
On Containment of Conjunctive Queries with Arithmetic Comparisons
(Extended Version)

UCI ICS Technical Report, June 2003

Foto Afrati
National Technical University of Athens

157 73 Athens, Greece

afrati@cs.ece.ntua.gr

Chen Li
Information and Computer Science

University of California, Irvine, CA 92697, USA

chenli@ics.uci.edu

Prasenjit Mitra
Department of Computer Science

Stanford University, CA 94305, USA

mitra@db.stanford.edu

Abstract

In this paper we study the following problem: how to test
whetherQ2 is contained inQ1, whereQ1 andQ2 are con-
junctive queries with arithmetic comparisons? This prob-
lem is fundamental in a large variety of database applica-
tions. Existing algorithms first normalize the queries, then
test a logical implication using multiple containment map-
pings fromQ1 to Q2. We are interested in cases where the
containment can be tested more efficiently. This work is
mainly motivated by (1) reducing the problem complexity
from�P

2
-completeness to NP-completeness in these cases;

and (2) utilizing the advantages of the homomorphism prop-
erty (i.e., the containment test is based on a single contain-
ment mapping), in applications such as those of answer-
ing queries using views. The following are our results. (1)
We show several cases where the normalization step is not
needed, thus reducing the size of the queries and, more im-
portantly, reducing the number of containment mappings.
(2) We find large classes of queries where the homomor-
phism property holds. (3) We further reduce the conditions
of these classes using practical domain knowledge that is
easily obtainable. (4) We conducted experiments on real
queries, and show that most of the queries have this homo-
morphism property.

1 Introduction

The problem of testing query containment is stated as
follows: how to test whether a queryQ2 is containedin a
queryQ1, i.e., if for any databaseD, the set of answers to

Q2 is a subset of the answers toQ1? This problem arises
in a large variety of database applications, such as query
evaluation and optimization [5], data warehousing [17], and
data integration using views [19]. For instance, an impor-
tant problem in data integration is to decide how to answer
a query using source views. Many existing algorithms are
based on query containment [9].

A class of queries of great significance is select-project-
join queries, a.k.a. conjunctive queries. These queries are
widely used in many database applications. Often, users
pose queries using conjunctive queries along with arith-
metic comparisons (e.g., year> 2000, price� 5000). Thus
testing containment of conjunctive queries with arithmetic
comparisons becomes very important. Several algorithms
have been proposed for testing containment of conjunctive
queries with arithmetic comparisons (e.g., [8, 10]). These
algorithms first normalize the queries by replacing con-
stants and shared variables with new distinct variables and
add the corresponding comparisons, then test the contain-
ment by checking a logical implication usingmultiplecon-
tainment mappings. (See Section 2 for detail.)

In this paper, we study how to test containment of con-
junctive queries with arithmetic comparisons. In particular,
we focus on the following two problems: (1) In what cases
is the normalization step not needed? (2) In what cases does
thehomomorphism propertyhold, i.e., the containment test
is based on a single containment mapping [10]?

The motivation of studying these problems is three fold.
The first one is the efficiency of the test procedure. Whereas
the problem of containment of pure conjunctive queries is
known to be NP-complete [4], the problem of containment
of conjunctive queries with arithmetic comparisons is�P

2
-

1

complete [10, 20]. In the former case, the containment test
is in NP because it is based on the existence of asinglecon-
tainment mapping, i.e., the homomorphism property holds.
In the latter case the test needs multiple containment map-
pings, which significantly increases the complexity of the
problem. In this work, we find large classes of queries
where the homomorphism property holds. Thus, we can re-
duce the complexity of the problem to NP. Even though the
saving on the normalization step does not put the problem
in a different complexity class, it can still reduce the size of
the queries, as well as the number of mappings required to
test containment.

The second reason is that the homomorphism property
can simplify many problems such as that of answering
queries using views [12], in which we want to construct a
plan using views to compute the answer to a query. It is
shown in [1] that if both the query and the views are con-
junctive queries with arithmetic comparisons, and the ho-
momorphism property does not hold, then a plan can be
recursive. Otherwise, we can just consider plans that are
also conjunctive queries with comparisons. Hence, if we
know the homomorphism property holds by analyzing the
query and views, we can develop efficient algorithms for
constructing a plan using views.

The third motivation is that, in studying realistic queries
(e.g., those TPC benchmarks), we found that it is very hard
to construct examples that need multiple mappings in the
containment test. In other words, we observed that most
real queries only need a single containment mapping to test
the containment. If we can easily identify the cases in which
a single containment mapping is sufficient to prove contain-
ment between queries, the containment test becomes sub-
stantially less expensive. Therefore, we want to derive syn-
tactic conditions on queries, under which the homomor-
phism property holds and a single containment mapping
suffices to prove containment. These syntactic conditions
can be easily checked in polynomial time. In this paper we
develop such conditions.

In the problem of testing whether queryQ2 is contained
in queryQ1, we callQ2 the contained queryandQ1 the
containing query. The following are our contributions of
this work. (Table 1 is a summary of results.)

1. We show cases where the normalization step in the test
is not needed when their comparisons do not imply
equalities. These cases are when the containing query
Q1 has only� or� comparisons, or the comparisons
of Q1 do not imply equalities and the homomorphism
property holds. (Section 3).

2. When the containing queryQ1 has only arithmetic
comparisons between a variable and a constant (called
“semi-intervals,” or “SI” for short), we present cases
where the homomorphism property holds (Section 4).

We show that if the homomorphism property does not
hold, then some “heavy” constraints must be satisfied.
An example of such a constraint is: An ordinary sub-
goal ofQ1, an ordinary subgoal ofQ2, an open-left-
semi-interval subgoal ofQ2, and a closed-left-semi-
interval subgoal ofQ2 all use the same constant. (See
Table 1 for the definitions of these terms.) Notice
that these conditions are just syntactic constraints, and
can be checked in time polynomial on the size of the
queries. In general, all the constraints in this paper
are syntactic and can be checked in polynomial time.
Moreover, they are tight in that if one constraint is vi-
olated, we can give examples to show that the homo-
morphism property does not hold.

3. We further relax the conditions of the homomorphism
property using practical domain knowledge that is eas-
ily obtainable (Section 5).

4. We conducted experiments on real queries, and show
that many of them satisfy the conditions under which
the homomorphism property holds (Section 6).

1.1 Related Work

For conjunctive queries, restricted classes of queries are
known for which the containment problem is polynomial.
For instance, if every database predicate occurs in the con-
tained query at most twice, then the problem can be solved
in linear time [15], whereas it remains NP-complete if every
database predicate occurs at least three times in the body
of the contained query. If the containing query is acyclic,
i.e., the predicate hypergraph has a certain property, then
the containment problem is polynomial [14].

Klug [10] has shown that containment for conjunctive
queries with comparison predicates is in�P

2
, and it is

proven to be�P
2

-hard in [20]. The reduction only used6=.
This result is extended in [11] to use at most three occur-
rences of the same predicate name in the contained query
(and also only6=). The same reduction shows that it remains
�P
2

-complete even in the case where the containing query is
acyclic, thus the results in [14] do not extend to conjunctive
queries with6=. The complexity is reduced to co-NP in [11]
if every database predicate occurs at most twice in the body
of the contained query and only6= is allowed.

The most relevant to our setting is the work in [8, 10].
They show that if only left or right semi-interval compar-
isons are used, the containment problem is in NP. It is stated
as an open problem to search for other classes of conjunc-
tive queries with arithmetic comparisons for which contain-
ment is in NP.

Query containment has been studied also for recursive
queries. For instance, containment of a conjunctive query
in a datalog query is shown to be EXPTIME-complete [3,

2

Contained Query Containing Query Complexity References
CQ CQ NP [4]
CQ with closed LSI CQ with closed LSI NP [8, 10]
CQ with open LSI CQ with open LSI NP [8, 10]
CQ with AC CQ with closed LSI NP Section 4
CQ with AC CQ with LSI NP Section 4
Constraints (i)-lsi, (ii)-lsi, (iii)-lsi Theorem 4.2
CQ with SI CQ with LSI, RSI NP Section 4
Constraints (i)-lsi,rsi, (ii)-lsi,rsi, (iii)-lsi,rsi, (iv) Theorem 4.3
CQ with SI CQ with LSI, RSI, PI NP Section 4
Constraints as above and (v),(vi),(vii) Theorem 4.4
CQ with AC CQ with AC �P

2
[20]

Table 1. Results on containment test. The classes in NP have the homomorphism property. (See
Table 2 for symbol definitions.)

7]. Containment among recursive and nonrecursive datalog
queries is also studied in [6, 16].

In [1] we studied the problem of how to rewrite a query
using views if both the query and views are conjunctive
queries with arithmetic comparisons. The algorithm de-
pends upon the checking for containment among queries.
Besides showing the necessity of using recursive plans if
the homomorphism property does not hold, we also devel-
oped an algorithm applicable when the property holds. In
this work, we identify the conditions under which the ho-
momorphism property holds. Thus the results in [1] are an
application of the contributions of this paper. Clearly testing
query containment efficiently is a critical problem in many
data applications as well.

2 Preliminaries

In this section, we review the definitions of query con-
tainment, containment mappings, and related results in the
literature. We also introduce the concept of minimal in-
equality graphs and define the homomorphism property.

Definition 2.1 (Query containment) A queryQ2 is con-
tainedin a queryQ1, denotedQ2 v Q1, if for any database
D, the set of answers toQ2 is a subset of the answers to
Q1. The two queries areequivalent, denotedQ1 � Q2, if
Q1 v Q2 andQ2 v Q1. 2

A conjunctive query (i.e., select-project-join query) is in
the form:

h(�X) :- g1(�X1); : : : ; gk(�Xk)

In each subgoalgi(�Xi), predicategi is abase relation, and
every argument in the subgoal is either a variable or a con-
stant.

Chandra and Merlin [4] showed that for two conjunctive
queriesQ1 andQ2, Q2 v Q1 if and only if there is acon-
tainment mappingfrom Q1 to Q2, such that the mapping
maps a constant to the same constant, and maps a variable
to either a variable or a constant. Under this mapping, the
head ofQ1 becomes the head ofQ2, and each subgoal of
Q1 becomessomesubgoal inQ2. We refer toQ1 as the
containing queryand toQ2 as thecontained query.

Let Q be a conjunctive query with arithmetic compar-
isons (CQAC). We consider the following arithmetic com-
parisons (inequalities):<,�,>,�, and6=. We assume that
database instances are over densely totally ordered domains.
In addition, without loss of generality, throughout the paper
we make the following assumptions about the comparisons:

1. The comparisons are not contradictory, i.e., there ex-
ists an instantiation of the variables such that all the
comparisons are true. (Otherwise the query returns the
empty set as an answer on every database instance.)

2. All the comparisons are safe, i.e., each variable in the
comparisons appears in some ordinary subgoal.

3. The comparisons do not imply equalities. The fix is
easy. If the comparisons can imply an equalityX = Y ,
we can rewrite the query by substitutingX for Y .

We denotecore(Q) as the set of ordinary (uninterpreted)
subgoals ofQ that do not have comparisons, and denote
AC(Q) as the set of subgoals that are arithmetic compar-
isons inQ. We use the termclosureof a set of arithmetic
comparisonsS, to the set of all possible arithmetic compar-
isons that can be logically derived fromS. For example, for
the set of arithmetic comparisonsS = fX � Y; Y = cg,
theClosure(S) = fX � Y; Y = c;X � cg. In addition,
for convenience, we will denoteQ0 as the corresponding
conjunctive query whose head is the head ofQ, and whose

3

body iscore(Q). See Table 2 for a complete list of defini-
tions and notations on special cases of arithmetic compar-
isons (such as semi-interval, point inequalities, and others).

Symbol Meaning

CQ Conjunctive Query
AC Arithmetic Comparison
CQAC Conjunctive Query with ACs
core(Q) Set of ordinary subgoals of queryQ
AC(Q) Set of arithmetic-comparison subgoals of queryQ

SI Semi-interval:X�c, � 2 f<;�; >;�g
LSI Left-semi-interval:X�c, � 2 f<;�g
closed-LSI X � c

open-LSI X < c

PI Point Inequalities (X 6= c)
SI-PI Some subgoals are SI, and some are PI

Table 2. Symbols used in the paper. X de-
notes a variable and c denotes a constant.
The RSI cases are symmetrical to those of
LSI.

2.1 Testing Containment

Let Q1 andQ2 be two conjunctive queries with arith-
metic comparisons (CQACs). Throughout the paper we
study how to test whetherQ2 v Q1. To do the testing,
according to the results in [8, 10], we firstnormalizeboth
queriesQ1 andQ2 toQ0

1
andQ0

2
respectively as follows.

� For all occurrences of a shared variableX in the nor-
mal subgoals except the first occurrence, replace the
occurrence ofX by a new distinct variableXi, and
addX = Xi to the AC’s of the query; and

� For each constantc in the query, replace the constant
by a new distinct variableZ, and addZ = c to the
AC’s of the query.

The original queries and the normalized queries are
shown in Figure 1. For simplicity, we denote�1 =
AC(Q1), �2 = AC(Q2), �0

1
= AC(Q0

1
), and �0

2
=

AC(Q0

2
). Let �1; : : : ; �k be all the containment mappings

from Q0

1;0 to Q0

2;0. Let
1; : : : ;
l be all the containment
mappings fromQ1;0 to Q2;0. There are a few important
observations to be noticed.

1. The number of ordinary subgoals inQ1 (resp.Q2) does
not change after the normalization. Each subgoalGi

(resp.Hi) has changed to a new subgoalG0

i (resp.H 0

i).

2. While the comparisons C1; : : : ; Cn1 (resp.
D1; : : : ; Dn2) are kept after the normalization,

we may have introduced new comparionsCnew (resp.
Dnew) after the normalization. Note thatCnew and
Dnew contain only equalities.

3. There can be more containment mappings for the nor-
malized queries than the original queries, i.e.,k � l.
The reason is that a containment mapping cannot map
a constant to a variable, nor map different instances
of the same variables to different variables. However,
after normalizing the two queries, their ordinary sub-
goals only have distinct variables, making any variable
in Q0

1 mappable to any variable inQ0

2 (for the same
position of the same predicate).

The following theorem is from [8, 10].

Theorem 2.1 Q2 v Q1 if and only if the following logical
implication� is true:

� : �0

2
) �1(�

0

1
) _ : : : _ �k(�

0

1
)

That is, the comparisons in the normalized queryQ0

2
logi-

cally implies (denoted “)”) the disjunction of the images
of the comparisons of the normalized queryQ0

1
under these

mappings. 2

EXAMPLE 2.1 This example from [21] shows that the
normalization step in Theorem 2.1 is critical. Consider two
queriesQ1 andQ2.

Q1 : h(W) :- q(W); p(X;Y; Z; Z 0; U; U);
X < Y;Z > Z 0:

Q2 : h(W) :- q(W); p(X;Y; 2; 1; U; U);
p(1; 2; X; Y; U; U);
p(1; 2; 2; 1; X; Y).

The following are two containment mappings fromQ1;0

toQ2;0.

Æ1 :W !W;X ! X;Y ! Y; Z ! 2; Z 0 ! 1; U ! U:

Æ2 :W !W;X ! 1; Y ! 2; X ! X;Z 0 ! Y; U ! U:

Notice that we do not have a containment mapping from the
p subgoal inQ1 to the lastp subgoal inQ2, since we cannot
map the two instances of variableU to both variablesX and
Y .

We can show thatQ2 v Q1, but the following impllica-
tion isnot true:

TRUE) Æ1(X < Y;Z > Z 0) _ Æ2(X < Y;Z > Z 0):
TRUE) (X < Y ^ 2 > 1) _ (1 < 2 ^X > Y):
TRUE) (X < Y) _ (X > Y):

The reason the implication does not hold is that it is pos-
sibleX = Y . However, in this case, we would have a new
containment mapping fromQ1 toQ2.

Æ3 :W !W;X ! 1; Y ! 2; Z ! 2; Z 0 ! 1; U ! X = Y

4

Normalization

Normalization

Containment mappings
1; : : : ;
l
Containment mappings �1; : : : ; �k

Q0

1 :

Q0

1;0

z }| {

ans() : � G0

1; : : : ; G
0

m1
;

�0

1
=AC(Q0

1
)

z }| {

C1; : : : ; Cn1; Cnew

Q0

2 :

Q0

2;0

z }| {

ans() : �H 0

1; : : : ; H
0

m2
;

�0

2
=AC(Q0

2
)

z }| {

D1; : : : ; Dn2; Dnew

Q1 :

Q1;0

z }| {

ans() : � G1; : : : ; Gm1
;

�1=AC(Q1)
z }| {

C1; : : : ; Cn1

Q2 :

Q2;0

z }| {

ans() : �H1; : : : ; Hm2
;

�2=AC(Q2)
z }| {

D1; : : : ; Dn2

Figure 1. Containment testing.

In fact, after normalizing the two queries, we will have three
(instead of two) containment mappings from the normalized
query ofQ1 to that ofQ2. 2

EXAMPLE 2.2 This example shows that the_ operation
in the implication in Theorem 2.1 is critical. Consider two
queries:

Q1 : ans() :- p(X; 4); X < 4:
Q2 : ans() :- p(A; 4); p(3; A); A � 4:

Their normalized queries are:

Q0

1
: ans() :- p(X;Y); X < 4; Y = 4:

Q0

2
: ans() :- p(A;B); p(C;D); A � 4; B = 4;

C = 3; A = D:

There are two containment mappings fromQ0

1;0 toQ0

2;0:

�1 : X ! A; Y ! B: �2 : X ! C; Y ! D:

We can show that:

A � 4; B = 4; C = 3; A = D

) �1(X < 4; Y = 4) _ �2(X < 4; Y = 4)

That is:

A � 4; B = 4; C = 3; A = D

) (A < 4; B = 4) _ (C < 4; D = 4)

Therefore,Q2 v Q1. Notice that both containment map-
pings are needed to prove the implication. 2

2.2 Challenges

There are several challenges in using Theorem 2.1 to test
whetherQ2 v Q1. (1) The queries look less intuitive after
the normalization. The computational cost of testing the
implication � increases since we need to add more com-
parisons. (2) The implication needs the disjunction of the
images of multiple containment mappings. In many cases it
is desirable to have a single containment mapping to satisfy
the implication. (3) There can be more containment map-
pings between the normalized queries than those between
the original queries.

In the rest of the paper we study how to deal with these
challenges. In Section 3 we study in what cases we do not
need to normalize the queries. That is, even ifQ1 andQ2

are not normalized, we still haveQ2 v Q1 if and only if

�2)
1(�1) _ : : : _
l(�1):

In Section 4 we discuss in what cases we only need a sin-
gle containment mapping fromQ0

1;0 toQ0

2;0 that can satisfy
the implication. That is, we want to know in what cases the
following is true.Q2 v Q1 if and only if there is a contain-
ment mapping� fromQ0

1;0 toQ0

2;0, such that�0

2
) �(�0

1
).

If this claim, we say that the containment testing has the
homomorphism property.

Besides reducing the complexity of the problem of query
containment, the homomorphism property is useful also in
applications such as query rewriting using views [12]. At
present we only know of efficient algorithms for construct-
ing query rewritings using views that use heavily this prop-
erty [13, 2, 1].

2.3 Inequality Graphs

To give the intuition of a logical implication and make
it easy to reason about implications, we define the concept
of inequality graphs.1 Given a set� of comparisons, the
inequality graphof �, denotedG(�), is a graph constructed
as follows:

� The nodes in the graph are the variables and constants
in �.

� There is a directed arc from noden1 to noden2 if the
inequalityn1 < n2 or n1 � n2 is in �, or bothn1 and
n2 are constants andn1 < n2. Such an arc is labeled
as “<” or “�” according to whether the inequality is
strict (<) or nonstrict (�).

� If n1 = n2 is in �, there is a�-arc in each direction
betweenn1 andn2.

1A similar concept was introduced in [10]. Here we include inequalities
between constants automatically, and introduce the concept of “minimal
inequality graph” to remove implied equalities such asX = Y .

5

As an example, the inequality graph of the comparisons
S = fW � 4; X � 5; X < Y;X � Z;U = Z; Y � Ug is
shown in Figure 2.

4

�

�

U
Z

5W � < � <
X Y

��

Figure 2. Inequality Graph.

The implication from a set� of inequalities to an in-
equality can be explained using the graph as follows.�

implies an inequalityA1 � A2, whereA1 andA2 are either
a variable or a constant, ifG(�) has a directed path fromA1

toA2. � impliesA1 < A2 if there is a directed pathA1 to
A2 having at least one<-arc. Hence an implication can be
checked in polynomial time in the number of comparisons
in the set.

To simplify the reasoning about implications, we want to
merge those nodes in a graph that are implied to be equal.
� implies equalityA1 = A2 if there is a directed cycle of
�-arcs. Theminimal inequality graphof a set� of inequal-
ities, denoted asMG(�), is obtained from the inequality
graphG(�) as follows. For those nodes that are implied to
be equal by�, we merge them to a single node, and cor-
respondingly, let those arcs starting from (resp. ending at)
these nodes start from (resp. end at) the merged node. For
instance, Figure 3 shows the minimal inequality graph of
the inequalitiesS.

4

Z

5W � < � <
X Y

U

��

Figure 3. Minimal inequality graph.

Notice that in the containment implication� we are con-
sidering, since the right-hand side is a disjunction, the left-
hand side may not imply each of the disjuncts. For instance,
TRUE) (X < Y) _ (X = Y) _ (X > Y), butTRUE
cannot imply any of the three disjuncts. This disjunction
in the containment implication makes the reasoning about
the implication more challenging. In addition, we have the
following propositions.

Proposition 2.1 If the set of comparisonsAC(Q) in a
queryQ does not imply equalities, then the inequality graph
G(AC(Q)) is already minimal. 2

Proposition 2.2 After normalizing a queryQ to Q0,
the minimal inequality graphsMG(AC(Q0)) and
MG(AC(Q)) are isomorphic. 2

In the rest of the paper, we use the “graph” of an inequal-
ity set to mean the “minimal inequality graph” of the set.

2.4 Homomorphism Property

Definition 2.2 (Homomorphism property) Let Q1, Q2

be two classes of queries. We say that containment test-
ing on the pair(Q1;Q2) has the homomorphism property
if for any pair of queries(Q1; Q2) with Q1 2 Q1 and
Q2 2 Q2, the following holds:Q2 v Q1 iff there is a
homomorphism� from core(Q1) to core(Q2) such that
AC(Q2)) �(AC(Q2)). If Q1 = Q2 = Q, then we
say containment testing has the homomorphism property
for classQ. 2

The containment test of Theorem 2.1 forj general
CQACs, sonsiders normalized queries. However, in the
cases where a single mapping suffices to show containment
between normalized queries, it slso suffices to show con-
tainment between these queries when they are not in nor-
malized form and vice versa. Hence, whenever the homo-
morphism property holds, we need not distinguish and we
refer to queries either in normalized form or not.

In the cases where the homomorphism property holds,
we have the following non-deterministically polynomial al-
gorithm that checks ifQ2 v Q1. Guess a mapping� from
core(Q1) to core(Q2) and check whether� is a contain-
ment mapping with respect to the AC subgoals too (the lat-
ter meaning that an AC subgoalg maps on a AC subgoalg0

so that it holdsg0) g). Note that the number of mappings
is exponential on the size of the queries.

It is shown in [10] that for the class of conjunctive
queries with only open-LSI (open-RSI respectively) com-
parisons, then the homomorphism property holds. In this
paper, we find more cases where the homomorphism prop-
erty holds. Actually, we consider pairs of classes of queries
such as (LSI CQ, CQAC) and we look for constraints which
if satisfied then the homomorphism property holds.

Definition 2.3 (Homomorphism property under con-
straints) Let Q1, Q2 be two classes of queries andC be
a set of constraints. We say that containment testingon
the pair (Q1;Q2) w.r.t. the constraints inC has the homo-
morphism propertyif for any pair of queries(Q1; Q2) with
Q1 2 Q1 andQ2 2 Q2 and for which the constraints in
C are satisfied, the following holds:Q2 v Q1 iff there is
a homomorphism� from core(Q1) to core(Q2) such that
AC(Q2)) �(AC(Q2)). 2

The constraints we use are given assyntactic conditions
that relate subgoals, in both queries, which contain the same
constant. The satisfaction of the constraints can be checked
in polynomial time in the size of the queries. When the
homomorphism property holds then the query containment
problem is in NP.

6

3 Containment of Non-normalized Queries

In order to use the result in Theorem 2.1 to test the con-
tainment of two queriesQ1 andQ2, we need to normalize
them first. This normalization step could make the result-
ing queries look less intuitive, as shown in Example 2.2.
Introducing more comparisons to the queries in the nor-
malization can make the implication test computationally
more expensive. Thus we want to have a containment result
that does not require the queries to be normalized. In this
section we present two cases, in which even ifQ1 andQ2

are not normalized, we still haveQ2 v Q1 if and only if
�2)
1(�1) _ : : : _
l(�1).

3.1 Case 1

The following theorem says that Theorem 2.1 is still true
even for non-normalized queriesQ1, if two conditions are
satisfied by the queries: (1)�1 contains only� and�, and
(2) �1 (correspondingly�2) do not imply equalities. The
intuitive reason why in this case we can restrict the space of
mappings is due to the monotonicity property: For a CQQ
whose AC’s only include� and�, if a tuplet of a database
D is an answer toQ, then consider any databaseD0 ob-
tained fromD by identifying some elements. That is, the
constants ofD0 is a subset of the constants ofD and the tu-
ples ofD0 are copies of the tuples ofD where however, we
have replaced a group of different constants with the same
constant. We can show that the corresponding tuplet0 is in
the answerQ(D0).

Theorem 3.1 Consider two CQAC queriesQ1 and Q2

shown in Figure 1 that may not be normalized. Suppose
�1 contains only� and�, and�1 (correspondingly�2) do
not imply “=” restrictions. ThenQ2 v Q1 if and only if:

�2)
1(�1) _ : : : _
l(�1)

where
1; : : : ;
l are all the containment mappings from
Q1;0 toQ2;0. 2

[[[By Chen: Check the following proof.]]]

Proof: “Only if”: Let V be a set of variables that is par-
titioned into subsetsV1; : : : ;Vj . An ordering of the vari-
ables inV corresponds to a total order< on the subsets of
the partition. For any pair of variablesX;Y 2 V , X < Y

iff VX < VY whereX belongs to a subsetVX andY be-
longs to a subsetVY andX = Y iff X andY belong to
the same subset. Given a setV of variables, adistinct or-
deringof all variables inV is an ordering which is obtained
when each subset in the partition contains exactly one el-
ement. Each ordering can be viewed as a conjunction of
inequalities/equalities which holds on the variables for this

ordering. For example, letV = fX;Y; Zg. For the parti-
tion V1 = fX;Y g, V2 = fZg and the total orderV1 < V2,
we define the orderingo X = Y < Z which can be viewed
aso � X = Y ^ Y < Z. Clearly if o1; : : : ; on areall
orderings on a set of variables thentrue) o1 _ : : : _ on.

Suppose
Q2 v Q1

but
�2 6)
1(�1) _ : : : _
k(�1):

Thus there is an instantiation� of the setX of the vari-
ables in�2;
1(�1); : : : ;
k(�1), such that�(�2) holds, but

�(
1(�1)) _ : : : _ �(
k(�1))

does not.
Therefore, each�(
i(�1)) is false. Then there is at least

one built-in predicateai�bi in �(
i(�1)), such thatai�bi is
false. Here assumeai = �(Ai), andbi = �(Bi), whereAi

andBi are two variables inX . Recall that�1 uses� only,
thus� is�. As a consequence,ai � bi in �(
i(�1)) is false,
meaningai > bi, soai 6= bi.

Step 1: We want to change the instantiation� to another
instantiation�0, which assigns different constants to differ-
ent variables inX . In addition,�0(�2) still holds, and

�0(
1(�1)) _ : : : _ �
0(
k(�1))

does not. Notice that the instantiation� could assign the
same constant to two different variablesV1 andV2 in X . In
this case, ifV1 andV2 both appear in a built-in predicate in
�1,2 wlog, we assumeV1 � V2. Since the built-in predi-
cates in� do not imply equalities=, we knowV2 � V1
cannot appear in�1. Then we can always assigne two dif-
ferent constantsc1 < c2 to V1 andV2, respectively, such
thatV1 � V2 in �1 is still true under this new instantiation.
In addition, based on the analysis above, under�, each pair
of variable(Ai; Bi) that make�(
i(�1)) false must have
�(Ai) 6= �(Bi). For those variables inX that are instan-
tiated to the same constant under�, we can change the in-
stantiation to�0, such that�0 assigns different constants to
different variables inX . Furtheremore�0(�2) holds, and

�0(
1(�1)) _ : : : _ �
0(
k(�1))

Step 2: In this step we want to extend the instantiation
�0 (of those variablesX) to an instantiation�00 of the setY
of all the variables inQ2. Different variables inY are in-
stantiated by�00 to different constants. In addition, for the
databaseD = �00(Q20), we showQ2(D) 6� Q1(D), con-
tradicting the fact thatQ2 � Q1. The reason we need to
do the extension is that some variables inQ2 may not be in

2More accurately,V1 andV2 appear in a built-in predicate in the closure
of �1.

7

X . The extension is possible sincethe built-in predicates
in � do not imply equalities=. Thus for those variables in
Y �X , we can just assign unique constants to them. For the
databaseD = �00(Q20), the instantiation�00 turns the head
H2 of Q2 to a tuple�00(H2) in the answer toQ2(D), since
�00(�2) still holds. On the other hand,Q1 cannot produce
this tuple in its answerQ1(D), since (1)�00 assigns different
constants to different variables inY ; (2) for all those con-
tainment mappings
1; : : : ;
k fromQ10 toQ20, each
i of
them has�00(
i(�1)) to be false.

“If”: Let D be a database andt be a tuple in the answers
of Q2. We will prove thatt is also in the answers ofQ1.
Let o be the ordering of the elements ofD that generatest.
There is a mapping� fromQ20 toD such thato) �(�2).
We know that:

�2)
1(�1) _ : : : _
k(�1)

Hence,

�(�2)) �
�

1(�1) _ : : : _
k(�1)

�

Consequently

o) �
�

1(�1) _ : : : _
k(�1)

�

Thus there is ani, such that:o) �
�

i(�1)

�
. So the map-

ping
i followed by the mapping� computest as and an-
swer ofQ1.

3.2 Case 2

The following theorem shows that we do not need to nor-
malize the queries if they have the homomorphism property.

Theorem 3.2 Assume the comparisons inQ1 andQ2 do
not imply equalities. If there is a containment mapping�

fromQ0

1;0 to Q0

2;0, such that�0

2
) �(�0

1
), then there must

be a containment mapping
 fromQ1;0 to Q2;0, such that
�2)
(�1). 2

To prove the theorem, wedenormalizequeryQ0

1
andQ0

2

back toQ1 andQ2 respectively. The denormalization is the
opposite process of the normalization. It has two steps.

� Case (a): For each added comparisonX = Xi intro-
duced for a shared variableX in an ordinary subgoal,
we replace all theXi’s with X and remove this com-
parison.

� Case (b): For each added comparisonZ = c intro-
duced for a constantc in an ordinary subgoal, we
changeZ back toc and remove this comparison.

We show that because of the implication�0

2
) �(�0

1
),

we can modify the containment mapping� to a new con-
tainment mapping
 from Q1;0 to Q2;0, such that�2)

(�1).

Recall that the containment mapping� must map a con-
stant to the same constant, and map a variable to either a
variable or a constant. So in general it may be possible that
� will not yield a containment mappingQ1;0 to Q2;0 after
the denormalization, as shown in Example 2.1. We consider
the two cases in the denormalization.

Case (a): A variableXi was introduced to replace one
occurrence of a variableX . After the denormalization of
both queries, we want to show that the two corresponding
variables ofY1 = �(X) andY2 = �(Xi) should be re-
placed by the same argument (variable or constant)A.

Q0

1: : : :X : : :Xi : : : ; X = Xi; : : :

�
Q0

2: : : : Y1 : : : Y2 : : :

In this case the implication�0

2
) �(�0

1
) is �0

2
)

�(: : : X = Xi : : :). Thus we have:

�0

2
) : : : Y1 = Y2 : : :

In other words, in the (minimal inequality) graph
MG(�0

2
) of �0

2
, variablesY1 andY2 are at the same node.

Since�0

2 was obtained from�2 by adding equalities, and�2
itself does not imply equalities, by Propositions 2.1 and 2.2,
Y1 andY2 must be replaced with the same argument (vari-
able or constant)A after the denormalization. Thus we can
map the two occurrences of variableX in Q1 to the same
argumentA in Q2 (after denormalizing bothQ0

1
andQ0

2
).

Case (b): A variableZ was introduced to replace one
occurrence of a constantc, and�(Z) = Y . The argument
is similar as in case (a).

For any other variableX in Q1, we define
(X) =
�(X).

In summary, we can denormalizeQ0

1
andQ0

2
, and mod-

ify the containment mapping� to another containment map-
ping
 fromQ1;0 toQ2;0, such that�2)
(�1).

4 Classes of Queries with Homomorphism
Property

In this section, we are looking for constraints in the form
of syntactic conditions on queriesQ1 andQ2, under which
the homomorphism property holds. The conditions are suf-
ficiently tight in that, if at least one of them is violated, then
there exist queriesQ1 andQ2 for which the homomorphism
property does not hold. The conditions are syntactic and
can be checked in polynomial time. We consider the case
where the containing query (denoted byQ1 all through the

8

section) is a conjunctive query with only arithmetic com-
parisons between a variable and a constant. That is, all its
comparisons aresemi-interval(SI), which are in the forms
of X > c, X < c, X � c, X � c, or X 6= c. We call
X 6= c a point inequality(PI).

This section is structured as follows. Section 4.1 dis-
cusses technicalities on the containment implication, and
in particular in what cases we do not need a disjunction.
In Section 4.2 we consider the case where the containing
query has only left-semi-interval (LSI) subgoals. We give
a main result in Theorem 4.2, and discuss how to prove
it. In subsection 4.3 we extend Theorem 4.2 by consider-
ing the general case, where the containing query may use
any semi-interval subgoals and point inequality subgoals.
In Section 4.4, we argue (using examples) that if the con-
taining query has more general inequalities than SI, then it
is unlikely to find interesting cases that have the homomor-
phism property. In the Appendix, we include many exam-
ples to show that the conditions in the main theorems are
tight.

Section 4.5 gives an algorithm for checking whether
these conditions are met.

4.1 Containment Implication

In this subsection, we will focus on the implication

� : �0

2) �1(�
0

1) _ : : : _ �k(�
0

1)

in Theorem 2.1. We shall give some terminology (for ease
of reference) and some basic technical observations. The
left-hand side (lhs) is a conjunction of arithmetic compar-
isons (in Example 2.2, the lhs is:A � 4 ^ B = 4 ^ C =
3 ^ A = D). The right-hand side (rhs) is a disjunction and
each disjunct is a conjunction ofk arithmetic comparisons.
For instance, in Example 2.2, the rhs is:(A < 4 ^ B =
4) _ (C < 4 ^D = 4). There are two disjuncts: one is the
A < 4 ^ B = 4 and the other is theC < 4 ^D = 4. Each
disjunct is the conjunction of two arithmetic comparisons.
In the following, given an integeri, we shall callcontain-
ment implication any implication of this form: a) the lhs is
a conjunction of arithmetic comparisons, and b) the rhs is a
disjunction and each disjunct is a conjunction ofi arithmetic
comparisons.

Observe that the rhs can be equivalently written as a con-
junction of disjunctions (using the distributive law). Hence
this implication is equivalent to a conjunction of implica-
tions, each implication keeping the same lhs as the origi-
nal one, and the rhs is one of the conjuncts in the impli-
cation that results after applying the distributive law. We
call each of these implications apartial containment im-
plication.3 In Example 2.2, we write equivalently the rhs

3Notice that containment implications and their partial containment im-

as:(A < 4_ C < 4) ^ (A < 4 _D = 4) ^ (B = 4_ C <

4) ^ (B = 4 _D = 4). Thus, the containment implication
in Example 2.2 can be equivalently written as

(A � 4; B = 4; C = 3; A = D) A < 4 _ C < 4) ^
(A � 4; B = 4; C = 3; A = D) A < 4 _D = 4) ^
(A � 4; B = 4; C = 3; A = D) B = 4 _ C < 4) ^
(A � 4; B = 4; C = 3; A = D) B = 4 _D = 4).

Here we get four partial containment implications.
A partial containment implication�) (�1 _�2 _ : : :_

�k) is called adirect implicationif there exists ani, such
that if this implication is true, then�) �i is also true.
Otherwise, it is called acoupling implication. For instance,

(A � 4; B = 4; C = 3; A = D) B = 4 _D = 4)

is a direct implication, since if it is true, then

(A � 4; B = 4; C = 3; A = D) B = 4)

is also true. (PLEASE CHECK THIS DEFINITION. CAN
WE SAY THEY ARE “LOGICALLY EQUIVALENT”?)
On the contrary,

(A � 4; B = 4; C = 3; A = D) A < 4 _D = 4)

is a coupling implication.
The following lemma is used as a basis for many of our

results.

Lemma 4.1 LetImplication1 : �) (�1_�2 _ : : :_�k),
where each�i is a conjunction of conjunctsei1 ^ ei2 : : : ^
ein. Also assume the following property: if�) (d1 _
d2 _ : : : _ dk) holds, wheredj is a conjunct in�j , then
for somel 2 (1; : : : ; k), �) dl holds. Then for some
m 2 (1; : : : ; k), we have�) �m. 2

Proof: By contradiction. Assume� does not imply any
of the disjuncts�m. Then, for each�m, there must exist
oneem = emr, such that�) emr, r 2 (1; : : : ; n), does
not hold - otherwise, if�) emr holds for allr, �) �m
will hold. Consider the disjunction of all suchemr’s. Since
Implication 1 holds,Implication2 : �) (e1 _ e2 _ ek)
holds. By the statement of the lemma we are given that if
Implication 2 holds, there exist oneep such that�) ep,
which contradicts our assumption.

In this section we will give conditions that can guarantee
this direct implications in containment test.

Corollary 4.1 Consider the normalized queriesQ0

1
andQ0

2

in Theorem 2.1. Suppose all partial containment implica-
tions are direct. Then there is a mapping�i fromQ0

1;0 to
Q0

2;0 such that�0

2
) �i(�

0

1
). 2

plications are not necessarily related to mappings and query containment,
only the names are borrowed.

9

Lemma 4.2 LetQ1 : Q10; �1 andQ2 : Q20; �2 be conjuc-
tive queries whose cores areQ10 andQ20 respectively and
the ACs are�1 and�2 respectively. LetQ1 be normalized to
Q0

1
: Q0

10
; �0

1
andQ0

2
: Q0

20
; �0

2
, whereQ0

10
(Q0

20
) is the core

of Q0

1(Q
0

2) and�1(�2) is the AC ofQ0

1(Q
0

2) respectively. If
�0

2
) �(�0

1
) where� is a containment mapping fromQ0

1
to

Q0

2, there exists a containment mapping� from Q1 to Q2

such that�2) �(�1). 2

Proof: First we construct a containment mapping�0 from
Q1 toQ0

2
using� by setting�0(X) = �(X). �0

2
) �(�0

1
).

By construction,�0

1
contains all the ACs in�1. That is,

�0

1
) �1. Or, �(�0

1
)) �(�1). Therefore,�0

2
) �(�1)

[1]. Consider a mapping�0 from the core subgoals ofQ0

2
to

those ofQ2. If we introduced a new variableY in Q0

2
for

a shared variableX in Q2, �0(Y) = X . For a variableY
that is inQ0

2
and also inQ2, �0(Y) = Y . If we introduced a

new variableY in Q0

2
for a constantc in Q2, set�0(Y) = c.

Since a variable occurs only once in the core ofQ0

2
, �0 is a

containment mapping fromQ0

2
toQ2.

We show below that�2) �0(�0

2
) holds. We consider

the three types of AC’s in�0

2 and show that�2 implies each
(under the mapping�0):

1. AC’s in �0

2
that were also in�2 hold by direct impli-

cation, since the variables that occur in these AC’s occur in
bothQ2 andQ0

2
and� maps these variables to themselves.

2. AC’s in �0

2
due to shared variables in�2: For an oc-

currence of a shared variableX in Q2, we introduced a new
variableY in Q0

2
and addedX = Y in �0

2
. Now,�0 mapsY

toX . Therefore, such AC’s in�0

2 are reduced to tautologies
X = X in �(�0

2) and are trivially implied by�2.
3. AC’s in �0

2
due to constants inQ2. We introduced a

new variableY in Q0

2 andY = c in �0

2. Again,�0(Y) = c

andc = c is trivially implied by�2.
Hence�2) �0(�0

2
) holds [2].

Combining implications [1] and [2], we have�2)
�0(�(�1)). � is a containment mapping from the variables
in Q1 to Q0

2
. �0 is a containment mapping fromQ0

2
to Q2.

Therefore�0:� is a containment mapping fromQ1 toQ2.

Per Lemmas 4.1 and 4.2, if we can show that the only
form of implication is direct implication and rule out cou-
pling implication, the homomorphism property will hold.

Theorem 4.1 Q1 : Q10; �1 is a CQAC such thatQ10 is
the core ofQ1, and �1 is the arithmetic comparisons of
Q1. Similarly,Q2 : Q20; �2 is a CQAC with a coreQ20

and arithmetic comparisons�2. Let Q0

1
: Q0

10
; �0

1
and

Q2 : Q0

20; �
0

2 be the normalized forms ofQ1 andQ2 re-
spectively, with coresQ0

10
andQ0

20
and arithmetic compar-

isons�0

1
and�0

2
respectively. Assume, for any set of con-

juncts (e1; e2; : : : ; ek), whereei is a conjunct in�i(�0

1),
and�1; �2; : : : ; �k are all the containment mappings from
Q0

10
to Q0

20
, �0

2
) el holds for l 2 (1; : : : ; k). Then,

Q2 v inQ1 iff there exists a homomorphism (fromQ10 to
Q20) �, such that�2) �(�1). 2

Proof: If: follows from Theorem 2.1.
Only If: If Q2 v Q1, then by Theorem 2.1

Implication1 : �0

2
) �1(�

0

1
)_�2(�

0

1
)_ : : : �k(�

0

1
), where

�i; i 2 1 : : : k are all the containment mappings fromQ0

1
to

Q0

2
.
First, we argue that in the normalized queries, there ex-

ists one CM� from Q0

1
to Q0

2
such that the implication

�0

2
) �(�0

1
) holds. Then we show that if� exists, there

exists a CM� from Q1 to Q2 such that the implication
�2) �(�1) holds.

We rewrite the consequent of Implication 1 as a conjunc-
tion of disjunctions, by conjoining all possible combina-
tionsCi, obtained by choosing one AC from each�i(�0

1)
for i 2 (1; : : : k), and obtaining the disjunction of the AC’s
in a combinationCi. each disjunct appears in some�i(�0

1
).

�0

2) C1^C2^: : : CN , whereN is the number of inequal-
ities in �0

1
. �0

2
implies each of these conjunctsCj;8j; 1 �

j � N separately. Consider one such implication�0

2
) Cj ,

whereCj is e1 _ e2 _ : : : ek andei 2 �i(�
0

1); i 2 (1; : : : k).
We have�0

2
) e1 _ e2 _ : : : ek. By the hypothesis of the

theorem,�0

2) el, for l 2 (1; : : : ; k).
Using the result above, and Lemma 4.1, we have�0

2)
�j(�

0

1
) wherej 2 (1; : : : ; k). Again, using the result above,

and Lemma 4.2, we show that there exists a containment
mapping� fromQ1 toQ2 such that�2) �(�1).

As shown above, if Implication 1 does not result in cou-
pling implications, the homomorphism property holds and
we can design efficient algorithms to check query contain-
ment. By exhaustively listing the different forms of cou-
pling implications, and finding sufficient conditions to avoid
them, we can identify sufficient conditions under which the
homomorphism property holds. We enumerate the different
forms of coupling in the appendix and provide the sufficient
conditions to avoid coupling in the next section.

4.2 Left Semi-interval Comparisons (LSI) forQ1

We first consider the case whereQ1 is a conjunctive
query with left semi-interval arithmetic comparison sub-
goals only (i.e., one of the formX < c or X � c or both
may appear in the same query). The following theorem is a
main result that describes the conditions for the homomor-
phism property to hold in this case.

Theorem 4.2 LetQ1 be a conjunctive query with left semi-
interval arithmetic comparison subgoals andQ2 a conjunc-
tive query with any arithmetic comparison subgoals. IfQ1

andQ2 satisfy all the following conditions, then the homo-
morphism property holds.

10

� Condition (i)-lsi: There do not exist subgoals as fol-
lows which all share the same constant: An open-LSI
subgoal inAC(Q1), a closed-LSI subgoal in the clo-
sure ofAC(Q2), and a subgoal incore(Q1).

� Condition (ii)-lsi: Either core(Q1) has no shared vari-
ables or there do not exist subgoals as follows which
all share the same constant: An open-LSI subgoal
in AC(Q1), a closed-LSI subgoal in the closure of
AC(Q2) and, a subgoal incore(Q2).

� Condition (iii)-lsi: Either core(Q1) has no shared
variables or there do not exist subgoals as follows
which all share the same constant: An open-LSI sub-
goal in AC(Q1) and two closed-LSI subgoals in the
closure ofAC(Q2).

2

See the Appendix for an extended sketch of the proof of
Theorem 4.2. If confusion does not arise we will refer to
these conditions simply by (i), (ii), and (iii) instead of (i)-
lsi, (ii)-lsi, and (iii)-lsi. It is straightforward to construct
corollaries of Theorem 4.2 that use simpler conditions. The
following corollary is an example.

Corollary 4.2 LetQ1 be a conjunctive query with left semi-
interval arithmetic comparison subgoals andQ2 a conjunc-
tive query with any arithmetic comparison subgoals. If the
comparisons inQ1 do not share a constant with the closue
of the arithmetic comparisons ofQ2, then the homomor-
phism property holds. 2

The results in Theorem 4.2 can be symmetrically stated
for RSI queries as containing queries. The symmetrical con-
ditions of Theorem 4.2 for the RSI case will be referred to
as conditions (i)-rsi, (ii)-rsi, and (iii)-rsi, respectively.

4.3 Semi-Interval (SI) and Point-Inequalities (PI)
Queries forQ1

Now we extend the result of Theorem 4.2 to treat both
LSI and RSI subgoals occurring in the same containing
query. We further extend it to include point inequalities,
i.e., of the formX 6= c whereX is a variable andc is a
constant.

4.3.1 SI Queries forQ1

We consider the case whereQ1 has both LSI and RSI in-
equalities called “SI inequalities,” i.e., any of the<, >, �,
and�. In this case we need one more condition, namely
Condition (iv), in order to avoid coupling implications.
Thus Theorem 4.2 is extended to the following theorem,
which is the second main result of this section.

Theorem 4.3 LetQ1 be a conjunctive query with left semi-
interval and right semi-interval arithmetic comparisons and
Q2 a conjunctive query with SI arithmetic comparisons. If
Q1 andQ2 satisfy all the following conditions, then the ho-
momorphism property holds.

� Conditions (i)-lsi, (ii)-lsi, (iii)-lsi, (i)-rsi, (ii)-rsi, and
(iii)-rsi.

� Condition (iv): (a) Any constant in an RSI subgoal of
Q1 is strictly greater than any constant in an LSI sub-
goal ofQ1, or (b) (i) Q1 contains only open subgoals
(open-LSI or open-RSI), and (ii) any constant in an RSI
subgoal ofQ1 is greater than or equal to all constants
in LSI-subgoals ofQ1, and (iii) there do not exist an
open-LSI subgoal inQ1, an open-RSI subgoal inQ1,
andCore(Q1) that share a constant.

2

4.3.2 PI Queries forQ1

If the containing queryQ1 has point inequalities, three
more forms of coupling implications can occur. Thus The-
orem 4.3 is further extended to Theorem 4.4, which is the
third main result of this section.

Theorem 4.4 LetQ1 be a conjunctive query with left semi-
interval and right semi-interval and point inequality arith-
metic comparison subgoals andQ2 a conjunctive query
with SI arithmetic comparison subgoals. IfQ1 andQ2 sat-
isfy all the following conditions, then the homomorphism
property holds.

� Conditions (i)-lsi, (ii)-lsi, (iii)-lsi, (i)-rsi, (ii)-rsi, and
(iii)-rsi.

� Condition (iv).

� Condition (v): EitherQ1 has no repeated variables, or
it does not have point inequalities.

� Condition (vi): core(Q1) and Point-Inequalities(Q1)
do not share a constant.

� Condition (vii)-lsi: Closed-LSI(Q1),
Point-Inequality(Q1) do not share constant.

� Condition (vii)-rsi: Closed-RSI(Q1),
Point-Inequality(Q1) do not share a constant.

2

11

4.4 Beyond Semi-Interval Queries forQ1

In this subsection, we try to see how far the kind of re-
sults we obtained so far can be pushed to hold on more
general queries. We give some examples that indicate our
results have already captured subtle cases where the homo-
morphism property holds and there is not much hope be-
yond those cases (unless we restrict the number of subgoals
of the contained query which is known in the literature –
e.g., [11]). Here is one example. There are two more in the
Appendix.

Coupling 1: Couplings that occur due to the following
implication:

TRUE)
�
(X � Y) _ (Y � X)

�

indicates that if the containing query has closed compar-
isons, then the homomorphism does not hold. The follow-
ing is such an example.

Q1 : ans() :- p(X;Y); X � Y

Q2 : ans() :- p(X;Y); p(Y;X)

Clearly Q2 is contained inQ1, but the homomorphism
property does not hold.

In summary, in this subsection, we have provided for-
mal conditions that, for queries with SI-PI inequalities, one
mapping is sufficient to test query containmentunlessthe
queries use shared variablesand same constant from the
same domain in “many” subgoals. We provide examples
(in the Appendix) of all those exceptional cases where one
mapping is not enough. The queries in those examples
are contrived in order to enforce a “hard” containment test.
Therefore, we believe that, in most practical cases the con-
tainment test is “easy”. The formal phrasing of this informal
statement are Theorems 4.2, 4.3, and 4.4.

4.5 A Testing Algorithm

We summarize the results in this section in an algorithm
shown in Figure 4. Given two CQAC queriesQ1 andQ2,
the algorithm tests if the homomorphism property holds in
checkingQ2 v Q1. It considers LSI, RSI, SI, and PI com-
parisons in the queries sequentially. Its different steps are
based on the results in Subsections 4.2 and 4.3. It is possi-
ble for queries not to satisfy these conditions, while it is still
possible for the homomorphism property to hold. For in-
stance, it could happen if they do not have self-joins, or do-
main information yields that certain mappings are not pos-
sible (see Section 5). Hence, in the diagram, we can also
put this additional check: Whenever one of the conditions
is not met, we also check whether there are mappings that
would enable a coupling implication. We did not include
the formal results for this last test for brevity, as they are a
direct consequence of the discussion in the present section.

repeat for RSI comparions (symmetric)

Homomorphism property holds

Are there an LSI(Q1) and an RSI(Q1) that
share a constant with PI(Q2), and the
variables in the Q1 subgoals can map to the
variables in the Q2 subgoals?

Is there a constant in Core(Q1) that appears

and the variables in PI(Q1) can map to the
same variable in Q2?

in PI(Q1) and both the constant in Core(Q1)

Is there a constant in a CLSI(Q1) that appears
in PI(Q1), and both the variables in the two
subgoals can map to the same variable in Q2?

in PI(Q1), and both the variables in the two
subgoals can map to the same variable in Q2?

Is there a constant in a CRSI(Q1) that appears

No

No

No

No

May not hold

Yes

Yes

Yes

Yes

May not hold

Are there an LSI(Q1) and an RSI(Q1) such
that the constant in the RSI subgoal is greater than
the LSI subgoal, and the variables in the subgoals
can be mapped to the same variable in Q2?

Yes

repeated variable?
core(Q1) has a

No

Start (queries Q1 and Q2)

Yes

No

No May not hold

Yes

No

Check SI comparisons

Check LSI comparisons

Are there an OLSI(Q1), a CLSI AC in Closure(Q2), and
Yes

Are there an OLSI(Q1) and two CLSI AC's in Closure(Q2)
that share a constant, and the variables in the OLSI(Q1)

Core(Q2) that share a constant, and the variable in the
OLSI(Q1) subgoal and the repeated variable can map to a
variable of the CLSI AC that shares the constant?

CLSI AC's that share the constant?
and the repeated variable can map to a variable in the

Yes

Are there an OLSI(Q1), a CLSI AC in Closure(Q2), and
Core(Q1) subgoal that share a constant and, the constant and

in the CLSI AC that shares the constant?
variable in the OLSI(Q1) subgoal and can map to the variable

Check PI comparisons

No

Figure 4. An algorithm for checking homo-
morphism property in testing Q2 v Q1.

12

5 Improvements Using Domain Information

So far we have discussed in what cases we do not need
to normalize queries in the containment test, and in what
cases we can reduce the containment test to checking the
existence of a homomorphism. It is possible that a query
does not satisfy these conditions, and the results become in-
applicable. For instance, often a query may have both<

and� comparisons, not satisfying the conditions in Theo-
rem 3.1. In this section we study how to relax the conditions
in the theorems by using domain knowledge of the relations
and queries.

The intuition of our approach is the following. We par-
tition relation attributes into different domains, such as “car
models,” “years,” and “prices.” It is safe to assume that for
realistic queries, their conditions respect these domains. In
particular, for a comparisonX � A, whereX is a variable,
A is a variable or a constant, the domain ofA should be
the same as that of the attribute ofX . As an example, it
may be meaningless to have conditions such as “carYear
= $6,000.” Therefore, in the implication of testing query
containment, it is possible to partition the implication into
different domains. The domain information about the at-
tributes is collected only once before queries are posed. For
instance, given the following implication�:

year > 2000^ price � $5; 000
) year > 1998^ price � $6; 000

we do not need to consider implication between constants
or variables in different domains, such as “1998” and
“$6; 000,” and “year” and “price.” As a consequence, this
implication can be projected to the following implications
in two domains:

Year domain�y: year > 2000) year > 1998.
Price domain�p: price � $5; 000) price � $6; 000.

We can show that� is true if and only if both�y and�p
are true. In this section we first formalize this domain idea,
then show how to partition an implication into implications
of different domains. Finally we relax the conditions of the
theorems in the previous sections to conditions in different
domains.

5.1 Domains of Relation Attributes and Query Ar-
guments

We assume each attributeAi in a relationR(A1; : : : ; Ak)
has a domainDom(R:Ai). Different attributes of the same
or different relations could share the same domain. For in-
stance, consider the following two tables.

house(seller, street, city, price)
crimerate(city, rate)

Relation house has housing information such as the
seller, the street, the city, and the price of each house. The
relationcrimerate has information about the crime rate
of each city. The following table shows the domains of
different attributes in these relations. Notice that attributes
house.city andcrimerate.city share the same do-
main:D3 = fcity namesg.

Attribute Domain
house.seller D1 = fperson namesg
house.street D2 = fstreet namesg
house.city D3 = fcity namesg
house.price D4 = ffloat numbers in dollarsg
crimerate.city D3 = fcity namesg
crimerate.rate D5 = fcrime-rate float numbersg

Given a queryQ, each variable and constant inQ also
has its domain. We want to compute these domains auto-
matically, so that the user does not need to specify them
explicitly. The argument domains are calculated as follows.

� For each argumentXi (either a variable or a constant)
in a subgoalR(X1; : : : ; Xk) in queryQ, the domain
of Xi, Dom(Xi), is the corresponding domain of the
j-th attribute in relationR.

� For each comparisonX � c between a variableX and
a constantc, we setDom(c) = Dom(X). Notice
that two constants could have the same value but they
are from different domains, and thus they are treated
as different constants. For instance, in two conditions
carY ear = 2000 andcarPrice = $2000, constants
“2000” and “$2000” are treated as different constants,
since they are from different domains.

We perform this process on all subgoals and comparisons
in the query. In this calculation we make the following re-
alistic assumptions. (1) IfX is a shared variable in two
subgoals, then the corresponding attributes of the two argu-
ments ofX have the same domain. (2) If we have a compar-
isonX � Y , whereX andY are variables, thenDom(X)
andDom(Y) are always the same. The rationale of these
assumptions is that, realistic queries do not have conditions
that compare two arguments from different domains.

Consider the following two queries on the relations
above.

P1: ans(t1; c1) :- house(s1; t1; c1; p1); crimerate(c1; r1);
p1 � $300; 000; r1 � 3:5%:

P2: ans(t2; c2) :- house(s2; t2; c2; p2); crimerate(c2; r2);
p2 � $250; 000; r2 � 3:0%:

The computed domains of the variables and constants are
shown in the following table.

13

P1: P1: P2: P2:
Variable/ Domain Variable/ Domain
constant constant

s1 D1 s2 D1

t1 D2 t2 D2

c1 D3 c2 D3

p1 D4 p2 D4

r1 D5 r2 D5

$300; 000 D4 $250; 000 D4

3:5% D5 3:0% D5

It is easy to see that the domain information as defined
in this section can be obtained in polynomial time.

Proposition 5.1 The domain of each variable and each
constant can be found in polynomial time. 2

5.2 Partitioning Implication into Domain Impli-
cations

According to Theorem 2.1, to test the containmentQ1 v
Q2 for two given queriesQ1 andQ2, we need to test the
containment implication in the theorem. We want to par-
tition this implication to implications in different domains,
since testing the implication in each domain is easier. Now
we show that this partitioning idea is feasible. We say a
comparisonX � A is in domainD if X andA are in do-
mainD. The following are two important observations.

� If a mapping�i maps an argumentX in queryQ1 to
an argumentY in queryQ2, based on the calculation
of argument domains, clearlyX andY are from the
same domain.

� In query normalization, each new introduced variable
has the same domain as the replaced argument (vari-
able or constant).

Definition 5.1 (Implication Projection) Consider the fol-
lowing implication� in Theorem 2.1:

�0

2) �1(�
0

1) _ : : : _ �k(�
0

1)

For a domainD of the arguments in�, theprojection of�
in D, denoted�D , is the following implication:

�0

2;D) �1(�
0

1;D) _ : : : _ �k(�
0

1;D)

�0

2;D includes all the comparisons of�0

2
in domainD. Sim-

ilarly, �0

1;D includes all the comparisons of�0

1 in domainD.
2

Consider the two queries above, and we want to test if
P2 v P1. There is only one containment mapping fromP1
toP2, and we need to test the following implication:

� : p2 � $250; 000; r2 � 3:0%) p2 � $300; 000; r2 � 3:5%

The projection of� on domainD4 (float numbers in dollars)
�D4

is p2 � $250; 000) p2 � $300; 000. Similarly,�D5

is r2 � 3:0%) r2 � 3:5%.

Theorem 5.1 LetD1; : : : ; Dk be the domains of the argu-
ments in the implication�. Then� is true if and only if all
the projected implications�Di

; : : : ; �Dk
are true. 2

Proof: (Sketch) The implication� can be represented as
an inequality graph [10]. Based on the definition of argu-
ment domains, the vertices of arguments in the same do-
main form a subgraph, which should be disconnected from
any other subgraph of vertices of arguments in a different
domain. Thus “coupling” between vertices of different do-
mains can never happen in the implication.

In the example above, by Theorem 5.1,� is true if and
only if �D4

and�D5
are true. Since the latter two are true,�

is true. ThusP2 v P1. In general, we can test the implica-
tion in Theorem 2.1 by testing the implications in different
domains, which are much cheaper than testing the whole
implication.

5.3 Relaxing Conditions in the Theorems

By using Theorem 5.1 we can significantly relax the con-
ditions of the theorems in the previous sections. The condi-
tions of all the results in the previous sections can be relaxed
to those arguments in the same domain. As an example, if
a theorem requires the containing query to be LSI, then we
can change this requirement to requiring all AC subgoalsin
the same domainto be LSI. Notice that it is possible that
one domain is LSI while the other domain is RSI.

The following theorem is an example of how to relax
condition (ii)-lsi in Theorem 4.2.

Theorem 5.2 Let Q1 be a conjunctive query with left
semi-interval arithmetic comparisons andQ2 a conjunctive
query with any arithmetic comparisons. IfQ1 andQ2 sat-
isfy all the following conditions, then the homomorphism
property holds.

� Condition (i)-lsi: There do not exist subgoals as fol-
lows which all share the same constantc from the
same domain: 4 An open-LSI subgoal inAC(Q1),
a closed-LSI subgoal inAC(Q2), and a subgoal in
core(Q1).

� Condition (ii)-lsi: For every shared variableX in
core(Q1), and every constantc in the same domain
asX , there do not exist subgoals as follows which all
sharec: An open-LSI subgoal inAC(Q1), a closed-
LSI subgoal inAC(Q2), and a subgoal incore(Q2).

4Notice, e.g., that “$4” has a different domain from that of “4 years,”
hence they do not count as same in this condition.

14

� Condition (iii)-lsi: For every shared variableX in
core(Q1), and every constantc in the same domain
asX , there do not exist subgoals as follows which all
sharec: An open-LSI subgoal inAC(Q1) and two
closed-LSI subgoals inAC(Q2).

2

6 Experiments

In this section we evaluate the results on real queries,
and check whether the conditions in previous sections are
satisfied by these queries. We checked queries in many
introductory database courses available on the Web, data-
mining queries from Microsoft Research, and the TPC-H
benchmark queries [18]. We have observed that, for certain
applications (e.g., the data-mining queries), it is not unusual
for queries to not have self-joins, thus the homomorphism
property obviously holds. In addition, among the queries
that use only semi-interval (SI) and point inequality (PI)
comparisons, the majority has the homomorphism property.

For a more detailed discussion, we focus on our evalu-
ation results on the TPC-H benchmark queries [18], which
represent typical queries in a wide range of decision-support
applications. From what we know, our results are the first
formal proof that containment is easy for those queries.
In our experiments we viewed these benchmark queries as
containing queries in the containment test. That is, we sup-
posed that we wanted to check containment of a benchmark
query against any CQAC query. We removed the aggrega-
tions from the queries, i.e., for each aggregate query, we
considered a CQAC query with the same subgoals and the
same arithmetic restrictions in theWHEREclause. We ran
our algorithm described in Section 4.5. We also used do-
main information on top of the algorithm in the flowchart,
applying the domain-partitioning results in Section 5. If the
algorithm did not give us a definite answer as to whether
the homomorphism property holds against any query, then
we restricted the contained-query pool too, and gave condi-
tions that the contained query must satisfy in order for the
homomorphism property to hold.

It is also noticed that in order to be able to decide conclu-
sively, we also used the “mapping check” of the algorithm.
That is, whenever the conditions were not met, we showed
that an appropriate mapping that would enable a coupling
implication (and hence fail the homomorphism property)
would not occur either because of domain information or
because the query would be very unnatural and contrived.
To justify the latter remark, we argued that often if a con-
stant is shared by different subgoals or queries, then, we
may change one of its occurrences by a small fraction with-
out affecting the intended meaning of the query (that would
be the case with a date). By doing this however, we meet
the shared variable condition of our algorithm.

The following is a summary of our experiments on the
TPC-H benchmark queries.

1. All, except two (Q4 andQ21) of the 22 queries use
semi-interval comparisons (SI’s) and point inequalities
(PI’s) only.

2. When the homomorphism property may not hold, it
is always because of the following situation: a vari-
able (usually of “date” type) is bounded in an interval
between two constants. In such a case, the property
is guaranteed to hold if the contained query does not
contain self-joins of the subgoal that uses this variable.

3. As a consequence of result (2), if the contained query is
also one of the 22 queries, since they do not have self-
joins of relations that share a variable with SI predi-
cates, the homomorphism property holds.

The detailed experimental results are in the Appendix.
Here we use the following query adapted from TPC-H
queryQ3 as an example. (For simplicity we call this query
Q3.) We show how to apply the results in the earlier sections
to test the following: in testing ifQ3 is containing another
CQAC query, does the homomorphism property hold in the
test?

SELECT l_orderkey, l_extendedprice, l_discount,
o_orderdate, o_shippriority

FROM customer, orders, lineitem
WHERE c_mktsegment = ’[SEGMENT]’

AND c_custkey = o_custkey
AND l_orderkey = o_orderkey
AND o_orderdate < date ’[DATE]’
AND l_shipdate > date ’[DATE]’;

Let us view the above queryQ3 as a containing query to be
checked against any contained query that is a conjunctive query
with semi-interval comparisons. We shall apply Theorem 4.3. Be-
cause of lack of space, we do not state its relaxation, which es-
sentially adds to the conditions of Theorem 5.2 condition (iv) that
is now relaxed to hold only on inequalities in the same domain.
Notice that the above query has shared variables (expressed by the
equalityc custkey = o custkey in the WHEREclause), as well
as it contains both LSI and RSI arithmetic comparisons. However
the variableso orderdate (used in a comparison) andc custkey
(a shared variable) are obviously of different domains, although
that information is not explicitly stated in the query. Hence con-
ditions (ii)-lsi, (ii)-rsi, (iii)-lsi, (iii)-rsi are satisfied. Also there are
no constantsin the same domainthat are shared among subgoals
in core(Q3) and the comparison, because the constant in the com-
parisons is in a different domain than the constant incore(Q3).
Hence conditions (i)-lsi and (i)-rsi are satisfied.

As for condition (iv), it may not be satisfied but the simplest
scenario on which it is not satisfied either uses a query with a self-
join on relationlineitem or a self-join on relationorders .
Such a query (a) is not included in the benchmark, and (b) would

15

ask for information that is not natural or is of a very specific and
narrow interest (e.g., would ask of pairs of orders sharing a prop-
erty). Consequently we know that in order to test containment of
any natural SI query inQ3, we will need only one containment
mapping. Notice that without using the domain information, we
could not make in this conclusion.

7 Conclusion

In this paper we considered the problem of testing contain-
ment between two conjunctive queries with arithmetic compar-
isons. We showed in what cases the normalization step is not
needed. We found various syntactic conditions on queries, un-
der which we can reduce considerably the number of mappings
needed to test containment to a single mapping (homomorphism
property). These syntactic conditions can be easily checked in
polynomial time. Our experiment using real queries showed that
many of these queries pass this test, so they do have the homomor-
phism property in a containment mapping, making it possible to
use more efficient algorithm for the test.

References

[1] F. Afrati, C. Li, and P. Mitra. Answering queries using views
with arithmetic comparisons. InPODS, 2002.

[2] F. Afrati, C. Li, and J. D. Ullman. Generating efficient plans
using views. InSIGMOD, pages 319–330, 2001.

[3] A. Chandra, H. Lewis, and J. Makowsky. Embedded impli-
cation dependencies and their inference problem. InSTOC,
pages 342–354, 1981.

[4] A. K. Chandra and P. M. Merlin. Optimal implementation
of conjunctive queries in relational data bases.STOC, pages
77–90, 1977.

[5] S. Chaudhuri, R. Krishnamurthy, S. Potamianos, and
K. Shim. Optimizing queries with materialized views. In
ICDE, pages 190–200, 1995.

[6] S. Chaudhuri and M. Y. Vardi. On the equivalence of re-
cursive and nonrecursive datalog programs. InPODS, pages
55–66, 1992.

[7] S. S. Cosmadakis and P. Kanellakis. Parallel evaluation of
recursive queries. InPODS, pages 280–293, 1986.

[8] A. Gupta, Y. Sagiv, J. D. Ullman, and J. Widom. Constraint
checking with partial information. InPODS, pages 45–55,
1994.

[9] A. Halevy. Answering queries using views: A survey. In
Very Large Database Journal, 2001.

[10] A. Klug. On conjunctive queries containing inequalities.
Journal of the ACM, 35(1):146–160, January 1988.

[11] P. G. Kolaitis, D. L. Martin, and M. N. Thakur. On the com-
plexity of the containment problem for conjunctive queries
with built-in predicates. InPODS, pages 197–204, 1998.

[12] A. Levy, A. O. Mendelzon, Y. Sagiv, and D. Srivastava. An-
swering queries using views. InPODS, pages 95–104, 1995.

[13] R. Pottinger and A. Levy. A scalable algorithm for answering
queries using views. InProc. of VLDB, 2000.

[14] X. Qian. Query folding. InICDE, pages 48–55, 1996.
[15] Y. Saraiya. Subtree elimination algorithms in deductive

databases.Ph.D. Thesis, Computer Science Dept., Stanford
Univ., 1991.

[16] O. Shmueli. Equivalence of datalog queries is undecidable.
Journal of Logic Programming, 15(3):231–241, 1993.

[17] D. Theodoratos and T. Sellis. Data warehouse configuration.
In Proc. of VLDB, 1997.

[18] TPC-H. http://www.tpc.org/tpch/ .
[19] J. D. Ullman. Information integration using logical views. In

ICDT, pages 19–40, 1997.
[20] R. van der Meyden. The complexity of querying indefinite

data about linearly ordered domains. InPODS, 1992.
[21] J. Wang, M. Maher, and R. Toper. Rewriting general con-

junctive queries using views. In X. Zhou, editor,Thirteenth
Australasian Database Conference (ADC2002), Melbourne,
Australia, 2002. ACS.

A Appendix

A.1 Proof of Theorem 4.2

The proof of Theorem 4.2 is based on two observations on the
containment implication of Theorem 2.1: (a) If a coupling partial
containment implication occurs, then one of the three conditions is
shown to be dissatisfied. Consequently if the conditions are satis-
fied then we get only direct partial containment implications. (b) If
we have only direct partial containment implications, then the ho-
momorphism property holds. We settle (a) as follows: Lemma A.1
proves that only three forms of coupling partial containment im-
plications may occur. We observe that if the conditions (i)–(iii)
of Theorem 4.2 are satisfied, then the partial containment impli-
cations cannot have any of these three forms. Consequently, if
the conditions of Theorem 4.2 hold, there are only direct partial
containment implications.

Lemma A.1 Consider a partial containment implication with rhs
a disjunction of comparisons of either of the following forms
X � c;X < c;X = c;X = Y . Suppose the rhs is minimal
with respect to the satisfaction of the implication, i.e., if we delete
any of the disjuncts, the implication is not satisfied. Then either
the rhs has exactly one AC (i.e., it is a direct implication) or the
implication is one of the following three cases (up to renaming of
variables and constants and up to adding any number of additional
conjuncts in the lhs):

(i) (X � c)) ((X < c) _ (X = c))
(ii) ((X � c) ^ (Y = c))) ((X < c) _ (X = Y))
(iii) (X � c) ^ (Y � c)) (X < c) _ (Y < c)

_(X = Y)

2

Now using the above lemma, it is not hard to prove that the
conditions (i), (ii), and (iii) of Theorem 4.2 do not allow coupling
implications to happen. Finally, the proof of Theorem 4.2 is a
direct consequence of the above results and of Corollary 4.1 and
Theorem 3.2.

A.2 Enumeration of the Different Forms of Cou-
pling

In this subsection, we identify conditions to avoid all possible
forms of coupling. We use the termc-conjunctto refer to a con-
junct that appears in the consequent of an implication. Similarly,

16

we use the terma-conjunctto refer to a conjunct that appears in
the antecedent of an implication.

Note that for coupling, we need at least 2 c-conjuncts in the
consequent. Below, we list all possible combinations of two c-
conjuncts e1 and e2 and for each combination, derive the type of
coupling that can occur.

Forms of the c-conjuncts:

1. X < c

2. X > c

3. X � c

4. X � c

5. X 6= c

6. X = c

7. X = Y

A negated c-conjunct can be one of the following forms:

1. X � c

2. X � c

3. X > c

4. X > c

5. X = c

6. X 6= c

7. X 6= Y

Forms of a-conjuncts:

1. X < c

2. X > c

3. X � c

4. X � c

5. X 6= c

6. X = c

7. X = Y

8. X � Y

9. X > Y

10. X 6= Y

We now enumerate all possible cases of coupling implica-
tions and check to see if the conditions identified in Theorems
4.1, 4.2, and 4.3 avoid them. Consider the coupling implication
�) (e1_e2). The implication can be rewritten as(:�)_e1_e2.
Alternatively, it is equivalent to:(� ^ (:e1) ^ (:e2)). If the last
statement is true, the statement(� ^ (:e1) ^ (:e2)) is a contra-
diction. We now identify all possible forms of a-conjuncts and
e-conjuncts that produce minimal contradiction. By the termmin-
imal contradictionwe refer to a conjunction of arithmetic com-
parisons that is a contradiction such that if any of the arithmetic
comparisons is deleted from the conjunction it is no longer a con-
tradiction.

In the sequel,e1, e2 are c-conjuncts. Minimal contradictions
can be of the following forms:

1. e1 = (X < c);:(e1) = (X >= c), the rest of the con-
juncts in the minimal contradiction need to imply(X < c).

(a) e2 = (X < c). Sincee1 ande2 are the same one of
them can be deleted and the contradiction still holds.
Therefore, the set of conjuncts producing the contra-
diction is not minimal - contrary to our assumptions.
Thus, this case can not occur.

(b) e2 = (X > c) is avoided due to Theorem 4.3 Condi-
tion (iv).

(c) e2 = (X � c) renderse1 redundant. Thus, this case
cannot occur.

(d) e2 = (X � c). Theorem 4.3 Condition (iv) rules out
this case.

(e) e2 = (X 6= c) renderse1 redundant. Thus, this case
cannot occur.

(f) e2 = (X = c);:(e2) = (X 6= c); (X 6= c) ^ D)
(X < c); D) (X � c).

e3 cannot take the forms that have been found unsat-
isfactory fore2 in the previous cases. We check using
e3 = (X = Y);:e3 = (X 6= Y); (X 6= Y) ^D0)
(X � c). Thus,D0) (X � c) must hold ande3 is
redundant.

Now we consider the cases using a-conjuncts.

i. X < c directly impliese1 and renderse2 redun-
dant.

ii. X > c ^B) (X � c) - contradiction.

iii. X � c: We have the coupling
(X � c)) (X < c) _ (X = c). This form of
coupling is ruled out by Theorem 4.2 Condition
(i).

iv. X � c renderse1 redundant.

v. X 6= c renderse2 redundant.

vi. X = c - directly impliese2 and renderse1 re-
dundant.

vii. a1 = (X = Y): The other useful AC’s in the an-
tecedent could be involving the variables i)X and
c, ii) Y andc and iii)X andY . We have consid-
ered all possible forms involvingX andc above.
Due to the ACX = Y , all AC’s involvingY and
c would also result in an AC involvingX andc
in the closure of the AC’s in the antecedent. As
indicated above, we have already eliminated all
possible forms of AC’s involvingX andc. Thus,
we consider only the AC’s involvingX andY :

A. X � Y is redundant when we havea1 =
(X = Y).

B. X � Y is redundant when we havea1 =
(X = Y).

C. X < Y is a contradiction when we have
a1 = (X = Y).

D. X > Y is a contradiction when we have
a1 = (X = Y).

E. X 6= Y is a contradiction when we have
a1 = (X = Y).

viii. a1 = (X � Y): The different cases are:

17

A. (Y < c) producesX � c in the closure of
the AC’s of the antecedent. Thus, it has been
ruled out by Theorem 4.2.

B. (Y > c): In the inequality graph, ifX � Y

is used to produce a path fromX to c, Y > c

cannot be used since in it creates a path from
c toY and not the opposite.

C. Y � c producesX � c and thus is ruled out
by Theorem 4.2.

D. Y = c producesX � c and is ruled out by
Theorem 4.2.

E. Y 6= c cannot produce a path fromX to c
while using bothX � Y andY 6= c in the
inequality graph.

F. (X � Y) along witha1 createsX = Y -
the case has been covered above.

G. (X < Y) rendersa1 redundant.

H. (X > Y) creates a contradiction.

I. (X 6= Y) is equivalent toX < Y renders
e2 redundant.

ix. (X � Y):

A. Y > c creates a contradiction

B. Y < c andY � c: BothX andc have a path
fromY in the inequality graph and thus both
edges cannot be used to create a path from
X to c.

C. Y � c andY = c result inX � c cannot
imply X < c.

D. Y 6= c cannot create a path fromX to c

while using both a-conjuncts.

E. X < Y - renders(X � Y) redundant.

F. Y < X - contradiction.

G. Y = X - renders(X � Y) redundant.

H. X 6= Y - this case is similar toX < Y .

I. (X < Y):

� Y > c, Y � c or Y 6= c cannot create a
path fromX to c in the inequlaity graph.

� Y < c or Y = c renderse2 redundant.

� Y � c results inX � c in the closure of
the AC’s in the antecedent and is ruled out
by Theorem 4.2.

� X > Y creates a contradiction.

� X 6= Y is redundant.

J. (X > Y):

� Y < c, Y � c or Y 6= c cannot create a
path fromX to c in the inequlaity graph.

� Y < c, Y � c, or Y = c contradicts with
e1.

� X 6= Y is redundant.

K. (X 6= Y): No AC of the formY � c can
form a path fromX to c using (X 6= Y)
andY � c.

x. e2 = (X = Y);:(e2) = (X 6= Y); (X 6=
Y) ^D) (X < c).
We now examine the conjunction of(X 6= Y)
with another c-conjunct.
A. :e3 = (X < c) or :e3 = (Y < c) do not

jointly imply another AC.
B. :e3 = (X > c) or :e3 = (Y > c) do not

jointly imply another AC.
C. :e3 = (X � c) or :e3 = (Y � c) do not

jointly imply another AC.
D. :e3 = (X � c) or :e3 = (Y � c) do not

jointly imply another AC.
E. e3 = (X = c);:e3 = (X 6= c); do not

jointly imply another AC. Similarly,e3 =
(Y = c);:e3 = (Y 6= c) does not jointly
imply another AC.

F. e3 = (X 6= c) or e3 = (Y 6= c). Sincee2
has repeated variables, this case is ruled out
by Theorem 4.4 Condition (v).

G. e3 = (X = Z). In this case, we introduce a
new variable using an AC of the same form
ase2. We now have to find a D’ such that
((X 6= Y) ^ (X 6= Z) ^ D0)) (X < c).
This implication is of the same form as that
for e2 and as seen in the cases above, none of
the other cases can be used to prove the im-
plication. In the absence of any implication
that involves a variable and the constantc,
there exists noD0 that obeys the constraints
of Theorem 4.3 and Theorem 4.4 and still
satisfies the above implication.

We now consider a-conjuncts:
A. X < c directly impliese1.
B. X > c contradictse1.
C. a1 = (X � c):
� X � c contradictsa1.
� X = c rendersa1 redundant.
� X 6= c renderse2 redundant.
� Y < c: If e2 = (X = Y) holds, then
X < c holds. Thus, this case renderse2
redundant.

� Y > c: a1 = (X � c) implies either
X < c or X = c. If X < c does not
hold,e1 does not hold,X = c holds. Also,
sincee1 does not hold,e2 must hold. Thus,
Y = c that contradictsY > c.

� Y = c results in the coupling:
((X � c)^(Y = c))) ((X < c)_(X =
Y)).
and is ruled out by Theorem 4.2.

� (Y � c) from a a-conjunct and(Y � c)
from an c-conjunct results in the following
coupling:((X � c)^(Y � c))) ((X <

c) _ (Y < c) _ (X = Y)).
This form of coupling is ruled out by The-
orem 4.2. Though(Y < c) and (Y =

18

c) from the a-conjuncts would also imply
(Y � c), they cause direct implication or
have been covered by previous cases.Y 6=
c ^ F) (Y � c) whenF) (Y � c) -
not minimal. UsingY = Z^F) (Y � c

whenF) (Z � c) - conditions are the
same asY � c.

� (Y � c) comes from more than one con-
junct one of which is an c-conjunct. The
conjunction of two AC’s producing(Y �
c) can not be produced withY < c,Y > c,
Y 6= c, Y = c or Y � c without break-
ing the minimal contradiction andY =
Z; Z � c - conditions are the same as
Y � c.

� X � c - if X � c holds andX � c holds,
thenX = c holds, there is no coupling but
direct implication ofe2.

� X 6= c ^ B) (X � c) - true but then
X � c;X 6= c directly implye1.

� X = c - directly impliese2.
� X = Y ^B) (X � c) - coupling possi-

ble if B) (Y � c) but condition 2 rules
it out. If B) (Y < c) or (B) (Y = c)
, thene1 or e2 are directly implied.

� (X � Y);^B) (X � c) - coupling
possible ifB) (Y � c). See case (vii).

� (X < Y);^B) (X � c) - needB)
(Y � c). See case (vii).

� (X 6= Y);^B) (X � c) - same as (ix).
� (X � Y) ^ B) (X � c) - same as (ix).
� (X < Y) ^ B) (X � c) - same as (ix).

xi. e1 = (X > c), need to imply(X > c), symmet-
ric to 1.

xii. e1 = (X � c), the rest need to imply(X � c).
We ignore cases wheree2 = (X < c)or(X >

c) since those have been covered in cases 1 and 2
above.
A. e2 = (X � c); ((X > c) ^D) (X � c)

This form of coupling is prohibited by The-
orem 4.3 Condition (iv).

B. e2 = (X � c) is redundant since it is the
same ase1.

C. e2 = (X 6= c);:(e2) = (X = c); (X =
c) ^ D) (X � c) is true for anyD
and results in the coupling:true) (X �
c) _ (X 6= c): This form of coupling is pro-
hibited by Theorem 4.4 Condition (vii).

D. e2 = (X = c);:(e2) = (X 6= c); (X 6=
c)^D) (X � c),D must imply(X � c)
- no longer minimal.

E. e2 = (X = Y);:(e2) = (X 6=
Y); ((X 6= Y) ^ D)) (X � c), D must
imply (X � c) - no longer minimal.

xiii. e1 = (X � c), need to imply(X � c), symmet-
ric to 3.

xiv. e1 = X 6= c, the rest need to imply(X 6= c).
Again, we examine the cases wheree2 takes
forms 5-7, since the first 4 cases have been cov-
ered above.
A. e2 = (X = c);:(e2) = (X 6= c); (X 6=

c) ^ D) (X 6= c), anyD resulting in
the coupling:true) ((X = c) _ (X 6=
c)). Theorem 4.4 Condition (vi) prohibits
this form of coupling.

B. e2 = (X = Y);:(e2) = (X 6= Y); (X 6=
Y) ^ D) (X 6= c). As shown above, a
non-redundant(X 6= Y) can not be used in
conjunction with an AC to imply another AC
while not violating Theorem 4.4 Condition
(v).

C. e = (X = c) the rest need to imply(X =
c). The other cases have been covered above
sincee1 ^ e2 = e2 ^ e1. Let e2 = (X =
Y);:(e2) = (X 6= Y); (X 6= Y) ^ D)
(X = c), D must imply(X = c) - no longer
minimal.

D. e1 : (X = Y), the rest need to imply(X =
Y). All cases have been covered previously,
sincee1 ^ e2 = e2 ^ e1.

A.3 Tightness of Conditions in the LSI Case

Here we mainly provide examples to argue that the conditions
stated in Section 4.2 are tight. For each of the three conditions in
Theorem 4.2, we give an example that dissatisfies only this con-
dition, and show that more than one mapping have to be used to
prove the containment. These examples also give some intuition
on the proof of Theorem 4.2.

A.3.1 On Condition (i): Single-Variable Coupling

Condition (i) avoids coupling (i) in Lemma A.1:

(X � c)) ((X < c) _ (X = c))

EXAMPLE A.1 The following is an example where there is no
single mapping due to a coupling of the form (i).

Q1 : ans() :- p(X; 4); X < 4
Q2 : ans() :- p(A; 4); p(3; A); A � 4

Correspondingly we have the normalized queries:

Q0

1 : ans() :- p(X;Y); X < 4; Y = 4
Q0

2 : ans() :- p(X;Y); p(Z;U); X � 4; Y = 4; Z = 3; U = X

There are two containment mappings fromcore(Q0

1) to
core(Q0

2)): �1(X) = X;�1(Y) = Y , and �2(X) =
Z; �2(Y) = U . Q0

2 is contained inQ0

1 because of the implica-
tion

((X � 4) ^ (Y = 4) ^ (Z = 3) ^ (U = X)))

(((X < 4) ^ (Y = 4)) _ ((Z = 3) ^ (U = X)))

2

19

Notice that Coupling (i) occurs due to the same constant ap-
pearing in the LSI arithmetic comparisons, as well as in a com-
parison of the formX = c. This comparison is introduced in LSI
queries due to the normalization process. To prevent this coupling,
condition (i) is sufficient. This example shows the tightness of
condition (i) — it dissatisfies (i), but not (ii) and (iii), ascore(Q1)
has no shared variables.

A.3.2 On Condition (ii): Multi-Variable Coupling

Condition (ii) avoids coupling (ii) in Lemma A.1:

(X � c ^ Y = c)) (X < c _X = Y)

EXAMPLE A.2 This example shows that there is no single map-
ping due to a coupling of the form (ii).

Q1 : ans() :- p(A;B;B); A < 4
Q2 : ans() :- p(X;Y; Y); p(U;X; 4); X � 4; U < 4

After normalizing the queries we have:

Q0

1 : ans() :- p(A;B;C); A < 4; B = C

Q0

2 : ans() :- p(X;Y;W); p(U;V; Z); X � 4; Z = 4; U < 4;
Y = W;V = X

There are two mappings:�1(A) = X;�1(B) = Y; �1(C) =
W , and�2(A) = U; �2(B) = V; �2(C) = Z. Q0

1 containsQ0

2

because the implication

((X � 4) ^ (Z = 4) ^ (U < 4) ^ (Y = W) ^ (V = X))

((X < 4) ^ (Y = W)) _ ((U < 4) ^ (V = Z))

holds. 2

In this type of coupling, we note that we require shared vari-
ables in the containing query and the same constant in the compar-
isons of the two queries as well as the core of the contained query.
Note thatY = 4 comes from the process of normalization, and4
appears in the core of the contained query. To avoid this form of
coupling, the condition (ii) is sufficient.

This example also shows the tightness of condition (ii). It dis-
satisfies condition (ii), but not (i) and (iii). Condition (i) is satisfied
becausecore(Q1) does not contain a constant. Condition (iii) is
satisfied because there are not two distinct variables inQ2 in a
comparison with� 4.

A.3.3 On condition (iii): Multi-Variable Coupling

Condition (iii) avoids coupling (iii) in Lemma A.1:

(X � c) ^ (Y � c)) (X < c) _ (Y < c) _ (X = Y)

EXAMPLE A.3 This example shows there is no single mapping
due to coupling of the form (iii).

Q1 : ans() :- p(A;B;B); A < 4
Q2 : ans() :- p(X;U; U); p(Y; V; V); p(Z;X; Y);

X � 4; Z < 4; Y � 4

In this example, after normalizing the queries, we have three map-
pings that are used to prove containment. 2

This example also shows the tightness of condition (iii). It dis-
satisfies condition (iii) but not (i) and (ii). Condition (i) is satisfied
becausecore(Q1) does not contain a constant. Condition (ii) is
satisfied because a constant does not appear incore(Q2). To avoid
this form of coupling, condition (iii) is sufficient.

A.4 Tightness of Conditions in the SI-PI Case

We first discuss the case where the containing query uses only
LSI or RSI or both and then we discuss the case where it may use
also point ibnequalities.

SI case

Condition (iv)(a) avoids coupling (iv)(a):

Coupling(iv)(a) : TRUE) ((X�1c1) _ (X�2c2))

where�1 is < or �, �2 is > or �, andc2 � c1. For example,
TRUE) ((X < 5) _ (X > 3).

EXAMPLE A.4 The following is such an example.

Q1 : ans() :- p(X;Y); X < 5; Y > 3
Q2 : ans() :- p(X;Y); p(Y; Z); X < 5; Z > 3

Q2 is contained inQ1 and two containment mappings are neces-
sary to prove the containment The coupling implication to prove
the containment is of the same form (iv). 2

A similar coupling is avoided by Condition (iv)(b):

Coupling(iv)(b) : TRUE) ((X > c) _ (X < c) _X = c)

SI-PI case

Condition (v) avoids coupling (v):

Coupling(v) : TRUE) (X 6= c) _ (X = Y) _ (Y 6= c)

For instance, consider the following queries.

Q1 : ans() :- p(X;Y; Y); X 6= 5
Q2 : ans() :- p(X;A;A); p(Y;B;B); p(C;X; Y)

Condition (vi) avoids coupling (vi):

Coupling(vi) : TRUE) ((X = c) _ (X 6= c))

For instance, consider the following queries.

Q1 : ans() :- p(X;Y); X = 5; Y 6= 5
Q2 : ans() :- p(X;A); p(B;X); A 6= 5; B = 5

Condition (vii)-lsi avoids coupling (vii)-lsi:

Coupling(vii) : TRUE) (X � c) _ (X 6= c)

For instance, consider the following queries:

Q1 : ans() :- p(X;Y); X � 5; Y 6= 5
Q2 : ans() :- p(X;A); p(A;X)

Note that for each example above a) there is no single map-
ping that proves containment, and b)all conditionsexcept oneare
satisfied. This implies that none of the conditions are redundant.

20

A.5 Beyond Semi-Interval Queries–continue

Coupling 2: Additional couplings can occur due to the follow-
ing implication:

TRUE) ((X < Y) _ (Y < X) _ (X = Y))

indicates that if the containing queries have open comparisons with
shared variables, then the homomorphism property does not hold.
The following is such an example. Consider two queries.

Q1 : ans() :- p(X;Y; Z; Z); X < Y

Q2 : ans() :- p(X;Y;A;A); p(Y;X; B;B); p(C;D;X; Y);
C < D

Again, Q2 is contained inQ1, but the homomorphism property
does not hold.

Coupling 3: Even without shared variables, the following im-
plication shows a possible coupling:

((Y > c
0) ^ (c0 � c))) ((X > c) _ (X < Y))

The following is such an example.

Q1 : ans() :- p(A;B;C); A > 3; B < C

Q2 : ans() :- p(X;A;B); p(D;X; Y); Y > 4;
A < B;D > 3

Here,Q2 is contained inQ1, but the homomorphism property
does not hold.

A.6 Detailed Experimental Results on TPC-H
Queries

Now we give experimental results for some of the queries. [[[
By Foto: “Here is a list of the 22 queries where the queries
(in their non-aggregate form) are concisely listed together with
some comments. (Chen, this is not to be included in the paper,
for the moment, it is useful to me (and I hope in our discus-
sions).” By Chen: I keep them, since it’s for the extended ver-
sion anyway.]]]

1. QueryQ1:

� Core (i.e., in the ”from” clause):lineitem.

� ACs: l shipdate � date01998 � 12 � 010 �
interval0[DELTA]0day(3).

� Comment: There is a single LSI comparison predi-
cate, and the constant there may appear (we also take
domain information into account) in either of the fol-
lowing fields in the core (i.e., the core oflineitem):
receiptdate andcommitdate.

2. QueryQ2: No ACs.

3. QueryQ3:

� Core: customer, order, lineitem

� ACs: o orderdate < date, l shipdate > date

� Comment: Here there is a scenario which is not desir-
able (i.e., the property does not hold): In the contained
query, the orderdate of a ’order’ subgoal contains the
same variable as the shipdate of a lineitem subgoal.
By ”common sense” reasoning, this is not a plausible
scenario.

4. QueryQ4:

� Core: order, lineitem

� ACs: o orderdate >= date0[DATE]0,
o orderdate < date0[DATE]0 +
interval030month, l orderkey = o orderkey,
l commitdate < l receiptdate.

� Comment: There are non-SI ACs. Our algorithm does
not apply.

5. QueryQ5:

� Core: customer, orders, lineitem, supplier, nation, re-
gion

� ACs: o orderdate >= date0[DATE]0,
o orderdate < date0[DATE]0 + interval010year

6. QueryQ6:

� Core: lineitem

� ACs: l shipdate >= date ’[DATE]’ and
l shipdate < date ’[DATE]’ + inter-
val ’1’ year and l discount between
[DISCOUNT] - 0.01 and [DISCOUNT] +
0.01 and l quantity < [QUANTITY] ;

� Comment: same situation asQ5.

7. QueryQ7:

� Core: supplier

� lineitem, orders, customer, nation n1, nation n2

� ACs: s suppkey = l suppkey and
o orderkey = l orderkey and c custkey
= o custkey and s nationkey =
n1.n nationkey and c nationkey =
n2.n nationkey and ((n1.n name =
’[NATION1]’ and n2.n name = ’[NA-
TION2]’) or (n1.n name = ’[NATION2]’
and n2.n name = ’[NATION1]’)) and
l shipdate between date ’1995-01-01’
and date ’1996-12-31’) as shipping

� Comment:same situation asQ5.

8. QueryQ8:

� Core.

� ACs:

� Comment:same asQ5

9. QueryQ9:

� Core:

21

� ACs:s suppkey = l suppkey and
ps suppkey = l suppkey and ps partkey
= l partkey and p partkey = l partkey
and o orderkey = l orderkey and
s nationkey = n nationkey and p name
like ’%[COLOR]%’

� Comment: no ACs.

10. QueryQ10:

� Core:

� ACs:

� Comment: same asQ5.

11. QueryQ11:

� Core:

� ACs:

� Comment:no ACs.

12. QueryQ12:

� Core:

� ACs: o orderpriority <> ’1-URGENT’
and o orderpriority <> ’2-HIGH’
and l commitdate < l receiptdate
and l shipdate < l commitdate and
l receiptdate >= date ’[DATE]’ and
l receiptdate < date ’[DATE]’ + in-
terval ’1’ year

� Comment: domain information reduces it to ”same as
Q5”.

13. QueryQ13:

� Core:

� ACs:

� Comment: no ACs.

14. QueryQ14:

� Core:

� ACs:

� Comment: same asQ5.

15. QueryQ15:

� Core:

� ACs:

� Comment: same asQ5

16. QueryQ16:

� Core:

� ACs: p brand <> ’[BRAND]’

� Comment: the homomorphism propety holds.

17. QueryQ17:

� Core:

� ACs: l quantity < QUANT

� Comment: the homomorphism propety holds.

18. QueryQ18:

� Core:

� ACs: sum(l quantity) > [QUANTITY]

� Comment: the homomorphism propety holds.

19. QueryQ19: a disjunction of 3

� Core: lineitem, part

� ACs: p partkey = l partkey and p brand
= ‘[BRAND1]’ and p container in (
‘SM CASE’, ‘SM BOX’, ‘SM PACK’,
‘SM PKG’) and l quantity >= [QUAN-
TITY1] and l quantity <= [QUANTITY1]
+ 10 and p size between 1 and 5 and
l shipmode in (‘AIR’, ‘AIR REG’) and
l shipinstruct = ‘DELIVER IN PERSON’

OR p partkey = l partkey and p brand
= ‘[BRAND2]’ and p container in
(‘MED BAG’, ‘MED BOX’, ‘MED PKG’,
‘MED PACK’) and l quantity >= [QUAN-
TITY2] and l quantity <= [QUANTITY2]
+ 10 and p size between 1 and 10 and
l shipmode in (‘AIR’, ‘AIR REG’) and
l shipinstruct = ‘DELIVER IN PERSON’

OR p partkey = l partkey and p brand
= ‘[BRAND3]’ and p container in (
‘LG CASE’, ‘LG BOX’, ‘LG PACK’,
‘LG PKG’) and l quantity >= [QUAN-
TITY3] and l quantity <= [QUANTITY3]
+ 10 and p size between 1 and 15 and
l shipmode in (‘AIR’, ‘AIR REG’) and
l shipinstruct = ‘DELIVER IN PERSON’

� Comment: same asQ5.

20. QueryQ20:

� Core: supplier, nation

� ACs: ps availqty > QUANT l shipdate
>= date(’[DATE]’) and l shipdate <
date(’[DATE]’) + interval ‘1’ year

� Comment: same asQ5

21. QueryQ21:

� Core: supplier, lineitem l1, orders, nation

� ACs: s suppkey = l1.l suppkey
and o orderkey = l1.l orderkey
and o orderstatus = ’F’ and
l1.l receiptdate > l1.l commitdate
and exists (select * from
lineitem l2 where l2.l orderkey =
l1.l orderkey and l2.l suppkey <>
l1.l suppkey) and not exists (
select * from lineitem l3 where
l3.l orderkey = l1.l orderkey and

22

l3.l suppkey <> l1.l suppkey and
l3.l receiptdate > l3.l commitdate
) and s nationkey = n nationkey and
n name = ’[NATION]’

� Comment:

22. QueryQ22:

� Core:

� ACs:

� Comment:

23

