
subgoals based on the bound variable set V is collected into a new cluster. These
subgoals are removed from the set of subgoals that are yet to be picked, and the
variables bound by these subgoals are added to V . If in a round of the �rst phase
there are subgoals yet to be picked and none of them is answerable, PARTITION
declares that there is no feasible plan for the user query.

In the second phase, PARTITION �nds the best subplan for each cluster of
subgoals and combines the subplans to arrive at the best overall plan for the user
query. The subplan for each cluster is found by enumerating all the sequences of
subgoals in the cluster and choosing the one with the least cost.

4.2 Optimality and Complexity of PARTITION

Like the CHAIN algorithm, the PARTITION algorithm always �nds feasible
plans when they exist. It is guaranteed to �nd optimal plans in more scenarios
than CHAIN. However, when it misses the optimal plans, it can miss them
by an unbounded margin. It is also much less e�cient than CHAIN, and can
take time that is exponential in the number of subgoals of the logical plan.
These observations are formally stated by the following lemmas (proofs omitted
occasionally due to space limitations).



Lemma 6. If feasible physical plans exist for a given logical plan, PARTITION

is guaranteed to �nd a feasible plan.

Lemma 7. If there are fewer than 3 clusters generated, and the result of the

query is nonempty, then PARTITION is guaranteed to �nd the optimal plan.

Proof. We proceed by a simple case analysis. There are two cases to consider.
The �rst case is when there is only one cluster �1. PARTITION �nds the best

sequence among all the permutations of the subgoals in �1. Since �1 contains all
the subgoals of the logical plan, PARTITION will �nd the best possible sequence.

The second case is when there are two clusters �1 and �2. Let P be the
optimal feasible plan. We will show how we can transform P into a plan in the
plan space of PARTITION that is at least as good as P .

Let Ci be a subgoal in �1. There are two possibilities: (a) Ci is answered
in P by using a block query; (b) Ci is answered in P by using parameterized
queries. If Ci is answered by a block query, we make no change to P . Otherwise,
we modify P as follows. As the result of the query is not empty, the cost of
subgoal Ci (using parameterized queries) in P must be at least 1. Since Ci is in
the �rst cluster, it can be answered by using a block query. So we can modify P
by replacing the parameterized queries for Ci with the block query for Ci. Since
the cost of a block query can be at most 1, this modi�cation cannot increase
the cost of P . For all subgoals in �1, we repeat the above transformation until
we get a plan P 0, in which all the subgoals in �1 are answered by using block
queries.

We apply a second transformation to P 0 with respect to the subgoals in �1.
Since all these subgoals are answered by block queries in P 0, we can move them
to the beginning of P 0 to arrive at a new plan P 00. Moving these subgoals ahead
of the other subgoals will preserve the feasibility of the plan. It is also true that
this transformation cannot increase the cost of the plan. This is because it does
not change the cost of these subgoals, and it cannot increase the cost of the other
subgoals in the sequence. Hence, P 00 cannot be more expensive than P 0.

After the two-step transformation, we get a plan P 00 that is as good as P .
Finally, we note that P 00 is in the plan space of PARTITION, and so the plan
generated by PARTITION cannot be worse than P 00. Thus, the plan found by
PARTITION must be as good as the optimal plan.

Lemma 8. If the number of subgoals in the logical plan does not exceed 3, and

the result of the query is not empty, then PARTITION will always �nd the

optimal plan.

Proof. Follows from Lemma 7.

PARTITION cannot generate the optimal plan in many cases. One can con-
struct logical plans with as few as 4 subgoals that lead the algorithm to generate
a sub-optimal plan. Also, PARTITION can miss the optimal plan by a margin
that is unbounded by the query parameters.



Lemma 9. For any integer m > 0, there exists a logical plan and a database

for which PARTITION generates a plan that is at least m times as expensive as

the optimal plan.

Proof. Refer to [32] for the detailed proof. The essential idea is to construct a
logical plan and a database for any given m that will make PARTITION miss
the optimal plan by a factor greater than m.

Lemma 10. The PARTITION algorithm runs in O(n2+(k1!+k2!+ : : :+kp!)),
where n is the number of subgoals in the logical plan, p is the number of clusters

found by PARTITION and ki is the number of subgoals in the ith cluster. 4

4.3 Variations of PARTITION

We have seen that the PARTITION algorithm can miss the optimal plan in
many scenarios, and in the worst case it has a running time that is exponential
in the number of subgoals in the logical plan. In a way, it attempts to strike
a balance between running time and the ability to �nd optimal plans. A naive
algorithm that enumerates all sequences of subgoals will always �nd the optimal
plan, but it may take much longer than PARTITION. PARTITION tries to cut
down on the running time, and gives up the ability to �nd optimal plans to a
certain extent. Here, we consider two variations of PARTITION that highlight
this trade-o�.

We call the �rst variation FILTER. This variation is based on the observation
of Lemma 7. FILTER also has two phases like PARTITION. In its �rst phase,
it mimics PARTITION to arrive at the clusters �1; �2; : : : ; �p. At the end of the
�rst phase, it keeps the �rst cluster as is, and collapses all the other clusters into
a new second cluster � 0. That is, it ends up with �1 and �

0. The second phase of
FILTER is identical to that of PARTITION. FILTER is guaranteed to �nd the
optimal plan (as long as the query result is nonempty), but its running time is
much worse than PARTITION. Yet, it is more e�cient than the naive algorithm
that enumerates all plans.

Lemma 11. If the user query has nonempty result, FILTER will generate the

optimal plan.

Proof. We can prove this lemma in the same way we proved Lemma 7.

Lemma 12. The running time of FILTER is O(n2 + (k1! + (n � k1)!).
5

The second variation of PARTITION is called SCAN. This variation focuses
on e�cient plan generation. The main idea here is to simplify the second phase

4 If the query result in nonempty, PARTITION can consider just one sequence (instead
of k1!) for the �rst cluster.

5 If the query result in nonempty, FILTER can consider just one sequence (instead of
k1!) for the �rst cluster.



of PARTITION so that it can run e�ciently. The penalty is that SCAN may not
generate optimal plans in many cases where PARTITION does.

SCAN also has two phases of processing. The �rst phase is identical to that
of PARTITION. In the second phase, SCAN picks an arbitrary order for each
cluster without searching over all the possible orders. This leads to a second
phase that runs in O(n) time. Note that since it does not search over the space
of subsequences for each cluster, SCAN tends to generate plans that are inferior
to those of PARTITION.

Lemma 13. SCAN runs in O(n2) time, where n is the number of subgoals in

the logical plan.

5 Other Cost Models

So far, we discussed algorithms that minimize the number of source queries.
Now, we consider more complex cost models where di�erent source queries can
have di�erent costs.

First, we consider a simple extension (say M1) where the cost of a query
to source Si is ei. That is, queries to di�erent sources cost di�erent amounts.
Note that in M1, we still do not charge for the amount of data transferred.
Nevertheless, it is strictly more general than the model we discussed in Section 2.
All of our results presented so far hold in this new model.

Theorem 5. In the cost model M1, Theorem 4 holds. That is, the CHAIN al-

gorithm is n-competitive, where n is the number of subgoals.

Theorem 6. In the cost model M1, Lemma 7 holds. That is, the PARTITION

algorithm will �nd the optimal plan, if there are at most two clusters and the

user query has nonempty result.

Next, we consider a more complex cost model (sayM2) where the data trans-
fer costs are factored in. That is, the cost of a query to source Si is ei+fi� (size
of query result). Note that this cost model is strictly more general than M1.

Theorem 7. In the cost model M2, Theorem 4 holds. That is, the CHAIN al-

gorithm is n-competitive, where n is the number of subgoals.

Theorem 8. In the cost model M2, Lemma 7 does not hold. That is, the PAR-

TITION algorithm cannot guarantee the optimal plan, even when there are at

most two clusters.

We observe that the n-competitiveness of CHAIN holds in any cost model
with the following property: the cost of a subgoal in a plan does not increase by
postponing its processing to a later time in the plan. We also note that the PAR-
TITION algorithmwith two clusters will always �nd the optimal plan (assuming
the query has nonempty result) if block queries cannot cost more than the cor-
responding parameterized queries. This property holds, for instance, in model
M1 and not in model M2. When one considers cost models other than those
discussed here, these properties may hold in them and consequently CHAIN and
PARTITION may yield very good results.
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Fig. 3. Performance of CHAIN and PARTITION

6 Performance Analysis

In this section, we address the questions: How often do PARTITION and CHAIN
�nd the optimal plan? When they miss the optimal plan, what is the expected
margin by which they miss? We answer these questions by experiments in a
simulated environment. We used both the simple cost model of Section 2.4 as
well as the more complex cost modelM2 of Section 5 in our performance analysis.
The results did not deviate much from one cost model to the other. The details
of the experiments are in [32]. Here, we briey mention the important results
based on the simpler cost model of Section 2.4.

Figure 3(a) plots the fraction of the times the algorithms missed the optimal
plans vs. number of query subgoals. Over a set of 1000 queries with number of
subgoals ranging from 1 to 10, PARTITION generated the optimal plan in more
than 95% of the cases, and CHAIN generated the optimal plan more than 75%
of the time. This result is surprising because we know that PARTITION can
miss optimal plans for queries with as few as 4 subgoals and CHAIN can miss
optimal plans for queries with as few as 3 subgoals.

Figure 3(b) plots the average margin by which generated plans missed the
optimal plan vs. the number of query subgoals. Both CHAIN and PARTITION
found near-optimal plans over the entire range of queries and, on the average,
missed the optimal plan by less than 10%.

In summary, the PARTITION algorithm can have excellent practical perfor-
mance, even though it gives very few theoretical guarantees. CHAIN also has
very good performance, well beyond the theoretical guarantees we proved in
Section 3. Finally, comparing the two algorithms, we observe that PARTITION
consistently outperforms CHAIN in �nding near-optimal plans.



7 Conclusion

In this paper, we considered the problem of query planning in heterogeneous
data integration systems based on the mediation approach. We employed a cost
model that focuses on the main costs in mediation systems. In this cost model,
we developed two algorithms that guarantee the generation of feasible plans
(when they exist). We showed that the problem at hand is NP-hard. One of our
algorithms runs in polynomial time. It generates optimal plans in many cases
and in other cases it has a linear bound on the worst case margin by which
it misses the optimal plans. The second algorithm �nds optimal plans in more
scenarios, but has no bound on the margin of missing the optimal plans in the
bad scenarios. We analyzed the performance of our algorithms using simulation
experiments and extended our results to more complex cost models.
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