On Containment of Conjunctive Queries with Arithmetic Comparisons
(Extended Version)
UCI ICS Technical Report, June 2003

Foto Afrati Chen Li
National Technical University of Athens Information and Computer Science
157 73 Athens, Greece University of California, Irvine, CA 92697, USA
afrati@cs.ece.ntua.gr chenli@ics.uci.edu

Prasenjit Mitra
Department of Computer Science
Stanford University, CA 94305, USA
mitra@db.stanford.edu

Abstract Q- is a subset of the answers @ ? This problem arises
in a large variety of database applications, such as query
In this paper we study the following problem: how to test evaluation and optimization [5], data warehousing [17], and

whetherQ)s is contained inR,, where@, and(- are con- data integration using views [19]. For instance, an impor-
junctive queries with arithmetic comparisons? This prob- tant problem in data integration is to decide how to answer
lem is fundamental in a large variety of database applica- a query using source views. Many existing algorithms are
tions. Existing algorithms first normalize the queries, then based on query containment [9].
test a logical implication using multiple containment map- A class of queries of great significance is select-project-
pings from@; to @». We are interested in cases where the join queries, a.k.a. conjunctive queries. These queries are
containment can be tested more efficiently. This work iswidely used in many database applications. Often, users
mainly motivated by (1) reducing the problem complexity pose queries using conjunctive queries along with arith-
from I15 -completeness to NP-completeness in these casesinetic comparisons (e.g., year2000, price< 5000). Thus
and (2) utilizing the advantages of the homomorphism prop- testing containment of conjunctive queries with arithmetic
erty (i.e., the containment test is based on a single contain-comparisons becomes very important. Several algorithms
ment mapping), in applications such as those of answer-have been proposed for testing containment of conjunctive
ing queries using views. The following are our results. (1) queries with arithmetic comparisons (e.g., [8, 10]). These
We show several cases where the normalization step is notlgorithms first normalize the queries by replacing con-
needed, thus reducing the size of the queries and, more imstants and shared variables with new distinct variables and
portantly, reducing the number of containment mappings. add the corresponding comparisons, then test the contain-
(2) We find large classes of queries where the homomor-ment by checking a logical implication usimgultiple con-
phism property holds. (3) We further reduce the conditions tainment mappings. (See Section 2 for detail.)
of these classes using practical domain knowledge that is | this paper, we study how to test containment of con-
easily obtainable. (4) We conducted experiments on realjynctive queries with arithmetic comparisons. In particular,
queries, and show that most of the queries have this homoyye focus on the following two problems: (1) In what cases
morphism property. is the normalization step not needed? (2) In what cases does

thehomomorphism propertyold, i.e., the containment test

is based on a single containment mapping [10]?
1 Introduction The motivation of studying these problems is three fold.

The first one is the efficiency of the test procedure. Whereas

The problem of testing query containment is stated asthe problem of containment of pure conjunctive queries is

follows: how to test whether a query- is containedin a known to be NP-complete [4], the problem of containment
query@, i.e., if for any databas®, the set of answers to of conjunctive queries with arithmetic comparisongli§-

complete [10, 20]. In the former case, the containment test

is in NP because it is based on the existencesifiglecon-
tainment mapping, i.e., the homomorphism property holds.

In the latter case the test needs multiple containment map-

pings, which significantly increases the complexity of the
problem. In this work, we find large classes of queries

where the homomorphism property holds. Thus, we can re-

duce the complexity of the problem to NP. Even though the

saving on the normalization step does not put the problem

in a different complexity class, it can still reduce the size of

the queries, as well as the number of mappings required to

test containment.

The second reason is that the homomorphism property

can simplify many problems such as that of answering
gueries using views [12], in which we want to construct a
plan using views to compute the answer to a query. It is
shown in [1] that if both the query and the views are con-
junctive queries with arithmetic comparisons, and the ho-

momorphism property does not hold, then a plan can be
recursive. Otherwise, we can just consider plans that are

also conjunctive queries with comparisons. Hence, if we
know the homomorphism property holds by analyzing the
query and views, we can develop efficient algorithms for
constructing a plan using views.

The third motivation is that, in studying realistic queries

(e.g., those TPC benchmarks), we found that it is very hard
to construct examples that need multiple mappings in the
In other words, we observed that most
real queries only need a single containment mapping to tes

containment test.

the containment. If we can easily identify the cases in which
a single containment mapping is sufficient to prove contain-

ment between queries, the containment test becomes suh-
stantially less expensive. Therefore, we want to derive syn-

tactic conditions on queries, under which the homomor-

phism property holds and a single containment mapping
suffices to prove containment. These syntactic conditions

can be easily checked in polynomial time. In this paper we
develop such conditions.

In the problem of testing whether que® is contained
in query @, we call @, the contained quenand), the
containing query The following are our contributions of
this work. (Table 1 is a summary of results.)

We show that if the homomorphism property does not
hold, then some “heavy” constraints must be satisfied.
An example of such a constraint is: An ordinary sub-
goal of ¢, an ordinary subgoal of)», an open-left-
semi-interval subgoal of)>, and a closed-left-semi-
interval subgoal of), all use the same constant. (See
Table 1 for the definitions of these terms.) Notice
that these conditions are just syntactic constraints, and
can be checked in time polynomial on the size of the
queries. In general, all the constraints in this paper
are syntactic and can be checked in polynomial time.
Moreover, they are tight in that if one constraint is vi-
olated, we can give examples to show that the homo-
morphism property does not hold.

. We further relax the conditions of the homomorphism
property using practical domain knowledge that is eas-
ily obtainable (Section 5).

. We conducted experiments on real queries, and show
that many of them satisfy the conditions under which
the homomorphism property holds (Section 6).

1.1 Related Work
For conjunctive queries, restricted classes of queries are

known for which the containment problem is polynomial.
For instance, if every database predicate occurs in the con-

1Fained guery at most twice, then the problem can be solved

In linear time [15], whereas it remains NP-complete if every
database predicate occurs at least three times in the body
of the contained query. If the containing query is acyclic,
I.e., the predicate hypergraph has a certain property, then
the containment problem is polynomial [14].

Klug [10] has shown that containment for conjunctive
queries with comparison predicates is i, and it is
proven to bd1¥’-hard in [20]. The reduction only used.

This result is extended in [11] to use at most three occur-
rences of the same predicate name in the contained query
(and also only£). The same reduction shows that it remains
17 -complete even in the case where the containing query is
acyclic, thus the results in [14] do not extend to conjunctive
queries with£2. The complexity is reduced to co-NP in [11]

1. We show cases where the normalization step in the test €very database predicate occurs at most twice in the body
is not needed when their comparisons do not imply Of the contained query and on4 is allowed. _
equalities. These cases are when the containing query 1 N€ most relevant to our setting is the work in [8, 10].

Q, has only< or > comparisons, or the comparisons They show that if only left or right semi-interval compar-
of Q, do not_implg equalities and the homomorphism isons are used, the containment problem s in NP. It is stated

property holds. (Section 3). as an open pr'oblern to sgarch for pther classe_s of conjync—
tive queries with arithmetic comparisons for which contain-
. When the containing quer§); has only arithmetic mentis in NP.
comparisons between a variable and a constant (called Query containment has been studied also for recursive
“semi-intervals,” or “SI” for short), we present cases queries. For instance, containment of a conjunctive query
where the homomorphism property holds (Section 4). in a datalog query is shown to be EXPTIME-complete [3,

Contained Query Containing Query Complexity| References
CQ CQ NP [4]

CQ with closed LSI| CQ with closed LSI NP [8, 10]

CQ with open LSI | CQ with open LSI NP [8, 10]

CQ with AC CQ with closed LSI NP Section 4
CQ with AC CQ with LSI NP Section 4
Constraints -Isi, (ii)-Isi, (iii)-Isi Theorem 4.2
CQ with SI CQ with LSI, RSI NP Section 4
Constraints (i)-Isi,rsi, (ii)-Isi,rsi, (iii)-Isi,rsi, (iv) Theorem 4.3
CQ with SI CQ with LSI, RSI, PI NP Section 4
Constraints as above and (v),(vi),(vii) Theorem 4.4
CQ with AC CQ with AC ny [20]

Table 1. Results on containment test. The classes in NP have the homomorphism property. (See
Table 2 for symbol definitions.)

7]. Containment among recursive and nonrecursive datalog Chandra and Merlin [4] showed that for two conjunctive
gueries is also studied in [6, 16]. queries); and@-, Q> C @, if and only if there is aon-

In [1] we studied the problem of how to rewrite a query tainment mappindgrom ; to @2, such that the mapping
using views if both the query and views are conjunctive maps a constant to the same constant, and maps a variable
gueries with arithmetic comparisons. The algorithm de- to either a variable or a constant. Under this mapping, the
pends upon the checking for containment among querieshead ofQ); becomes the head @}, and each subgoal of
Besides showing the necessity of using recursive plans ifQ); becomesomesubgoal inQ.. We refer toQ); as the
the homomorphism property does not hold, we also devel-containing quenand to()» as thecontained query
oped an algorithm applicable when the property holds. In Let @ be a conjunctive query with arithmetic compar-
this work, we identify the conditions under which the ho- isons (CQAC). We consider the following arithmetic com-
momorphism property holds. Thus the results in [1] are an parisons (inequalitiesx, <, >, >, and#. We assume that
application of the contributions of this paper. Clearly testing database instances are over densely totally ordered domains.
guery containment efficiently is a critical problem in many In addition, without loss of generality, throughout the paper
data applications as well. we make the following assumptions about the comparisons:

1. The comparisons are not contradictory, i.e., there ex-
ists an instantiation of the variables such that all the
comparisons are true. (Otherwise the query returns the
empty set as an answer on every database instance.)

2 Preliminaries

In this section, we review the definitions of query con-
tainment, containment mappings, and related results in the
literature. We also introduce the concept of minimal in-
equality graphs and define the homomorphism property.

2. All the comparisons are safe, i.e., each variable in the
comparisons appears in some ordinary subgoal.

3. The comparisons do not imply equalities. The fix is
easy. Ifthe comparisons canimply an equakity= Y,
we can rewrite the query by substitutidgfor Y.

Definition 2.1 (Query containment) A query Q- is con-
tainedin a query®, denoted))- C @1, if for any database
D, the set of answers t@- is a subset of the answers to
1. The two queries arequivalentdenoted); = Qs, if
Q1 CQ2and@Qs C Q. O

We denoteore(Q) as the set of ordinary (uninterpreted)
subgoals of) that do not have comparisons, and denote
AC(Q) as the set of subgoals that are arithmetic compar-

A conjunctive query (i.e., select-project-join query) is in 1S0ns inQ. We use the ternalosureof a set of arithmetic
the form: comparisons, to the set of all possible arithmetic compar-
e (Xe) isons that can be logically derived frafh For example, for

the set of arithmetic comparisoss= {X < Y,V = ¢},
In each subgoay; (X;), predicatey; is abase relationand the Closure(S) = {X <Y,Y = ¢, X < c}. In addition,
every argument in the subgoal is either a variable or a con-for convenience, we will denot@, as the corresponding
stant. conjunctive query whose head is the head)ofind whose

h(X) - 91()_(1), -

body iscore(R). See Table 2 for a complete list of defini-

tions and notations on special cases of arithmetic compar-
isons (such as semi-interval, point inequalities, and others).

Symbol | Meaning

CQ Conjunctive Query

AC Arithmetic Comparison

CQAC Conjunctive Query with ACs

core(Q) Set of ordinary subgoals of que€y
AC(Q) Set of arithmetic-comparison subgoals of qugry
Sl Semi-interval:Xfc, § € {<, <, >, >}

LSI Left-semi-interval:Xfc, 6 € {<, <}
closed-LSl| X <c¢

open-LSI | X <e¢

PI Point Inequalities X # c)

SI-PI Some subgoals are Sl, and some are Pl

Table 2. Symbols used in the paper. X de-
notes a variable and ¢ denotes a constant.
The RSI cases are symmetrical to those of
LSI.

2.1 Testing Containment

Let ; and @, be two conjunctive queries with arith-
metic comparisons (CQACS).
study how to test whethep, C @,. To do the testing,
according to the results in [8, 10], we finsbrmalizeboth
queries?; and@, to @} andQ), respectively as follows.

e For all occurrences of a shared variallien the nor-

Throughout the paper we

we may have introduced new comparidng.,, (resp.
D,.,,) after the normalization. Note that,.,, and
D,,.,, contain only equalities.

3. There can be more containment mappings for the nor-
malized queries than the original queries, ike> I.
The reason is that a containment mapping cannot map
a constant to a variable, nor map different instances
of the same variables to different variables. However,
after normalizing the two queries, their ordinary sub-
goals only have distinct variables, making any variable
in Q] mappable to any variable i), (for the same
position of the same predicate).

The following theorem is from [8, 10].

Theorem 2.1 > C @), if and only if the following logical
implication¢ is true:

¢: By = m(B1) V...V ur(By)

That is, the comparisons in the normalized qué¥ylogi-
cally implies (denoted £>-") the disjunction of the images
of the comparisons of the normalized qué¥y under these
mappings. |

EXAMPLE 2.1 This example from [21] shows that the
normalization step in Theorem 2.1 is critical. Consider two

queriesy); andQ@s.

Ql : h(W) - q(W)ap(Xa Ya Z, Z,7U7 U),
X<Y,Z>7.
QQ : h(W) - q(W)’p(Xa Y727 17 U7 U):

p(1727X7 Y7 U7 U)7
r(1,2,2,1, X,Y).

mal subgoals except the first occurrence, replace the Tpe following are two containment mappings fr&

occurrence ofX by a new distinct variableX;, and
add X = X; to the AC’s of the query; and

e For each constantin the query, replace the constant

by a new distinct variableZ, and addZ = c to the
AC'’s of the query.

to Q270.

h:W-WX->XY>Y, 7227 -1,U—-U.
o : W W, X—->1Y >2,X—>X,Z7' -Y,U - U.

Notice that we do not have a containment mapping from the

The original queries and the normalized queries areP Subgoalin; to the lasp subgoal inQ),, since we cannot

shown in Figure 1. For simplicity, we denof® =
AC(Qr), B2 = AC(Q2), B1 = AC(QY), and B; =
AC(Q5). Letpuy, ..., ux be all the containment mappings
from Q7 o t0 Q5. Lety,...,v be all the containment
mappings fromQi o to Q2. There are a few important
observations to be noticed.

1. The number of ordinary subgoalsin (resp.k:) does
not change after the normalization. Each subdg@éal
(resp.H;) has changed to a new subg@dl(resp.H}).

2. While the comparisons C4,...,Cy,, (resp.
D,,...,D,,) are kept after the normalization,

map the two instances of varialileto both variablest and
Y.

We can show that), C @4, but the following impllica-
tion isnottrue:

TRUE= (X <Y, Z>Z")YWV&h(X <Y, Z>Z").

TRUE= (X <Y A2>1)V(I<2AX >Y).
TRUE= (X <Y)V (X >Y).

The reason the implication does not hold is that it is pos-
sible X = Y. However, in this case, we would have a new
containment mapping frorf; to ().

I3:W—W,X—>1,Y 2722272 -1,U-X=Y

Qo B1=AC(Q1) 10 1=AC(Q})
Qi:ans() 1= Gi,...,Gmy, Cryr v Co Normalization - ¢y . 4s() : — GY,..., G Cry oy Coyy Crcs
lCOIltainment mappings i, ...,V l Containment mappings i1, . . . , jik
Q2,0 Ba=AC(Q2) 2,0 BL=AC(Q,)
Qs :ans(): —Hy,...,Hy,,D1,...,D,, M Qy:ans(): —Hy,...,H, . Di,...,Dy,, Dy

Figure 1. Containment testing.

In fact, after normalizing the two queries, we will have three
(instead of two) containment mappings from the normalized
query of@; to that of@Q-. a

EXAMPLE 2.2 This example shows that the operation
in the implication in Theorem 2.1 is critical. Consider two
queries:

Q1 :ans() - p(X,4),X < 4.
Q2 :ans() - p(4,4),p(3,4), A < 4.

Their normalized queries are:

Q) :ans() -p(X,Y), X <4,V =4.
@ »ans() - p(4, B),p(C,D),A <4,B =4,
C=3,A=D.

There are two containment mappings fréf, to Qs -
X - AY 5B, u:X—-CY —>D.

We can show that:
AS47B:47023,A:D
= w(X <4,Y=4)Vvu(X <4Y =49)
Thatis:
A<4B=4C=3A=D
(A<4,B=4)V (C <4,D=4)

Therefore()> C ;. Notice that both containment map-
pings are needed to prove the implication. a

=

2.2 Challenges

There are several challenges in using Theorem 2.1 to test

whether@), C Q. (1) The queries look less intuitive after

the normalization. The computational cost of testing the
implication ¢ increases since we need to add more com-
parisons. (2) The implication needs the disjunction of the
images of multiple containment mappings. In many cases it

is desirable to have a single containment mapping to satisfy

the implication. (3) There can be more containment map-

In the rest of the paper we study how to deal with these
challenges. In Section 3 we study in what cases we do not
need to normalize the queries. That is, eve@ifand (@,
are not normalized, we still havg, C @ if and only if

B2 = 1(B1) V...V n(Br).

In Section 4 we discuss in what cases we only need a sin-
gle containment mapping frof , to @ , that can satisfy
the implication. That is, we want to know in what cases the
following is true.Q, C @ if and only if there is a contain-
ment mapping: from Q7 , to @5 ,, such thatd; = u(f).
If this claim, we say that the containment testing has the
homomorphism property

Besides reducing the complexity of the problem of query
containment, the homomorphism property is useful also in
applications such as query rewriting using views [12]. At
present we only know of efficient algorithms for construct-
ing query rewritings using views that use heavily this prop-
erty [13, 2, 1].
2.3 Inequality Graphs

To give the intuition of a logical implication and make
it easy to reason about implications, we define the concept
of inequality graphs Given a set3 of comparisons, the
inequality graphof 3, denoted;(3), is a graph constructed
as follows:

e The nodes in the graph are the variables and constants
in 3.

There is a directed arc from nodg to noden, if the
inequalityn, < ns orny, < ns isin g3, or bothn; and

ng are constants angy < n». Such an arc is labeled

as “<” or “ <" according to whether the inequality is
strict (<) or nonstrict).

e If ny = ny isin 3, there is a<-arc in each direction

betweem; andn,.

1A similar concept was introduced in [10]. Here we include inequalities

pings between the normalized queries than those betweeReyyeen constants automatically, and introduce the concept of “minimal

the original queries.

inequality graph” to remove implied equalities suchMs= Y.

As an example, the inequality graph of the comparisons In the rest of the paper, we use the “graph” of an inequal-
S={W<4,X>5X<Y,X<Z,U=2ZY <U}is ity set to mean the “minimal inequality graph” of the set.
shown in Figure 2.

2.4 Homomorphism Property
wo o 4 _. 5 o X _ Y
7 < i - E Definition 2.2 (Homomorphism property) Let Q;, O,
7 b U be two classes of queries. We say that containment test-
= ing on the pair(Q;, Q2) has the homomorphism property

if for any pair of queries@Q1,@2) with @; € Q; and
Q> € Q,, the following holds: Q> C @ iff there is a
homomorphisnmu from core(Q1) to core(Q2) such that

The implication from a seB of inequalities to an in- AC(Q2) = p(AC(Q2)). If Q1 = Q» = Q, then we
equality can be explained using the graph as follois. S&Y containment testing has the homomorphism property
implies an inequalityl; < A,, where4, andA, are either ~ fOr classQ. 0
a variable or a constant,df(3) has a directed path fron; The containment test of Theorem 2.1 forj general
to A,. fimpliesA; < A, if there is a directed patH; to CQACs, sonsiders normalized queries. However, in the
A, having at least one-arc. Hence an implication can be ¢ases where a single mapping suffices to show containment
checked in polynomial time in the number of comparisons petween normalized queries, it slso suffices to show con-
in the set. tainment between these queries when they are not in nor-

To simplify the reasoning aboutimplications, we wantto mgalized form and vice versa. Hence, whenever the homo-
merge those nodes in a graph that are implied to be equalmorphism property holds, we need not distinguish and we
B implies equalityA; = A, if there is a directed cycle of gferto queries either in normalized form or not.
<-arcs. Theminimal inequality graptof a set3 of inequal- In the cases where the homomorphism property holds,
ities, denoted as\G(/3), is obtained from the inequality \ye have the following non-deterministically polynomial al-
graphg () as follows. For those nodes that are implied to gorithm that checks i), = Q;. Guess a mapping from
be equal by3, we merge them to a single node, and cor- core(Q1) 1o core(Q-) and check whetheg is a contain-
respondingly, let those arcs starting from (resp. ending at) ment mapping with respect to the AC subgoals too (the lat-
these nodes start from (resp. end at) the merged node. Foyg, meaning that an AC subgaaimaps on a AC subgoal
instance, Figure 3 shows the minimal inequality graph of gg that it holdg = ¢). Note that the number of mappings

Figure 2. Inequality Graph.

the inequalitiess. is exponential on the size of the queries.
W 4 5 \ v It is shown in [10] that for the class of conjunctive
— < = = queries with only open-LSI (open-RSI respectively) com-
< < parisons, then the homomorphism property holds. In this
7 WU paper, we find more cases where the homomorphism prop-

erty holds. Actually, we consider pairs of classes of queries
Figure 3. Minimal inequality graph. such as (LSI CQ, CQAC) and we look for constraints which
if satisfied then the homomorphism property holds.

Definition 2.3 (Homomorphism property under con-
straints) Let Q,, Q» be two classes of queries addbe
a set of constraints. We say that containment testing
the pair (Q1, Q2) w.r.t. the constraints i has the homo-
morphism propertyf for any pair of querieg@1, @2) with
Q1 € @ and@, € Q- and for which the constraints in
C are satisfied, the following hold€), C @, iff there is
a homomorphismu from core(Q1) to core(Q2) such that
AC(Q2) = n(AC(Q2)). D

The constraints we use are givensysitactic conditions
that relate subgoals, in both queries, which contain the same

Notice that in the containment implicatigrwe are con-
sidering, since the right-hand side is a disjunction, the left-
hand side may not imply each of the disjuncts. For instance,
TRUE= (X<Y)V(X=Y)V(X >Y),butTRUE
cannot imply any of the three disjuncts. This disjunction
in the containment implication makes the reasoning about
the implication more challenging. In addition, we have the
following propositions.

Proposition 2.1 If the set of comparisonslC(Q) in a
query(@ does not imply equalities, then the inequality graph

G(AC(@)) s already minimal. . constant. The satisfaction of the constraints can be checked
Proposition 2.2 After normalizing a query@ to @', in polynomial time in the size of the queries. When the
the minimal inequality graphs MG(AC(Q')) and homomorphism property holds then the query containment
MG(AC(Q)) are isomorphic. O problem is in NP.

3 Containment of Non-normalized Queries ordering. For example, 16f = {X,Y, Z}. For the parti-
tionVy = {X,Y}, Vo, = {Z} and the total ordeV; < V5,
In order to use the result in Theorem 2.1 to test the con-We define the ordering X =Y < Z which can be viewed
tainment of two querie€§); and@», we need to normalize aso = X =Y AY < Z. Clearly ifoy,..., 0, areall
them first. This normalization step could make the result- orderings on a set of variables thefue = 01 V... V op.
ing queries look less intuitive, as shown in Example 2.2. Suppose

Introducing more comparisons to the queries in the nor- Q2 C Q1

malization can make the implication test computationally but

more expensive. Thus we want to have a containment result

that does not require the queries to be normalized. In this Br o BV -V e (Br)-

section we present two cases, in which eve@ifand (- Thus there is an instantiatignof the setX of the vari-

are not normalized, we still hav@, C Q, if and only if ables inBs,v1(81), - .-, vk (81), such thap(8=) holds, but

B2 = y(Br) V... Vy(Br).
p(n(B1)) V...V p(yk(Br))

3.1 Casel
does not.

Therefore, eacp(v;(51)) is false. Then there is at least
one built-in predicate;0b; in p(~;(51)), such thau;0b; is
false. Here assume = p(A;), andb; = p(B;), whereA;
andB; are two variables inX. Recall that3; uses< only,
thush is <. As a consequence; < b; in p(v:(81)) is false,
meaningz; > b;, SOa; # b;.

Step 1: We want to change the instantiatioto another
instantiationp’, which assigns different constants to differ-
ent variables inX. In addition,p’(32) still holds, and

The following theorem says that Theorem 2.1 is still true
even for non-normalized queriéy,, if two conditions are
satisfied by the queries: (B) contains only< and>, and
(2) B, (correspondingly3s) do not imply equalities. The
intuitive reason why in this case we can restrict the space of
mappings is due to the monotonicity property: For a QQ
whose AC’s only include< and>, if a tuplet of a database
D is an answer td), then consider any databag® ob-
tained fromD by identifying some elements. That is, the
constants oD’ is a subset of the constantsBfand the tu- 1 /
ples of D’ are copies of the tuples @ where however, we PnBOIV... Vo (1 (B))
have replaced a group of different constants with the samegoes not. Notice that the instantiatipncould assign the
constant. We can show that the corresponding ttiiin ~ same constant to two different variablésandVs in X. In

the answer)(D"). this case, ifl; andV5 both appear in a built-in predicate in
)) 61,2 wlog, we assumé&; < V5. Since the built-in predi-
Theorem 3.1 Consider two CQAC querie§); and Q- cates in 4 do not imply equalities =, we knowV, < V;

shown in Figure 1 that may not be normalized. Supposecannot appear i;. Then we can always assigne two dif-
A1 contains only< and >, and3, (correspondinglys,) do ferent constants; < ¢, to V; and Vs, respectively, such

notimply “=" restrictions. ThenQ, C @, if and only if: thatV; < Vs in 3, is still true under this new instantiation.
In addition, based on the analysis above, undeach pair

Bz (B V.-V n(Br) of variable (4;, B;) that makep(v;(3,)) false must have
whereq,...,v are all the containment mappings from p(4;) # p(Bi). For those variables it that are instan-

tiated to the same constant ungeme can change the in-

@1010Qz0- stantiation top’, such thai’ assigns different constants to
[l By Chen: Check the following proof.]]] different variables inX'. Furtheremore’(3;) holds, and

Proof: “Only if”; Let V be a set of variables that is par- P ((BL)V ...V (v(B1))

titioned into subsetd,...,V;. An ordering of the vari- _ _ o

ables inV corresponds to a total order on the subsets of Step 2: In this step we want to extend the instantiation

the partition. For any pair of variable§,Y € V, X < Y p' (of those variable) to an instantiatiop” of the setl”

iff Vx < Vi whereX belongs to a subsédfy andY be- of all the variables in),. Different variables inY” are in-

longs to a subsely andX = Y iff X andY belong to stantiated by" to different constants. In addition, for the
the same subset. Given a $étof variables, aistinct or- ~ databasé) = p"(Q20), we show@»(D) Z Q1(D), con-
deringof all variables inV’ is an ordering which is obtained tradicting the fact tha@), C Q. The reason we need to
when each subset in the partition contains exactly one el-do the extension is that some variableginmay not be in
ement. Each ordering can be viewed as a conjunction of — 2yore accuratelyy; andva appear in a built-in predicate in the closure
inequalities/equalities which holds on the variables for this of 3.

X. The extension is possible sinttee built-in predicates
in 8 do not imply equalities =. Thus for those variables in

We show that because of the implicatigh = w(5]),
we can modify the containment mappipgto a new con-

Y — X, we can just assign unique constants to them. For thetainment mappingy from Q1 to @2, such thats, =

databasé = p"'(Q20), the instantiation” turns the head
H, of -, to a tuplep” (H>) in the answer t@)» (D), since
p"'(B2) still holds. On the other handy, cannot produce
this tuple in its answef; (D), since (1) assigns different
constants to different variables In; (2) for all those con-
tainment mappingsu, . . ., v from Q1o to @29, €achry; of
them hag' (v;(51)) to be false.

“If”. Let D be a database andbe a tuple in the answers
of @)>. We will prove thatt is also in the answers @}, .
Let o be the ordering of the elements bfthat generates
There is a mapping from (s to D such thab = v(3,).
We know that:

B2 = (1) V...V (Br)

Hence,

v(B2) = ’/(71(31) V...V %(31))

Consequently

o=>v(n(B)V...V(B))

Thus there is an, such thato = v(;(81)). So the map-
ping v; followed by the mappings computes as and an-

swer of(Q;. n

3.2 Case?

The following theorem shows that we do not need to nor-
malize the queries if they have the homomorphism property.

Theorem 3.2 Assume the comparisons @ and @, do
not imply equalities. If there is a containment mappjng
from Q1 o t0 Q3 o, such that3; = u(37), then there must
be a containment mapping from @1 o to 2,0, such that
B2 = v(B1). o

To prove the theorem, waenormalizejuery@; andQ’,
back toQ, and@, respectively. The denormalization is the
opposite process of the normalization. It has two steps.

e Case (a): For each added comparisbn= X; intro-
duced for a shared variable in an ordinary subgoal,
we replace all theX;’s with X and remove this com-
parison.

e Case (b): For each added comparison= c intro-
duced for a constant in an ordinary subgoal, we
changeZ back toc and remove this comparison.

v(B1)-

Recall that the containment mappipgnust map a con-
stant to the same constant, and map a variable to either a
variable or a constant. So in general it may be possible that
w will not yield a containment mappin@; o to Q2,0 after
the denormalization, as shown in Example 2.1. We consider
the two cases in the denormalization.

Case (a): A variableX; was introduced to replace one
occurrence of a variabl&. After the denormalization of
both queries, we want to show that the two corresponding
variables ofY; = u(X) andY; = u(X;) should be re-
placed by the same argument (variable or constant)

odw
Qy ... Y5

In this case the implicatio8, = wu(8]) is 8y, =
u(... X = X;...). Thus we have:

/Bé:>Y1:Y2

In other words, in the (minimal inequality) graph
MG(B5) of pl, variablesY; andY; are at the same node.
Sincep!, was obtained fron®, by adding equalities, angh
itself does not imply equalities, by Propositions 2.1 and 2.2,
Y; andY; must be replaced with the same argument (vari-
able or constantj after the denormalization. Thus we can
map the two occurrences of variab¥ein @, to the same
argument4 in @, (after denormalizing bott)} and@y,).

Case (b): A variableZ was introduced to replace one
occurrence of a constantandu(Z) = Y. The argument
is similar as in case (a).

For any other variableX in @, we definey(X)
p(X).

In summary, we can denormaliZg and@}, and mod-
ify the containment mappingto another containment map-
ping~y from Q1,0 to Q2 0, such thaps = ~v(51).

4 Classes of Queries with Homomorphism
Property

In this section, we are looking for constraints in the form
of syntactic conditions on queriég, and(-, under which
the homomorphism property holds. The conditions are suf-
ficiently tight in that, if at least one of them is violated, then
there exist querie®; and@)- for which the homomorphism
property does not hold. The conditions are syntactic and
can be checked in polynomial time. We consider the case
where the containing query (denoted®y all through the

section) is a conjunctive query with only arithmetic com-

asi(A<4vVC <4H)N(A<4VvD =4H)A(B=4V(C <

parisons between a variable and a constant. That is, all itst) A (B =4V D = 4). Thus, the containment implication

comparisons arsemi-interval(Sl), which are in the forms
of X >, X <, X > ¢, X <¢ 0rX # c. Wecall
X # capointinequality(PI).

This section is structured as follows. Section 4.1 dis-
cusses technicalities on the containment implication, and
in particular in what cases we do not need a disjunction.

in Example 2.2 can be equivalently written as

(A<4,B=4,C=3A=D=>A<4VvC <4 A
(A<4,B=4,C=3A=D=>A<4VD=4)A
(A<4,B=4C=3,A=D=B=4VC <4)A
(A<4,B=4,C=3,A=D=B=4VD =4).

In Section 4.2 we consider the case where the containingyere we get four partial containment implications.

query has only left-semi-interval (LSI) subgoals. We give
a main result in Theorem 4.2, and discuss how to prove
it. In subsection 4.3 we extend Theorem 4.2 by consider-

A partial containmentimplication = (a; Vas V...V
ay,) is called adirect implicationif there exists an, such
that if this implication is true, them: = «; is also true.

ing the general case, where the containing query may Us€yiherwise, it is called aoupling implication For instance,

any semi-interval subgoals and point inequality subgoals.
In Section 4.4, we argue (using examples) that if the con-
taining query has more general inequalities than Sl, then it
is unlikely to find interesting cases that have the homomor-
phism property. In the Appendix, we include many exam-

ples to show that the conditions in the main theorems are

tight.
Section 4.5 gives an algorithm for checking whether
these conditions are met.

4.1 Containment Implication

In this subsection, we will focus on the implication

¢: By = (b)) V...V ur(B)

in Theorem 2.1. We shall give some terminology (for ease

of reference) and some basic technical observations. The,;,,.

left-hand side (lhs) is a conjunction of arithmetic compar-
isons (in Example 2.2, the lhsist <4AB =4AC =

3 A A = D). The right-hand side (rhs) is a disjunction and
each disjunct is a conjunction &farithmetic comparisons.
For instance, in Example 2.2, therhs {4 < 4 A B =

4) vV (C < 4 A D = 4). There are two disjuncts: one is the
A < 4N B =4andthe otheristh€’ < 4 A D = 4. Each
disjunct is the conjunction of two arithmetic comparisons.
In the following, given an integel, we shall callcontain-
ment implication any implication of this form: a) the lhs is
a conjunction of arithmetic comparisons, and b) the rhsis a
disjunction and each disjunct is a conjunctiori afithmetic
comparisons.

(A<4,B=4,C=3,A=D=B=4Vv D =4)
is a direct implication, since if it is true, then
(A<4,B=4,C=3,A=D = B=4)

is also true. (PLEASE CHECK THIS DEFINITION. CAN
WE SAY THEY ARE “LOGICALLY EQUIVALENT"?)
On the contrary,

(A<4,B=4,C=3,A=D=A<4vD=4)

is a coupling implication.
The following lemma is used as a basis for many of our
results.

Lemma 4.1 LetImplicationl : B = (81 V2 V...V B),
where eaclp; is a conjunction of conjuncis;; A e ... A
Also assume the following property: 4f = (d1 Vv
d2 v ...V dk) holds, wheredj is a conjunct inj;, then
for somel € (1,...,k), 8 = dl holds. Then for some
m € (1,...,k), we haved = 3,,. a

Proof: By contradiction. Assumg does not imply any

of the disjuncts3,,. Then, for eaclg,,, there must exist
onee,, = ény, such thatd = e, r € (1,...,n), does
not hold - otherwise, ifi = e,,, holds for allr, 8 = 5.,

will hold. Consider the disjunction of all sueh,,.’s. Since
Implication 1 holdsImplication2 : 8 = (e1 V ea V eg)
holds. By the statement of the lemma we are given that if
Implication 2 holds, there exist ong such that3 = e,
which contradicts our assumption. n

Observe that the rhs can be equivalently written as a con-

junction of disjunctions (using the distributive law). Hence
this implication is equivalent to a conjunction of implica-
tions, each implication keeping the same lhs as the origi-
nal one, and the rhs is one of the conjuncts in the impli-
cation that results after applying the distributive law. We
call each of these implicationspartial containment im-
plication.® In Example 2.2, we write equivalently the rhs

SNotice that containment implications and their partial containment im-

In this section we will give conditions that can guarantee
this direct implications in containment test.

Corollary 4.1 Consider the normalized queri€ and@y,
in Theorem 2.1. Suppose all partial containment implica-
tions are direct. Then there is a mappipg from Q1 , to
Q. such thatds = u;(5}). 0

plications are not necessarily related to mappings and query containment,
only the names are borrowed.

Lemma 4.2 Let@; : Q10,531 and Qs : Q20,52 be conjuc-
tive queries whose cores afg o and (- respectively and
the ACs aref; andgs respectively. Lef); be normalized to
Q) : Qlo, 81 andQy : Qhy, B4, whereQ' ,(Q%,) is the core
of Q1 (Q%) and 51 () is the AC of)} (Q5%) respectively. If
B% = u(B1) wherey is a containment mapping fro@/ to
@}, there exists a containment mappindgrom @; to Q-
such that3, = v(61). O

Proof: First we construct a containment mappjagfrom
Q1 to Q4 usingy by settingy'(X) = u(X). B = u(B)).
By construction,$] contains all the ACs in5;. That is,
BL = Br. Or, pu(By) = w(Br). ThereforeS; = u(B)
[1]. Consider a mapping’ from the core subgoals @§}, to
those of@-. If we introduced a new variabl¥ in @, for
a shared variabl& in -, p/(Y) = X. For a variable”
thatis inQ% and also iQ-, 1/ (Y) =Y. If we introduced a
new variablel” in @), for a constant in Q», sety/(Y) = c.
Since a variable occurs only once in the coré)f i’ is a
containment mapping from’, to Q-.

We show below that, = u/(55) holds. We consider
the three types of AC’s if8}, and show thag, implies each
(under the mapping’):

1. AC’s in 3} that were also irf, hold by direct impli-
cation, since the variables that occur in these AC’s occur in
both@. and@®’, andu maps these variables to themselves.

2. AC's in 8} due to shared variables jfy: For an oc-
currence of a shared variablein (), we introduced a new
variableY in Q) and added{ =Y in 3}. Now, u' mapsY
to X. Therefore, such AC’s if¥}, are reduced to tautologies
X = X in u(B4) and are trivially implied by3s.

3. AC’s in 3} due to constants ify,. We introduced a
new variableY” in @}, andY = cin 5. Again,u/'(Y) = ¢
andc = cis trivially implied by 3.

HencefB, = u/(B3) holds [2].

Combining implications [1] and [2], we havg, =
1 (u(B1)). wis a containment mapping from the variables
in @ to Q. p' is a containment mapping fro), to Q-.
Thereforeu' .1 is a containment mapping frof to Q. u

Per Lemmas 4.1 and 4.2, if we can show that the only
form of implication is direct implication and rule out cou-
pling implication, the homomorphism property will hold.

Theorem 4.1 Q¢ : Q19,51 is a CQAC such thaf) is
the core of@,, and 3, is the arithmetic comparisons of
Q1. Similarly, Qs> : Q29,2 is a CQAC with a corel)s
and arithmetic comparisons,. Let Q) : Qi,,/; and
Q2 : @by, 35 be the normalized forms @p; and Q- re-
spectively, with core®’, and @, and arithmetic compar-
isons 3] and g} respectively. Assume, for any set of con-
juncts (el,e2, ..., ek), wheree; is a conjunct inu;(51),
and puq, ps, - . -, g are all the containment mappings from
Qi 10 QY. 85 = el holds forl € (1,...,k). Then,

10

Q- C in@Q), iff there exists a homomorphism (fra@gh, to
Q20) p, such thads = p(B1). =

Proof: If: follows from Theorem 2.1.

Only If: If Qs C i, then by Theorem 2.1
Implicationl : B4 = p1(B1)Vu2(B)V. .. ux(B1), where
ui,i € 1...k are all the containment mappings frap to
Qs.

First, we argue that in the normalized queries, there ex-
ists one CMv from Q) to Q% such that the implication
B4 = v(B]) holds. Then we show that if exists, there
exists a CMy from @, to ()> such that the implication
B2 = u(B1) holds.

We rewrite the consequent of Implication 1 as a conjunc-
tion of disjunctions, by conjoining all possible combina-
tions C'i, obtained by choosing one AC from eagh(5])
fori € (1,...k), and obtaining the disjunction of the AC’s
in a combinatiorCi. each disjunct appears in somgj;).

By = CLIAC2A...CN,whereN is the number of inequal-
ities in 8. B4 implies each of these conjunadtgj, V4,1 <

j < N separately. Consider one such implicatin= C;,
whereCjise; Vea V...epande; € p;(61),i € (1,...k).
We haveps!, = e; V ey V ...e,. By the hypothesis of the
theoremp) = ¢, forl € (1,...,k).

Using the result above, and Lemma 4.1, we hale=>
w;(B1) wherej € (1,..., k). Again, using the result above,
and Lemma 4.2, we show that there exists a containment
mappingu from @; to Q- such thad, = u(51). m

As shown above, if Implication 1 does not result in cou-
pling implications, the homomorphism property holds and
we can design efficient algorithms to check query contain-
ment. By exhaustively listing the different forms of cou-
pling implications, and finding sufficient conditions to avoid
them, we can identify sufficient conditions under which the
homomorphism property holds. We enumerate the different
forms of coupling in the appendix and provide the sufficient
conditions to avoid coupling in the next section.

4.2 Left Semi-interval Comparisons (LSI) for Q,

We first consider the case whe€g is a conjunctive
qguery with left semi-interval arithmetic comparison sub-
goals only (i.e., one of the forlY < ¢ or X < ¢ or both
may appear in the same query). The following theorem is a
main result that describes the conditions for the homomor-
phism property to hold in this case.

Theorem 4.2 Let @, be a conjunctive query with left semi-
interval arithmetic comparison subgoals a)d a conjunc-
tive query with any arithmetic comparison subgoalsQ|f
and (- satisfy all the following conditions, then the homo-
morphism property holds.

e Condition (i)-Ist There do not exist subgoals as fol- Theorem 4.3 Let(); be a conjunctive query with left semi-
lows which all share the same constant: An open-LSl interval and right semi-interval arithmetic comparisons and
subgoal inAC(Q), a closed-LSI subgoal in the clo- Q- a conjunctive query with S| arithmetic comparisons. If
sure of AC(Q-), and a subgoal irore(Q). @1 and Q- satisfy all the following conditions, then the ho-

R) momorphism property holds.
e Condition (ii)-Isi: Either core(Q1) has no shared vari-

ables or there do not exist subgoals as follows which e Conditions (i)-|Si, (ii)-lSi, (iii)-|Si, (i)-rsi, (ii)-l’Si, and
all share the same constant: An open-LSI subgoal (iii)-rsi.
in AC(Q1), a closed-LSI subgoal in the closure of

AC(Q-) and, a subgoalimore(Q2). e Condition (iv): (a) Any constant in an RSI subgoal of

« Condition (ii)-Isi: Either core(Q,) has no shared @1 is strictly greater than any constant in an LS| sub-
variables or there do not exist subgoals as follows goal of @1, or (b) (1) @ contains only open subgoals
which all share the same constant: An open-LSI sub- (open-LS| or open-RSI), and (i) any constantin an RS|
goal in AC(Q,) and two closed-LSI subgoals in the subgoal of), is greater than or equal to all constants
closure ofAC(Qs). in LSI-subgoals of),, and (iii) there do not exist an

open-LSI subgoal i);, an open-RSI subgoal i€+,
| andCore(Q,) that share a constant.

See the Appendix for an extended sketch of the proof of |

Theorem 4.2. If confusion does not arise we will refer to
these conditions simply by (i), (i), and (iii) instead of (i)- _
Isi, (ii)-Isi, and (jii)-Isi. It is straightforward to construct 4-3-2 Pl Queries forQ,
corollaries of Theorem 4.2 that use simpler conditions. The

following corollary is an example. If the containing query), has point inequalities, three

more forms of coupling implications can occur. Thus The-

Corollary 4.2 LetQ; be a conjunctive query with left semi- 0rém 4.3 is further e>.<tende_d to Theorem 4.4, which is the

interval arithmetic comparison subgoals a@d a conjunc- third main result of this section.

tive query with any arithmetic comparison subgoals. If the

comparisons irQ); do not share a constant with the closue Theorem 4.4 Let@®, be a conjunctive query with left semi-

of the arithmetic comparisons @p-, then the homomor- interval and right semi-interval and point inequality arith-

phism property holds. a metic comparison subgoals ar@, a conjunctive query
with Sl arithmetic comparison subgoals.(Qf and(@- sat-

The results in Theorem 4.2 can be symmetrically statedisfy all the following conditions, then the homomorphism
for RSI queries as containing queries. The symmetrical con-property holds.
ditions of Theorem 4.2 for the RSI case will be referred to
as conditions (i)-rsi, (ii)-rsi, and (iii)-rsi, respectively. « Conditions (i)-Isi, (ii)-lsi, (iii)-Isi, (i)-rsi, (i)-rsi, and
4.3 Semi-Interval (SI) and Point-Inequalities (PI) ()-rs.
Queries for @,

Condition (iv).

Now we extend the result of Theorem 4.2 to treat both
LSl and RSI subgoals occurring in the same containing
query. We further extend it to include point inequalities,
i.e., of the formX # c whereX is a variable and is a

e Condition (v): EitherQ; has no repeated variables, or
it does not have point inequalities.

e Condition (vi): core(Q1) and Point-Inequalitie®);)

constant. do not share a constant.

4.3.1 Sl Queries forQ, « Condition (vii)-Isi: Closed-LS1Q;),
We consider the case whef has both LSI and RSI in- Point-Inequality@:) do not share constant.
equalities called “Sl inequalities,” i.e., any of thg >, <, - o

and>. In this case we need one more condition, namely ~® Condition (vii)-rsi: Closed-R%01),
Condition (iv), in order to avoid coupling implications. Point-Inequality@:) do not share a constant.
Thus Theorem 4.2 is extended to the following theorem,

which is the second main result of this section. |

11

4.4 Beyond Semi-Interval Queries forQ,

In this subsection, we try to see how far the kind of re-
sults we obtained so far can be pushed to hold on more
general queries. We give some examples that indicate our}
results have already captured subtle cases where the homo-
morphism property holds and there is not much hope be-:
yond those cases (unless we restrict the number of subgoals
of the contained query which is known in the literature —
e.g., [11]). Here is one example. There are two more in the}
Appendix. |

Coupling 1: Couplings that occur due to the following
implication:

TRUE = ((X <Y) V(Y < X))

indicates that if the containing query has closed compar-(Are there an OLSI(Q;), a CLSI AC in Closure(Qs), and
1| Core(Q1) subgoal that share a constant and, the constant and

isons, then the homomorphism does not hold. The follow-
ing is such an example.

Q1 :ans():-p(X,Y), X <Y

Q2 :ans() - p(X,Y),p(Y, X)
Clearly Q> is contained in@q, but the homomorphism
property does not hold.

In summary, in this subsection, we have provided for-
mal conditions that, for queries with SI-Pl inequalities, one
mapping is sufficient to test query containmemiessthe
queries use shared variablasd same constant from the
same domain in “many” subgoals. We provide examples
(in the Appendix) of all those exceptional cases where one
mapping is not enough. The queries in those examples
are contrived in order to enforce a “hard” containment test.
Therefore, we believe that, in most practical cases the con-
tainmenttestis “easy”. The formal phrasing of this informal
statement are Theorems 4.2, 4.3, and 4.4.

4.5 A Testing Algorithm

We summarize the results in this section in an algorithm
shown in Figure 4. Given two CQAC queri€s and@-,
the algorithm tests if the homomorphism property holds in
checking@> C @,. It considers LSI, RSI, SI, and PI com-
parisons in the queries sequentially. Its different steps are
based on the results in Subsections 4.2 and 4.3. It is possi-
ble for queries not to satisfy these conditions, while it is still
possible for the homomorphism property to hold. For in-
stance, it could happen if they do not have self-joins, or do-
main information yields that certain mappings are not pos-
sible (see Section 5). Hence, in the diagram, we can also
put this additional check: Whenever one of the conditions
is not met, we also check whether there are mappings that
would enable a coupling implication. We did not include
the formal results for this last test for brevity, as they are a
direct consequence of the discussion in the present section.

12

[{Start (queries @ and Q) ﬂ

Check LSI comparisons

core(()r) has a

No

repeated variable?)

Yes
Are there an OLSI(Q1), a CLSI AC in Closure(Q-), and
Core(()2) that share a constant, and the variable in the
OLSI(®1) subgoal and the repeated variable can map to a
variable of the CLSI AC that shares the constant?

¢ No

Are there an OLSI(Q,) and two CLSI AC’s in Closure(Q;)
that share a constant, and the variables in the OLSI(Q,)
and the repeated variable can map to a variable in the
CLSI AC'’s that share the constant?

No

i| Are there an LSI(Q;) and an RSI(Q;) such

1| that the constant in the RSI subgoal is greater thar
/| the LSI subgoal, and the variables in the subgoals

1| can be mapped to the same variable in Q27

3 No

Are there an LSI(Q1) and an RSI(Q,) that
share a constant with PI(Qs), and the
variables in the @); subgoals can map to the
variables in the ()» subgoals?

J/NO

Is there a constant in Core(Q;) that appears
in PI(Q:) and both the constant in Core(Q;)
and the variables in PI(Q) can map to the
same variable in Qo7

J/No

’

Is there a constant in a CLSI(Q);) that appears
in PI(Q1), and both the variables in the two
subgoals can map to the same variable in ()7

| %

Is there a constant in a CRSI(Q)) that appears
in PI(Q1), and both the variables in the two
subgoals can map to the same variable in Q57

[Homomorphism property holds]

Figure 4. An algorithm for checking homo-
morphism property intesting Q2 C Q1.

5 Improvements Using Domain Information Relationhouse has housing information such as the
seller, the street, the city, and the price of each house. The
So far we have discussed in what cases we do not needelationcrimerate has information about the crime rate
to normalize queries in the containment test, and in whatof each city. The following table shows the domains of
cases we can reduce the containment test to checking théifferent attributes in these relations. Notice that attributes
existence of a homomorphism. It is possible that a queryhouse.city andcrimerate.city share the same do-
does not satisfy these conditions, and the results become inmain: D3 = {city nameg.
applicable. For instance, often a query may have koth
and> comparisons, not satisfying the conditions in Theo-

rem 3.1. In this section we study how to relax the conditions _Atribute Domain
in the theorems by using domain knowledge of the relations ouse-seller D, = {person namgs
and queries. house street D, = {s?reet names
The intuition of our approach is the following. We par- house.C|t_y D3 = {city name$ _
tition relation attributes into different domains, such as “car 1CUSe-price D4 = {float numbers in dollafs
models,” “years,” and “prices.” It is safe to assume that for crimerate.city D3 = {city name$
realistic queries, their conditions respect these domains. In_cfimerate rate D5 = {crime-rate float numbejs

particular, for a comparisoX 6 A, whereX is a variable,

A is a variable or a constant, the domain-bishould be has its domain. We want to compute these domains auto-

the same as that of the attribute & As an example, it . .
. - ; matically, so that the user does not need to specify them
may be meaningless to have conditions such as “carYear

= $6,000” Therefore, in the implication of testing query explicitly. The argument domains are calculated as follows.

containment, it is possible to partition the implication into ¢ Eor each argumen; (either a variable or a constant)

Given a query), each variable and constant(@halso

different domains. The domain information about the at- in a subgoalR(X71,...,X) in query@, the domain
tributes is collected only once before queries are posed. For of x; Dom(X;), is the corresponding domain of the
instance, given the following implicatiop j-th attribute in relatior?z.

year > 2000 A price < $5,000 e For each comparisolN 6 ¢ between a variabl& and
= year > 1998 A price < $6,000 a constant, we setDom(c) = Dom(X). Notice

we do not need to consider implication between constants that two constants could have the same value but they

or variables in different domains, such a$998” and are from different domains, and thus they are treated
“$6,000,” and “year” and “price.” As a consequence, this as different constants. For instance, in two conditions
implication can be projected to the following implications carYear = 2000 andcar Price = $2000, constants
in two domains: “2000” and “$2000” are treated as different constants,
since they are from different domains.
Year domainp,: year > 2000 = year > 1998. We perform this process on all subgoals and comparisons
Price domain,: price < $5,000 = price < $6,000. in the query. In this calculation we make the following re-
We can show thap is true if and only if bothg, and ¢, alistic assumptions. (1) IX is a shared variable in two

are true. In this section we first formalize this domain idea, SUPg0als, then the corresponding attributes of the two argu-
then show how to partition an implication into implications Ments ofX have the same domain. (2) If we have a compar-
of different domains. Finally we relax the conditions of the iSon-X 61", whereX’ andY are variables, thewom(.X)
theorems in the previous sections to conditions in different @nd Dom(Y’) are always the same. The rationale of these

domains. assumptions is that, realistic queries do not have conditions
that compare two arguments from different domains.
5.1 Domains of Relation Attributes and Query Ar- Consider the following two queries on the relations
We assume each attributg in arelationR (A4, ..., Ax) Py ans(ty, ¢1) - house(sy,t1,c1,p1), crimerate(cy, 1),
has a domaidDom(R.A;). Different attributes of the same p1 < $300,000,7; < 3.5%.
or different relations could share the same domain. For in- P»: ans(ts, c2) :- house(sa, t2, ca, p2), crimerate(ca, r2),
stance, consider the following two tables. p2 < $250,000, 75 < 3.0%.
house(seller, street, city, price) The computed domains of the variables and constants are
crimerate(city, rate) shown in the following table.

13

Py P Py: P The projection ofr on domainD, (float numbersin dollars)
Variable/ | Domain || Variable/ | Domain D, 1Sp2 < $250,000 = p» < $300,000. Similarly, 7p,
constant constant isry < 3.0% = ry < 3.5%.

51 Dy 52 D, Theorem 5.1 Let Dy, ..., D;, be the domains of the argu-

tl D2 t2 D2

ments in the implicatiog. Theng is true if and only if all

‘1 D3 €2 Dy the projected implicationép, , . .., ¢p, are true. |

D1 D, D2 Dy TR

Ty Dy T Dy) o

Proof: (Sketch) The implicatiop can be represented as
$3§%’£00 g‘* $235%’£00 34 an inequality graph [10]. Based on the definition of argu-

o0 5 2 5 ment domains, the vertices of arguments in the same do-

It is easy to see that the domain information as defined Main form a subgraph, which should be disconnected from

in this section can be obtained in polynomial time. any other subgraph of vertices of arguments in a different
domain. Thus “coupling” between vertices of different do-

Proposition 5.1 The domain of each variable and each mains can never happen in the implication. -
constant can be found in polynomial time. a

In the example above, by Theorem 5zlis true if and
only if 7p, andwp, are true. Since the latter two are true,
is true. ThusP, C P;. In general, we can test the implica-
tion in Theorem 2.1 by testing the implications in different

According to Theorem 2.1, to test the containm@nt— domains, which are much cheaper than testing the whole
@)- for two given queries); and (-, we need to test the implication.

containment implication in the theorem. We want to par-
tition this implication to implications in different domains, g 3 Relaxing Conditions in the Theorems
since testing the implication in each domain is easier. Now
we show that this partitioning idea is feasible. We say a By using Theorem 5.1 we can significantly relax the con-
comparisonX 6 A is in domainD if X andA are indo- gijtions of the theorems in the previous sections. The condi-
mainD. The following are two important observations. tions of all the results in the previous sections can be relaxed
to those arguments in the same domain. As an example, if
a theorem requires the containing query to be LSI, then we
can change this requirement to requiring all AC subgoals
the same domaito be LSI. Notice that it is possible that
one domain is LS| while the other domain is RSI.
e In query normalization, each new introduced variable =~ The following theorem is an example of how to relax
has the same domain as the replaced argument (varicondition (ii)-Isi in Theorem 4.2.
able or constant).

5.2 Partitioning Implication into Domain Impli-
cations

e If a mappingu; maps an argumeny in query@; to
an argument” in query (., based on the calculation
of argument domains, clearl)Y andY are from the
same domain.

Theorem 5.2 Let (); be a conjunctive query with left

Definition 5.1 (Implication Projection) Consider the fol- semi-interval arithmetic comparisons agd a conjunctive
lowing implication¢ in Theorem 2.1: qguery with any arithmetic comparisons.(f; and Q- sat-
. . . isfy all the following conditions, then the homomorphism
By = m(BY) V...V uk(By) property holds.
For a domainD of the arguments ia, the projection of¢ e Condition (i)-Ist There do not exist subgoals as fol-
in D, denotedsp, is the following implication: lows which all share the same constanfrom the
, , , same domain 4 An open-LSI subgoal idC(Q),
Bop = 11 (Byp) V.-V (B, p) a closed-LSI subgoal intC(Q,), and a subgoal in
B p includes all the comparisons 6§ in domainD. Sim- core(Q1).
ilarly, 3] p, includes all the comparisons gf in domainD. « Condition (ii)-Isi For every shared variableX in
= core(Q1), and every constantin the same domain
Consider the two queries above, and we want to test if @S-, there do not exist subgoals as follows which all
P, C P,. There is only one containment mapping frd sharec: An open-LS| subgoal inlC'(Q1), a closed-
to P», and we need to test the following implication: LSI subgoal indC(@Q-), and a subgoal imore(Q2).

4Notice, e.qg., that$4” has a different domain from that ofi“years,”
m:pe < $250,000,75 < 3.0% = p2 < $300,000,r, < 3.5% hence they do not count as same in this condition.

14

e Condition (iii)-Isi: For every shared variableX in The following is a summary of our experiments on the
core(Q)1), and every constantin the same domain TPC-H benchmark queries.
as X, there do not exist subgoals as follows which all

sharec: An open-LSI subgoal iC(Q;) and two 1. All, except two (4 and @»1) of the 22 queries use

closed-LSI subgoals iAC(Q>). semi-interval comparisons (SI's) and point inequalities
(PI's) only.
|
2. When the homomorphism property may not hold, it
6 Experiments is always because of the following situation: a vari-
able (usually of “date” type) is bounded in an interval
In this section we evaluate the results on real queries, between two constants. In such a case, the property

and check whether the conditions in previous sections are is guaranteed to hold if the contained query does not
satisfied by these queries. We checked queries in many contain self-joins of the subgoal that uses this variable.
introductory database courses available on the Web, data- i .)

mining queries from Microsoft Research, and the TPC-H 3. As aconsequence of re_sult (_2), if the contained query is
benchmark queries [18]. We have observed that, for certain ~ &/S0 one of the 22 queries, since they do not have self-
applications (e.g., the data-mining queries), it is notunusual J0ins of relations that share a variable with S| predi-

for queries to not have self-joins, thus the homomorphism cates, the homomorphism property holds.

property obviously holds. In addition, among the queries
that use only semi-interval (Sl) and point inequality (PI)

comparisons, the majority has the homomorphism property.Here we use the following query .a.dapted from TPC-H
For a more detailed discussion, we focus on our evalu_querng as an example. (For simplicity we call this query

ation results on the TPC-H benchmark queries [18], which Q3.) We show hO_W to _apply Fhe r_esu_lts in the_ e_arlier sections
representtypical queries in a wide range ofdecision-supporlIO test the following: in testing i); IS containing another
applications. From what we know, our results are the first CQAC query, does the homomorphism property hold in the
formal proof that containment is easy for those queries.teSt?

In our_ e_xperime_nts_we viewed _these benchmark_queries ABELECT I_orderkey, |_extendedprice, |_discount,
containing queries in the containment test. That is, we sup- o_orderdate, o_shippriority

posed that we wanted to check containment of a benchmark-po\ customer, orders, lineitem

query against any CQAC query. We removed the aggrega\wHERE ~ c_mktsegment = [SEGMENT]’

The detailed experimental results are in the Appendix.

tions from the queries, i.e., for each aggregate query, we AND c_custkey = o_custkey
considered a CQAC query with the same subgoals and the AND |_orderkey = o_orderkey
same arithmetic restrictions in tVWHERElause. We ran AND o_orderdate < date '[DATE]
our algorithm described in Section 4.5. We also used do- AND |_shipdate > date '[DATE];

main information on top of the algorithm in the flowchart,
applying the domain-partitioning results in Section 5. If the
algorithm did not give us a definite answer as to whether

the hom_omorphlsm prqperty holds against any query, the'_n'cause of lack of space, we do not state its relaxation, which es-
v_ve restricted the Coptalned-query pool tpo, gnd gave Condl'sentially adds to the conditions of Theorem 5.2 condition (iv) that
tions that the contained query must satisfy in order for the i now relaxed to hold only on inequalities in the same domain.
homomorphism property to hold. Notice that the above query has shared variables (expressed by the
Itis also noticed that in order to be able to decide conclu- equalityc_custkey = o_custkey in the WHERElause), as well
sively, we also used the “mapping check” of the algorithm. as it contains both LSI and RSI arithmetic comparisons. However
That is, whenever the conditions were not met, we showedthe variables_orderdate (used in a comparison) andcustkey
that an appropriate mappmg that would enable a Coup"ng (a shared variable) are obviously of different domains, although
implication (and hence fail the homomorphism property) that information is not explicitly stated in the query. Hence con-
would not occur either because of domain information or ditions (||)-Is!, (ii)-rsi, (iii)-Isi, (|||)_-rS| are satisfied. Also there are
because the query would be very unnatural and contrived "0 constantsn the same dOF“a"“a‘ are shared among _subgoals
To justify the latter remark, we argued that often if a con- in cgre(Q_g,) _and th_e comparison, because the consta_nt in the com-
Jus - ! . parisons is in a different domain than the constantdre(Qs).
stant is shared by qn‘ferent subgoals or queries, _then,.weHence conditions (i)-Isi and (i)-rsi are satisfied.
may change one of its occurrences by a small fraction with- - ag for condition (iv), it may not be satisfied but the simplest
out affecting the intended meaning of the query (that would scenario on which it is not satisfied either uses a query with a self-
be the case with a date). By doing this however, we meetjoin on relationlineitem or a self-join on relatiororders .
the shared variable condition of our algorithm. Such a query (a) is not included in the benchmark, and (b) would

Let us view the above quer§s as a containing query to be
checked against any contained query that is a conjunctive query
with semi-interval comparisons. We shall apply Theorem 4.3. Be-

15

ask for information that is not natural or is of a very specific and
narrow interest (e.g., would ask of pairs of orders sharing a prop-
erty). Consequently we know that in order to test containment of
any natural Sl query i@)s, we will need only one containment
mapping. Notice that without using the domain information, we
could not make in this conclusion.

7 Conclusion

In this paper we considered the problem of testing contain-
ment between two conjunctive queries with arithmetic compar-

[16] O. Shmueli. Equivalence of datalog queries is undecidable.
Journal of Logic Programmingl5(3):231-241, 1993.
D. Theodoratos and T. Sellis. Data warehouse configuration.

In Proc. of VLDB 1997.
TPC-H. http://www.tpc.org/tpch/ L)
J. D. Ullman. Information integration using logical views. In

ICDT, pages 19-40, 1997.] o .
R. van der Meyden. The complexity of querying indefinite

data about linearly ordered domains.R®DS 1992.
J. Wang, M. Maher, and R. Toper. Rewriting general con-

junctive queries using views. In X. Zhou, edit@hirteenth
Australasian Database Conference (ADC2Q02¢lbourne,
Australia, 2002. ACS.

(27
i
[20]
21

isons. We showed in what cases the normalization step is not

needed. We found various syntactic conditions on queries, un-
der which we can reduce considerably the number of mappings

A Appendix

needed to test containment to a single mapping (homomorphismA 1 Proof of Theorem 4.2

property). These syntactic conditions can be easily checked in

polynomial time. Our experiment using real queries showed that

many of these queries pass this test, so they do have the homomor-

phism property in a containment mapping, making it possible to
use more efficient algorithm for the test.

References

[1] F. Afrati, C. Li, and P. Mitra. Answering queries using views
with arithmetic comparisons. IRODS 2002.

[2] F. Afrati, C. Li, and J. D. Ullman. Generating efficient plans
using views. INSIGMOD, pages 319-330, 2001.

[3] A. Chandra, H. Lewis, and J. Makowsky. Embedded impli-
cation dependencies and their inference problenSTOC
pages 342-354, 1981.

[4] A. K. Chandra and P. M. Merlin. Optimal implementation

of conjunctive queries in relational data bas8$0C pages

77-90, 1977.

S. Chaudhuri, R. Krishnamurthy, S. Potamianos, and

K. Shim. Optimizing queries with materialized views. In

ICDE, pages 190-200, 1995.

S. Chaudhuri and M. Y. Vardi. On the equivalence of re-

cursive and nonrecursive datalog programs$P@DS pages

55-66, 1992.

[7] S. S. Cosmadakis and P. Kanellakis. Parallel evaluation of
recursive queries. IRODS pages 280-293, 1986.

[8] A. Gupta, Y. Sagiv, J. D. Ullman, and J. Widom. Constraint
checking with partial information. I#ODS pages 45-55,
1994.

[9] A. Halevy. Answering queries using views: A survey. In

Very Large Database Journa?001.

A. Klug. On conjunctive queries containing inequalities.

Journal of the ACM35(1):146-160, January 1988.

P. G. Kolaitis, D. L. Martin, and M. N. Thakur. On the com-

plexity of the containment problem for conjunctive queries

with built-in predicates. IlPODS pages 197—-204, 1998.

A. Levy, A. O. Mendelzon, Y. Sagiv, and D. Srivastava. An-

swering queries using views. PODS pages 95-104, 1995.

R. Pottinger and A. Levy. A scalable algorithm for answering

queries using views. IRroc. of VLDB 2000.

X. Qian. Query folding. INCDE, pages 48-55, 1996.

Y. Saraiya. Subtree elimination algorithms in deductive

databasesPh.D. Thesis, Computer Science Dept., Stanford

Univ.,, 1991.

(5]

(6]

[10]

[11]

[12]
[13]

[14]
[15]

16

The proof of Theorem 4.2 is based on two observations on the
containment implication of Theorem 2.1: (a) If a coupling partial
containment implication occurs, then one of the three conditions is
shown to be dissatisfied. Consequently if the conditions are satis-
fied then we get only direct partial containment implications. (b) If
we have only direct partial containment implications, then the ho-
momorphism property holds. We settle (a) as follows: Lemma A.1
proves that only three forms of coupling partial containment im-
plications may occur. We observe that if the conditions (i)—(iii)
of Theorem 4.2 are satisfied, then the partial containment impli-
cations cannot have any of these three forms. Consequently, if
the conditions of Theorem 4.2 hold, there are only direct partial
containment implications.

Lemma A.1 Consider a partial containment implication with rhs

a disjunction of comparisons of either of the following forms
X <X <c¢,X =¢X =Y. Suppose the rhs is minimal
with respect to the satisfaction of the implication, i.e., if we delete
any of the disjuncts, the implication is not satisfied. Then either
the rhs has exactly one AC (i.e., it is a direct implication) or the
implication is one of the following three cases (up to renaming of
variables and constants and up to adding any number of additional
conjuncts in the Ihs):

(1) (X <o)= (X <o)V (X =c))
(i) (X <A =)= (X <)V (X=Y))
(115) (X <)A (Y <¢)=>(X<cV(Y <o)
V(X =Y)
O

Now using the above lemma, it is not hard to prove that the
conditions (i), (ii), and (iii) of Theorem 4.2 do not allow coupling
implications to happen. Finally, the proof of Theorem 4.2 is a
direct consequence of the above results and of Corollary 4.1 and
Theorem 3.2.

A.2 Enumeration of the Different Forms of Cou-
pling

In this subsection, we identify conditions to avoid all possible
forms of coupling. We use the termconjunctto refer to a con-
junct that appears in the consequent of an implication. Similarly,

we use the terna-conjunctto refer to a conjunct that appears in
the antecedent of an implication.

Note that for coupling, we need at least 2 c-conjuncts in the
consequent. Below, we list all possible combinations of two c-
conjuncts el and e2 and for each combination, derive the type of
coupling that can occur.

Forms of the c-conjuncts:

X<e

X>c

X<e¢

X>c

X #c

X=c

X=Y

A negated c-conjunct can be one of the following forms:
X >c

X<e¢

X>c

X>c

X=c

X #e¢

X#£Y

Forms of a-conjuncts:
X<e

No o~ wDh e

No o s~ wDdh e

X>c
X >c
X <c
X #e¢
X=c
X=Y
X>Y
X>Y
10. X #Y

We now enumerate all possible cases of coupling implica-
tions and check to see if the conditions identified in Theorems
4.1, 4.2, and 4.3 avoid them. Consider the coupling implication
B = (e1Ve2). The implication can be rewritten &s3) Ve: Ves.
Alternatively, it is equivalent ter(3 A (—e1) A (—e2)). If the last
statement is true, the statemégtA (—e1) A (—e2)) is a contra-
diction. We now identify all possible forms of a-conjuncts and
e-conjuncts that produce minimal contradiction. By the temin-
imal contradictionwe refer to a conjunction of arithmetic com-
parisons that is a contradiction such that if any of the arithmetic
comparisons is deleted from the conjunction it is no longer a con-
tradiction.

In the sequelel, e2 are c-conjuncts. Minimal contradictions
can be of the following forms:

© © N o gk~ wDdhNPRE

1. el = (X < ¢),=(el) = (X >= ¢), the rest of the con-
juncts in the minimal contradiction need to imgliX < c).

17

(@) e2 = (X < ¢). Sinceel ande2 are the same one of

them can be deleted and the contradiction still holds.
Therefore, the set of conjuncts producing the contra-
diction is not minimal - contrary to our assumptions.
Thus, this case can not occur.

(b) €2 = (X > ¢) is avoided due to Theorem 4.3 Condi-

tion (iv).

(c) e2 = (X < ¢) rendersel redundant. Thus, this case

cannot occur.

(d) e2 = (X > ¢). Theorem 4.3 Condition (iv) rules out

this case.

(e) e2 = (X # c¢) rendersel redundant. Thus, this case

)

cannot occur.

e2=(X=¢),(e2) = (X #¢),(X#c)AD =
(X<e¢),D=(X<e¢).

e3 cannot take the forms that have been found unsat-
isfactory fore2 in the previous cases. We check using
e3=(X=Y),-e3=(X£Y),(X£Y)AD =

(X <e¢). Thus,D' = (X < ¢) must hold and:3 is
redundant.

Now we consider the cases using a-conjuncts.

i. X < cdirectly impliesel and renderg2 redun-
dant.

i. X>cAB= (X < c¢)- contradiction.

iii. X < ¢ We have the coupling
(X <¢) = (X <c¢)V (X =c). This form of
coupling is ruled out by Theorem 4.2 Condition
OF

iv. X > crendersl redundant.

v. X # crenders2 redundant.

vi. X = c - directly impliese2 and renderg1 re-
dundant.

vii. al = (X =Y): The other useful AC’s in the an-
tecedent could be involving the variablesti)and
¢, ii) Y andc and iii) X andY . We have consid-
ered all possible forms involving” andc above.
Due to the ACX =Y, all AC’s involving Y and
c would also result in an AC involvind(andc
in the closure of the AC'’s in the antecedent. As
indicated above, we have already eliminated all
possible forms of AC’s involving andec. Thus,
we consider only the AC’s involvin andY:

A. X > Y is redundant when we havd =

(X=Y).

B. X < Y is redundant when we have =
(X=Y).

C. X < Y is a contradiction when we have
al=(X=Y).

D. X > Y is a contradiction when we have
al=(X=Y).

E. X # Y is a contradiction when we have
al=(X=Y).

viii. al = (X <Y): The different cases are:

A.

ix. (X
A.
B.

©

E.
F.
G.
H.
l.

J.

K.

(Y < ¢) producesX < cin the closure of
the AC’s of the antecedent. Thus, it has been
ruled out by Theorem 4.2.

(Y > ¢): In the inequality graph, i <Y

is used to produce a path framtoc, Y > ¢
cannot be used since in it creates a path from
ctoY and not the opposite.

. 'Y < cproducesX < cand thus is ruled out

by Theorem 4.2.

Y = c producesX < cand is ruled out by
Theorem 4.2.

. 'Y # c cannot produce a path frod to ¢

while using bothX < Y andY # cin the
inequality graph.

. (X > Y) along withal createsX =Y -

the case has been covered above.

. (X <Y) rendersz1 redundant.

(X >Y) creates a contradiction.

(X #Y)is equivalent taX < Y renders
e2 redundant.

>Y):

Y > ccreates a contradiction

Y < candY < ¢: Both X andc have a path
fromY in the inequality graph and thus both

edges cannot be used to create a path from
X toe.

.Y > candY = cresultinX > ¢ cannot

imply X < c.

Y # c cannot create a path frod¥ to ¢

while using both a-conjuncts.

X <Y -rendersX >Y') redundant.

Y < X - contradiction.

Y = X -renderg X > Y') redundant.

X #Y -this case is similart& < Y.

(X <Y):
e Y >c¢ Y >corY # ccannot create a

path fromX to c in the inequlaity graph.

e Y < corY = crenders2 redundant.

e Y < cresults inX < cin the closure of
the AC'’s in the antecedent and is ruled out
by Theorem 4.2.

e X > Y creates a contradiction.
e X #Y isredundant.
(X >Y):
e Y <c¢Y <corY # ccannot create a
path fromX to c in the inequlaity graph.

e Y <Y >c orY = ccontradicts with
el.

e X #Y isredundant.

(X # Y): No AC of the formY 6 ¢ can
form a path fromX to c using(X # Y)
andY 6 c.

18

X. e2
Y)

=X =Y)(e2) = (X #Y),(X #
AD= (X <c).

We now examine the conjunction ¢X # Y')
with another c-conjunct.

A.

B.

C.

—e3 = (X < c)or—e3 = (Y < ¢) do not
jointly imply another AC.
—e3 = (X > c¢) or-e3 = (Y > c¢) do not
jointly imply another AC.
—e3 = (X < c)or—e3 = (Y < ¢) do not
jointly imply another AC.

. me3 = (X >c¢)or—e3 = (Y > ¢) do not

jointly imply another AC.

.e3 = (X =¢),me3 = (X # ¢), do not

jointly imply another AC. Similarly,e3 =
(Y = ¢),—e3 = (Y # c) does not jointly
imply another AC.

. e3 = (X #c)ore3 = (Y # c). Sincee2

has repeated variables, this case is ruled out
by Theorem 4.4 Condition (v).

. e3 = (X = Z). In this case, we introduce a

new variable using an AC of the same form
ase2. We now have to find a D’ such that
(X#Y)AX #Z)AD") = (X < o).
This implication is of the same form as that
for e2 and as seen in the cases above, none of
the other cases can be used to prove the im-
plication. In the absence of any implication
that involves a variable and the constant
there exists nd’ that obeys the constraints
of Theorem 4.3 and Theorem 4.4 and still
satisfies the above implication.

We now consider a-conjuncts:

A.
B.
C.

X < cdirectly impliesel.
X > ccontradicteel.
al = (X <c¢):

e X > ccontradictsu1.

e X = crendersl redundant.

e X # crenders2 redundant.

eV < ¢ If e2 = (X =Y) holds, then
X < cholds. Thus, this case render®
redundant.

e Y > ¢ al = (X < c¢) implies either
X <corX =c If X < c¢does not
hold, e1 does not hold,X = ¢ holds. Also,
sinceel does not holde2 must hold. Thus,
Y = cthat contradicty” > c.

e Y = cresults in the coupling:

(X <A =¢)) = (X <oV(X =
Y)).
and is ruled out by Theorem 4.2.

e (Y < ¢) from a a-conjunct andY” > c¢)
from an c-conjunct results in the following
coupling: (X <c)A(Y <¢)) = (X <
V(Y <c)V(X=Y)).

This form of coupling is ruled out by The-
orem 4.2. ThoughHY < ¢) and (Y =

¢) from the a-conjuncts would also imply
(Y < ¢), they cause direct implication or
have been covered by previous casés#
cNF = (Y <c)whenF = (Y <¢)-
not minimal. Usingt" = ZAF = (Y <c¢
whenF = (Z < c) - conditions are the
same ag” < c.

e (Y > ¢) comes from more than one con-
junct one of which is an c-conjunct. The
conjunction of two AC’s producindY” >
c¢) can not be produced witi < ¢, Y > ¢,
Y #¢Y =corY < ¢ without break-
ing the minimal contradiction and =
Z,7Z > c - conditions are the same as
Y >ec

e X >c-if X > cholds andX < ¢ holds,
thenX = c holds, there is no coupling but
direct implication ofe2.

e X #cANB = (X < ¢) -true but then
X < ¢, X # cdirectly implyel.

e X = c¢-directly impliese2.

e X =Y AB = (X <c¢)-coupling possi-
ble if B = (Y < ¢) but condition 2 rules
itout. f B= (Y <c)or(B= (Y =¢)

, thenel or e2 are directly implied.

e (X <Y),AB = (X < c¢) - coupling

possible ifB = (Y < ¢). See case (vii).

(X <Y),AB = (X <c¢)-needB =

Y < ¢). See case (vii).

X #Y),AB = (X < ¢) - same as (ix).

X >Y)AB= (X <c)-same as (ix).

X <Y)AB= (X <c)-same as (ix).

xi. el = (X > ¢), need toimply(X > c), symmet-

ric to 1.

xii. el = (X > ¢), the rest need to implgX > c).

We ignore cases wher2 = (X < c)or(X >
¢) since those have been covered in cases 1 and 2
above.

A e2=(X<¢),(X>c)AD= (X >¢)
This form of coupling is prohibited by The-
orem 4.3 Condition (iv).

B. e2 = (X > c¢) is redundant since it is the
same agl.

C.e2=(X #¢),7(e2) = (X =¢),(X =
¢c)AND = (X < c) is true for anyD
and results in the couplingrue = (X <
¢) V (X # ¢): This form of coupling is pro-
hibited by Theorem 4.4 Condition (vii).

D. e2=(X =¢),m(e2) = (X # ¢),(X #
¢)AD = (X < ¢), Dmustimply(X < c¢)

- no longer minimal.

E.e2 = (X = Y),—(e2) = (X #
Y),((X #Y)AD) = (X <¢), Dmust
imply (X < ¢) - no longer minimal.

xii. el = (X < ¢), needtoimplyX < ¢), symmet-

ric to 3.

(
(
(
(

19

xiv. el = X # ¢, the rest need to implyX # c).
Again, we examine the cases whes2 takes
forms 5-7, since the first 4 cases have been cov-
ered above.

A e2= (X =¢),(e2) = (X #¢), (X #
c) ND = (X # c), any D resulting in
the coupling:true = (X =c¢) V (X #
¢)). Theorem 4.4 Condition (vi) prohibits
this form of coupling.

B.e2=(X=Y),7(e2) = (X £Y),(X #
Y)AD = (X # c¢). As shown above, a
non-redundantX # Y') can not be used in
conjunction with an AC to imply another AC
while not violating Theorem 4.4 Condition
(V).

C. e = (X = ¢) the rest need to implyX =
¢). The other cases have been covered above
sinceel Ae2 = e2 Ael. Lete2 = (X =
Y),~(e2) = (X #Y),(X #Y)AD =
(X = ¢), Dmustimply(X = ¢) - no longer
minimal.

D. el : (X =Y), the rest need to implyX =
Y’). All cases have been covered previously,
sinceel Ae2 =e2 Ael.

A.3 Tightness of Conditions in the LS| Case

Here we mainly provide examples to argue that the conditions
stated in Section 4.2 are tight. For each of the three conditions in
Theorem 4.2, we give an example that dissatisfies only this con-
dition, and show that more than one mapping have to be used to
prove the containment. These examples also give some intuition
on the proof of Theorem 4.2.

A.3.1 On Condition (i): Single-Variable Coupling
Condition (i) avoids coupling (i) in Lemma A.1:
X <= (X<V(X=0)

EXAMPLE A.1 The following is an example where there is no
single mapping due to a coupling of the form (i).

Q1 :ans() -p(X,4), X <4
Q2 : ans() I-p(A, 4),p(3,A),A < 4

Correspondingly we have the normalized queries:
Q1 :ans() -p(X,Y), X <4,Y =4
QIQ : ans() :_p(X7Y)7p(Za U)7X <4,Y=472=3U=X

There are two containment mappings frooore(Q}) to
core(@y)): wi(X) = X,m(Y) = Y, and us(X) =
Z,u2(Y) = U. @4 is contained inQ} because of the implica-
tion

(X <HOAY =4)A(Z=3)A (U = X)) =
(X <HA Y =4)V((Z =3)A (U = X))

Notice that Coupling (i) occurs due to the same constant ap-
pearing in the LSI arithmetic comparisons, as well as in a com-
parison of the formX = ¢. This comparison is introduced in LSI
queries due to the normalization process. To prevent this coupling,
condition (i) is sufficient. This example shows the tightness of
condition (i) — it dissatisfies (i), but not (ii) and (iii), a®re(Q1)
has no shared variables.

A.3.2 On Condition (ii): Multi-Variable Coupling
Condition (ii) avoids coupling (ii) in Lemma A.1:

(X<ceAY =¢)=> (X <cVX=Y)

EXAMPLE A.2 This example shows that there is no single map-
ping due to a coupling of the form (ii).

Q1:ans()-p(A,B,B),A< 4
Q2:ans() -p(X,Y,Y),p(U, X,4), X <4,U <4

After normalizing the queries we have:

Q' :ans() -p(A,B,C),A<4,B=C
Q5 rans() -p(X,Y,W),p(U,V,2),X <4,Z =4,U < A4,
Y=W, V=X

There are two mapping$ii(A) = X, ui(B) =Y, u1(C)
W, andus(A) = U, u2(B) = V,u2(C) = Z. Q} containsQ,
because the implication

(X<HAZ=HAU<HAY =W)A(V = X) =

(X<HYA Y =W)) V(U <4) A (V =Z))

holds. O

In this type of coupling, we note that we require shared vari-

ables in the containing query and the same constant in the compar-
isons of the two queries as well as the core of the contained query.

Note thatY” = 4 comes from the process of normalization, and
appears in the core of the contained query. To avoid this form of
coupling, the condition (ii) is sufficient.

This example also shows the tightness of condition (ii). It dis-
satisfies condition (i), but not (i) and (iii). Condition (i) is satisfied
becauseore(Q1) does not contain a constant. Condition (ii) is
satisfied because there are not two distinct variable@4rin a
comparison with< 4.

A.3.3 On condition (iii): Multi-Variable Coupling
Condition (iii) avoids coupling (iii) in Lemma A.1:

X<OAY <)== (X <oV (¥ <oV (X=Y)

EXAMPLE A.3 This example shows there is no single mapping
due to coupling of the form (jii).

Q1 : ans(
Q2 : ans(

- p(A,B,B),A < 4
:'p(X7 U7 U)7p(Y7 V7 V)7p(Z7 X7Y)7
X<4,Z<4,Y <4

—

20

In this example, after normalizing the queries, we have three map-
pings that are used to prove containment. m|

This example also shows the tightness of condition (iii). It dis-
satisfies condition (iii) but not (i) and (ii). Condition (i) is satisfied
becauserore(Q1) does not contain a constant. Condition (ii) is
satisfied because a constant does not appear#{@2). To avoid
this form of coupling, condition (iii) is sufficient.

A.4 Tightness of Conditions in the SI-PI Case

We first discuss the case where the containing query uses only
LSI or RSI or both and then we discuss the case where it may use
also point ibnequalities.

Sl case
Condition (iv)(a) avoids coupling (iv)(a):
Coupling(iv)(a) : TRUE = ((X6:1cl) V (X02c2))

wheref; is < or <, f is > or >, andc2 < cl. For example,
TRUE = ((X <5)V (X > 3).

EXAMPLE A.4 The following is such an example.

Q1:ans() -p(X,Y), X <5Y >3
Q2 :ans() -p(X,Y),p(Y,2),X <5,Z >3

Q- is contained iR and two containment mappings are neces-
sary to prove the containment The coupling implication to prove
the containment is of the same form (iv). a

A similar coupling is avoided by Condition (iv)(b):

Coupling(iv)(b) : TRUE = (X >¢)V(X <c)VX =¢)

SI-PI case

Condition (v) avoids coupling (v):

Coupling(v) : TRUE = (X #c)V(X =Y)V (Y #¢)
For instance, consider the following queries.

Ql :ans() :'p(X7 Y7Y)7X 7é 5
Q2 : ans() :_p(X7A7A)7p(Y7B7B)7p(CaX7 Y)

Condition (vi) avoids coupling (vi):
Coupling(vi) : TRUE = (X =¢) V(X #¢))
For instance, consider the following queries.

Q1:ans() -p(X,Y), X =5Y #5
Q2 : ans() :_p(XaA)7p(B7X)7A # 5aB =5

Condition (vii)-Isi avoids coupling (vii)-Isi:
Coupling(vii) : TRUE = (X <c¢) V(X #¢)
For instance, consider the following queries:

Q1: ans() :'p(X7Y)7X <5Y #5
Q2 : ans() - p(X7 A)ap(A7X)
Note that for each example above a) there is no single map-

ping that proves containment, andd) conditionsexcept onare
satisfied. This implies that none of the conditions are redundant.

A.5 Beyond Semi-Interval Queries—continue

Coupling 2: Additional couplings can occur due to the follow-
ing implication:

TRUE = (X <Y)V(Y < X)V (X =Y))

indicates that if the containing queries have open comparisons with
shared variables, then the homomorphism property does not hold.
The following is such an example. Consider two queries.

Qi:ans() -p(X,Y,2,2),X <Y
Q2 : ans() :-p(X7 Y’ A’ A)7p(Y7 X7 B’ B)’p(C7 D7 X’ Y)’
Cc<D

Again, Q> is contained inQ, but the homomorphism property
does not hold.

Coupling 3: Even without shared variables, the following im-
plication shows a possible coupling:

(Y>HA(CE >e)= (X >c)V(X<Y))
The following is such an example.

Q1 :ans()-p(A,B,C),A>3,B<C
Q2 : ans() :-p(X7 A7 B)7p(D7 X7Y)7Y > 47
A< B,D>3

Here, Q> is contained in@:, but the homomorphism property
does not hold.

A.6 Detailed Experimental Results on TPC-H
Queries

Now we give experimental results for some of the queries. [[[
By Foto: “Here is a list of the 22 queries where the queries
(in their non-aggregate form) are concisely listed together with
some comments. (Chen, this is not to be included in the paper,
for the moment, it is useful to me (and | hope in our discus-
sions).” By Chen: | keep them, since it's for the extended ver-

sion anyway.]J]
1. QueryQ::

e Core (i.e., in the "from” clause)ineitem.

e ACs: I_shipdate < date’1998 — 12 — 01" —
interval' [DELT A) day(3).

e Comment: There is a single LS| comparison predi-
cate, and the constant there may appear (we also take
domain information into account) in either of the fol-
lowing fields in the core (i.e., the core @fncitem):
receiptdate andcommitdate.

2. QueryQ@2: No ACs.

3. QueryQs:

e Core: customer, order, lineitem
o ACs:o_orderdate < date, l_shipdate > date

21

o ACs: o_orderdate >=

e Comment: Here there is a scenario which is not desir-

able (i.e., the property does not hold): In the contained
query, the orderdate of a 'order’ subgoal contains the
same variable as the shipdate of a lineitem subgoal.
By "common sense” reasoning, this is not a plausible
scenario.

4. QueryQs:

e Core: order, lineitem

date'[DATEY,
o-orderdate < date'[DATE]) +
interval’ 3'month, l_orderkey = o_orderkey,
l_commutdate < [_receiptdate.

e Comment: There are non-SI ACs. Our algorithm does
not apply.

5. QueryQ@s:

e Core: customer, orders, lineitem, supplier, nation, re-
gion

e ACs: o-orderdate >= date'[DATEY',
o_orderdate < date'[DATE]" + interval'l'year

6. QueryQs:

e Core: lineitem

e ACs: | _shipdate >= date '[DATE] and
| _shipdate < date '[DATE] + inter-
val '’ year and | _discount between
[DISCOUNT] - 0.01 and [DISCOUNT] +
0.01 and | _quantity < [QUANTITY] ;

e Comment: same situation k.

7. QueryQr:

e Core: supplier
e lineitem, orders, customer, nation nl, nation n2

e ACs: s_suppkey = | _suppkey and
o_orderkey = | _orderkey and ¢ _custkey
= o_custkey and s _nationkey =
nl.n _nationkey and ¢ _nationkey =
n2.n _nationkey and ((nl.n _-hame =
'INATION1] and n2.n _name = ’'[NA-
TION2]) or (nl.n _-name = '[NATION2]
and n2.n _name = '[NATION1])) and
| _shipdate between date '1995-01-01’
and date '1996-12-31') as shipping

e Comment:same situation §%.

8. QueryQs:

e Core.
o ACs:

e Comment:same &35

9. QueryQo:

e Core:

e ACs:s _suppkey = | _suppkey and
ps_suppkey = | _suppkey and ps _partkey

= | _partkey and p _partkey = | _partkey
and o _orderkey = | _orderkey and
s_nationkey = n _nationkey and p _name

like '%[COLOR]%’
e Comment: no ACs.
10. QueryQio:
e Core:
e ACs:
¢ Comment: same a3s.

11. QueryQ:::
e Core:

e ACs:
e Comment:no ACs.

12. QueryQi2:
e Core:

e ACs: o_orderpriority <> '1-URGENT’
and o _orderpriority <> '2-HIGH’
and | _commitdate < | _receiptdate
and | _shipdate < | _commitdate and
| _receiptdate >= date '[DATE]' and
| _receiptdate < date '[DATE] + in-
terval '1l’ year

e Comment: domain information reduces it to "same as
Qs"
13. QueryQis:
e Core:
e ACs:
e Comment: no ACs.
14. QueryQi4:
e Core:
e ACs:
e Comment: same a3s.
15. QueryQis:
e Core:
e ACs:
e Comment: same a3s
16. QueryQis:
e Core:
e ACs:p_brand <> '[BRANDY
e Comment: the homomorphism propety holds.
17. QueryQir:

e Core:

22

e ACs:| _quantity < QUANT
e Comment: the homomorphism propety holds.

18. QueryQis:
e Core:
e ACs:sum(l _quantity) > [QUANTITY]
e Comment: the homomorphism propety holds.

19. Query@:9: a disjunction of 3

e Core: lineitem, part

e ACs: p_partkey = | _partkey and p _brand
= ‘[BRAND1] and p _container in (

‘SM CASFE’, ‘SM BOX’, ‘'SM PACK’,

‘SM PKG’) and | _guantity >= [QUAN-
TITY1] and | _quantity <= [QUANTITY1]

+ 10 and p _size between 1 and 5 and

| _shipmode in (AIR’, ‘AIR REG’) and

| _shipinstruct = ‘DELIVER IN PERSON’

OR p_partkey = | _partkey and p _brand
= ‘[BRAND2]' and p _container in

(MED BAG’, ‘MED BOX’, ‘MED PKG,
‘MED PACK’) and | _quantity >= [QUAN-
TITY2] and | _quantity <= [QUANTITYZ2]

+ 10 and p _size between 1 and 10 and

| _shipmode in (‘AIR’, ‘AIR REG’) and

| _shipinstruct = ‘DELIVER IN PERSON’

OR p_partkey = | _partkey and p _brand
= ‘[BRAND3]" and p _container in (

‘LG CASE’, ‘LG BOX, ‘LG PACK,

‘LG PKG’) and | _quantity >= [QUAN-
TITY3] and | _quantity <= [QUANTITY3]

+ 10 and p _size between 1 and 15 and

| shipmode in (AIR’, ‘AIR REG’) and

| _shipinstruct = ‘DELIVER IN PERSON’

e Comment; same a3s.

20. QueryQso:
e Core: supplier, nation

e ACs: ps_availgty > QUANT | _shipdate
>= date(’[DATE]) and | _shipdate <
date('[DATE]) + interval ‘1’ year

e Comment: same a3s

21. QueryQa::
e Core: supplier, lineitem I1, orders, nation

o ACs:
and
and

s_suppkey = I1.I
o_orderkey = I1.I _orderkey
o _orderstatus = 'F' and
1.1 _receiptdate > I1.I
and exists (select * from
lineitem 12 where 12.1 _orderkey =
1.1 _orderkey and 12.1 _suppkey <>
I1.I _suppkey) and not exists (
select * from lineitem I3 where
13.1 _orderkey = I1.I _orderkey and

_suppkey

_commitdate

13.] _suppkey <> I1.1 _suppkey and
13.I _receiptdate > I3.| _commitdate
) and s _nationkey = n _nationkey and
n_name = '[NATION]’

e Comment:
22. QueryQss:

e Core:

e ACs:

e Comment:

