Space-Constrained Gram-Based Indexing for
Efficient Approximate String Search

Alexander Behrh Chen Lt Jiaheng L&

! Department of Computer Science, University of Californiaine, CA 92697
2 Key Laboratory of Data Engineering and Knowledge EngimegrRenmin University of China, China
{abehm,shengyuj,cheh@ics.uci.edu, jiahenglu@gmail.com

Shengyue Ji

Abstract— Answering approximate queries on string collec- stringbingo arebi, in, ng, andgo. These algorithms rely on
tions is important in applications such as data cleaning, query an index of inverted lists of grams for a collection of stsrtg
relaxation, and spell checking, where inconsistencies and errors gyt queries on this collection. Intuitively, we decarse
exist in user queries as well as data. Many existing algorithms use o . . .
gram-based inverted-list indexing structures to answer approxi- gach string in the CO"‘?Ct'On to grams, _and build ar_1 |nver_ted
mate string queries. These indexing structures are “notoriously” list for each gram, which contains the id of the strings with
large compared to the size of their original string collection. this gram. For instance, Fig. 1 shows a collection of 5 s#ring

In this paper, we study how to reduce the size of such an and the corresponding inverted lists of thigrams.
indexing structure to a given amount of space, while retaining

efficient query processing. We first study how to adopt existing gram string ids
inverted-list compression techniques to solve our problem. Then, bi S 123

we propose two novel approaches for achieving the goal: one is bo N 4’ ’
based on discarding gram lists, and one is based on combining)

correlated lists. They are both orthogonal to existing compressio id string g - 2
techniques, exploit a unique property of our setting, and offer 1 |bingo 9o - L5

new opportunities for improving query performance. For each > [bitingin In - 1,2,3,4,5
approach we analyze its effect on query performance and develop 3 [bitin It - 2,3
algorithms for wisely choosing lists to discard or combine. - 9 ng - 1,2,3,4,5
Our extensive experiments on real data sets show that our 4 | boing Oi - 4,5
approaches provide applications the flexibility in deciding the 5 |going ti — 2,3
tradeoff between query performance and indexing size, and can (a) Strings. (b) Inverted lists.

outperform existing compression techniques. An interesting and
surprising finding is that while we can reduce the index size
significantly (up to 60% reduction) with tolerable performance
penalties, for 20-40% reductions we can even improve query
performance compared to original indexes.

Fig. 1. Strings and their inverted lists @grams.

The algorithms answer a query using the following obser-
vation: if a stringr in the collection is similar enough to the
guery string, them should share a certain number of common
grams with the query string. Therefore, we decompose the

Many information systems need to support approximatgiery string to grams, and locate the corresponding inderte
string queries: given a collection of textual strings, swsh lists in the index. We find those string ids that appear attleas
person names, telephone numbers, and addresses, findatidertain number of times on these lists, and these candidate
strings in the collection that are similar to a given queringt are post-processed to remove the false positives.

The following are a few applications. In record linkage, we

often need to find from a table those records that are singlarMotivation: These gram-based inverted-list indexing struc-
a given query string that could represent the same realdwotlires are “notorious” for their large size relative to theesi
entity, even though they have slightly different repreagahs, of their original string data. This large index size causes
such asspielberg versusspielburg. In Web search, many problems for applications. For example, many systems requi
search engines provide the “Did you mean” feature, which very high real-time performance to answer a query. This
can benefit from the capability of finding keywords similar teequirement is especially important for those application
a keyword in a search query. Other information systems suatiopting a Web-based service model. Consider online spell
as Oracle and Lucene also support approximate string guerbeckers used by email services such as Gmail, Hotmail,
on relational tables or documents. and Yahoo! Mail, which have millions of online users. They

Various functions can be used to measure the similaribheed to process many user queries each second. There is a
between strings, such as edit distance (a.k.a. Levenshteig difference between a 10ms response time versus a 20ms
distance), Jaccard similarity, and cosine similarity. Mlaigo- response time, since the former means a throughput of 50
rithms are developed using the idea of “grams” of strings. dueries per second (QPS), while the latter means 20 QPS. Such
g-gram of a string is a substring of lenginthat can be used a high-performance requirement can be met only if the index
as a signature for the string. For example, the 2-grams of tisein memory. In another scenario, consider the case where

I. INTRODUCTION

these algorithms are implemented inside a database systerarging algorithms. Based on our analysis we develop a cost-
which can only allocate a limited amount of memory for théased algorithm for finding lists to combine.
inverted-list index, since there can be many other taskhén t We have conducted extensive experiments on real datasets
database system that also need memory. In both scenariofritthe list-compression techniques mentioned above (Sec-
is very critical to reduce the index size as much as we cantton VI). While existing inverted-list compression technés
meet a given space constraint. can achieve compression ratios up to 60%, they considerably
increase the average query running time due to the online de-
Contributions: In this paper we study how to reduce the sizeompression cost. The two novel approaches are orthogonal t
of such index structures, while still maintaining a high ue existing inverted-list-compression techniques, andrafféque
performance. In Section Il we study how to adopt existingptimization opportunities for improving query perforncan
inverted-list compression techniques to our setting [FHat Note that using our novel approaches we can still compute the
is, we partition an inverted list into fixed-size segmentd arexact results for an approximate query without missing any
compress each segment with a word-aligned integer coditmge answers. The experimental results show that (1) thelnov
scheme. To support fast random access to the compressed listhniques can outperform existing compression techsjque
we can use synchronization points [24] at each segment, ardl (2) the new techniques provide applications the flaggbil
cache decompressed segments to improve query performaiteeciding the tradeoff between query performance andxinde
Most of these compression techniques were proposed in thg size. An interesting and surprising finding is that winle
context of information retrieval, in which conjunctive kegrd can reduce the index size significantly (up to a 60% redugtion
gueries are prevalent. In order to ensure correctnesdedssswith tolerable performance penalties, for 20-40% redunstio
compression techniques are usually required in this gettin we can even improve the query performance compared to
The setting of approximate string search is unique in thtte original index. Our techniques work for commonly used
a candidate result needs to occur at leas¢éréain number of functions such as edit distance, Jaccard, and cosine. Waymai
times among all the inverted lists, and not necessarily thal focus on edit distance as an example for simplicity.
inverted lists. We exploit this unique property to develagt Due to space limitations, we leave more results in the 18-
novel approaches for achieving the goal. The first approaphge full version of this paper [4].
is based on the idea of discarding some of the lists. We
study several technical challenges that arise naturallghii A. Related Work
approach (Section IV). One issue is how to compute a newln the literature the termapproximate string query also
lower bound on the number of common grams (whose listseans the problem of finding within a long text string those
are not discarded) shared by two similar strings, the foamusubstrings that are similar to a given query pattern. Seg [25
of which becomes technically interesting. Another questio for an excellent survey. In this paper, we use this term terref
how to decide lists to discard by considering their effeats do the problem of finding from a collection of strings those
guery performance. In developing a cost-based algorithm faimilar to a given query string.
selecting lists to discard, we need to solve several inieges In the field of list compression, many algorithms [23], [30],
problems related to estimating the different pieces of tinié], [9] are developed to compress a list of integers using
in answering a query. For instance, one of the problerescoding schemes such as LZW, Huffman codes, and bloom
is to estimate the number of candidates that share certéiiters. In Section Il we discuss in more detail how to adopt
number of common grams with the query. We develop a nowblese existing compression techniques to our setting. One
algorithm for efficiently and accurately estimating thismher. observation is that these techniques often need to pay a high
We also develop several optimization techniques to improeest of increasing query time, due to the online decomprassi
the performance of this algorithm for selecting lists tocdisl. operation, while our two new methods could even reduce
The second approach is combining some of the correlatda query time. In addition, the new approaches and existing
lists (Section V). This approach is based on two observatiotechniques can be integrated to further reduce the index siz
First, the string ids on some lists can be correlated. Fas verified by our initial experiments.
example, many English words that include the grame” also Many algorithms have been developed for the problem of
include the gram fon”. Therefore, we could combine theseapproximate string joins based on various similarity func-
two lists to save index space. Each of the two grams shares tioas [2], [3], [5], [6], [10], [27], [28], especially in theontext
union list. Notice that we could even combine this union ligif record linkage. Some of them are proposed in the context
with another list if there is a strong correlation betweeenth of relational DBMS systems. Several recent papers focused
Second, recent algorithms such as [20], [11] can efficientbn approximateselection (or search) queries [11], [20]. The
handle long lists to answer approximate string queries. Astechniques presented in this paper can reduce index sizes,
consequence, even if we combine some lists into longer listghich should also benefit join queries, and the correspandin
such an algorithm can still achieve a high performance. Vgest-based analysis for join queries needs future resedork
study several technical problems in this approach, and/amal et al. [13] proposed a gram-selection technique for indgxin
the effect of combining lists on a query. Also, we exploit #ext data under space constraints, mainly considering SQL
new opportunity to improve the performance of existing-list.IKE queries. Other related studies include [17], [26]. Téhe

are recent studies on the problem of estimating the seifgctiv the similarity function, the threshold in the query,

of SQL LIKE substring queries [15], [18], and approximate and the gram length.

string queries [22], [16], [19], [12]. Take edit distance as an example. For a string S that
Recently a new technique calletdGRAM [21], [29] satisfies the conditiond(r,s) < k, it should share at least the

was proposed to use variable-length grams to impro¥@liowing number ofg-grams withs:

approximate-string query performance and reduce the index

size. This technique, as it is, can only support edit disganc Tea= (Is| +¢—1) -k xgq. @)

while the techniques presented in this paper support atyarie seyeral existing algorithms [20], [27] are proposed for an-

of similarity functions. Our techniques can also provide thSWerIng approximate string queries efficiently. They ficive

user the flexibility to choose the tradeoff between index sizhe T-occurrence problem to get a set of string candidates, and

and query performance, which is not provided WRAM. then check their real distance to the query string to remove

Our experiments show that our new techniques can outperfogfise positives. Note that if the threshditl< 0, then the entire

VGRAM, and potentially they can be integrated WtBRAM gata collection needs to be scanned to compute the results.

to further reduce the index size (Section VI-E). We call it a panic case. One way to reduce this scan time

is to apply filtering techniques [10], [20]. To summarizeg th

following are the pieces of time needed to answer a query:
Let S be a collection of strings. An approximate string If the lower boundT (called “merging threshold”) is

search query includes a stringand a threshold:. It asks positive, the time includes the time to traverse the lists

fo.rhz.all g Gh S Eulcdgh i?aF thed.dlstanc? betyveenand; IS q of the query grams to find candidates (called “merging
within the threshold:. Various distance functions can be used, time”) and the time to remove the false positives (called

such as edit distance, Jaccard similarity and cosine sitgila “post-processing time”).

Tall<(e ecli_it distar?cg aj, an exarr:)ple. Formally, edi dista:jnce e If the lower boundI is zero or negative, we need to spend
_(a. -a. Levens tein distance) _etween_two stru;_\gsan 52 the time (called “scan time”) to scan the entire data set,
is the minimum number of edit operations of single charac- possibly using filtering techniques

FerT ;hat_ are .needc;edl t‘? transgorsm ;o 52 Edit op%ratlgtr;s In the following sections we adopt existing techniques
include insertion, deletion, and substitution. We den tand develop new techniques to reduce this index size. For

edit distance between two strings and s, ased(s1, s2). For simplicity, we mainly focus on the edit distance functionda

example, cd("Levenshtein’, “Levnshtain’) = 2. USING 4 requits are extended for other functions as well.
this function, an approximate string search with a quempgtr

q and threshold; is finding all s € S such thated(s, q) < k. Il1. ADOPTINGEXISTING COMPRESSIONTECHNIQUES

Let ¥ be an alphabet. For a String of the characters in There are many techniques [31]' [7], [9] on list Compression
¥, we use fs|” to denote the length of. We introduce two which mainly study the problem of representing integers on
charactersy and 8 not in X. Given a strings and a positive jnverted lists efficiently to save storage space. In thigisec
integerg, we extends to a new strings’ by prefixingg — 1 we study how to adopt these techniques to solve our problem
copies ofa and suffixingg — 1 copies of 3. (The results in and discuss their limitations.
the paper extend naturally to the case where we do not extengiiost of these techniques exploit the fact that ids on an in-
a string to produce grams.) positional g-gram of s is a pair verted list are monotonically increasing integers. Fomepe,

(i,9), whereg is the substring of length starting at thei-th suppose we have a list= (idy, ids, . . . ,idy), id; < id;41 for
character ofs’. The set ofpositional g-grams of s, denoted 1 < ; < n. If we take the differences of adjacent integers to
by G(s,q), or simply G(s) when theq value is clear in the construct a new list’ = (idy,idy — idy,ids — idy, . . ., id, —
context, is obtained by sliding a window of lengitover the idnfl) (Ca”ed the gapped list 0[‘), the new integers tend
characters o#’. For instance, suppose =#, 3 = 8, ¢ = 3, to be smaller than the original ids. Many integer-compr@ssi
ands = irvine. We have:G(s,q) = {(1, ##4i), (2, #ir), techniques such as gamma codes, delta codes [7], and Golomb
(3, irv), (4, rvi), (5, vin), (6, ine), (7, neS), (8, e8%)}. The codes [9] can efficiently encode the gapped lists by using
number of positionag-grams of the string is |s|+¢—1. For shorter representations for small integers. As an example,
simplicity, in our notations we omit positional informatio we study how to adopt one of the recent techniques called
which is assumed implicitly to be attached to each gram. Carryover-12 [1].

We construct an index as follows. For each grarof the An issue arises when using the encoded, gapped represen-
strings in S, we have a list, of the ids of the strings that tation of a list. Many efficient list-merging algorithms imio
include this gram (possibly with the corresponding poB&io setting [20] rely heavily on binary search on the inverted
information). It is observed in [27] that an approximate yue ists. Since decoding is usually achieved in a sequential
with a string s can be answered by solving the followingyay, a sequential scan on the list might not be affected too
generalized problem: much. However, random accesses could become expensive.

T-occurrence Problem: Find the string ids that ap- Even if the compression technique allows us to decode the
pear at leastl’ times on the inverted lists of the desired integer directly, the gapped representatiorrstjllires
grams inG(s,q), whereT is a constant related to restoring of all preceding integers. This problem can beesbl

Il. PRELIMINARIES

by segmenting the list and introducisgnchronization points new running time of a single query can be estimated. Based
[24]. Each segment is associated with a synchronizationtpoion our analysis, we propose an algorithm to wisely choose
Decoding can start from any synchronization point, so thgtams to discard in the presence of space constraints, while
only one segment needs to be decompressed in order to regtdining efficient processing. We develop various optatian

a specific integer. We can make each segment contain teehniques to improve the performance (Section IV-B).

same number of integers. Since different encoded segments

could have different sizes, we can index the starting offéet A. Effects of Hole Grams on a Query

each encoded segment, so that they can be quickly located) Merging Threshold: Consider a string- in collection

and decompressed. Figure 2 illustrates the idea of segngentd such thated(r,s) < k. For the case without hole grams,

inverted lists and indexing compressed segments. needs to share at ledbt= (|s[+¢—1)—k x ¢ common grams
in G(s) (Equation 1). To find such an in the corresponding

Segment; Segment; Segment, Segments T-occurrence problem, we need to find string ids that appear
Uncompressed List |] [] | on at leastT" lists of the grams inG(s). If G(s) does have

appear, since these lists have been discarded. We can bnly re
on the lists of those nonhole grams to find candidates. Thus
the problem becomes deciding a lower bound on the number
of occurrences of string on thenonhole gram lists.
One simple way to compute a new lower bound is the
following. Let H be the number of hole grams @(s), where
One way to access elements is by decoding the coryex(s)| = |s| + ¢ — 1. Thus, the number of nonhole grams for
sponding segment for each random access. If multiple indege is |G(s)| — H. In the worst case, every edit operation can
within the same segment are requested, the segment mighétroy at mosi nonhole grams, and edit operations could
be decompressed multiple times. The repeated efforts candegtroy at mosk x ¢ nonhole grams of. Therefore; should

alleviated using caching. We allocate a global cache paol fehare at least the following number of nonhole grams with
all inverted lists. Once a segment is decoded, it will reniain

the cache for a while. All integer accesses to that segmdht wi T'=|G(s)| = H =k xq.)
be answered using the cache without decoding the segmeRte can use this new lower bour® in the T-occurrence

Limitations: Most of these existing techniques were initiallyprob|em to find all strings that appear at le@ttimes on the
designed for compressing disk-based inverted indexe$igUshonhole gram lists as candidates.
a compressed representation, we can not only save dis_k,spacerhe following example shows that this simple way to
but also decrease the number of disk 1/Os. Even with @mpyte a new lower bound is pessimistic, and the real lower
decompression overhead, these techniques can still iPreyund could be tighter. Consider a query string irvine
query performance since disk 1/Os are usually the maj@fith an edit-distance threshold = 2. Supposey = 3. Thus
cost. When the inverted lists are in memory, these techniqygs total number of grams ii(s) is 8. There are two hole
require additional decompression operations, comparadrie gramsirv and ine as shown in Figure 3. Using the formula
compressed indexes. Thus, the query performance can okfhyve, an answer string should share at l6asinhole grams
decrease. These approaches have_limited flexibility inrtcad \yitp string s, meaning the query can only be answered by
query performance with space savings. Next we propose tWOscan. This formula assumes that a single edit operation
novel methods that do not have these limitations. could potentially destroy grams, and two operations could
potentially destroy 6 grams. However, a closer look at the
positions of the hole grams tells us that a single edit ojmerat

In this section we study how to reduce the size of aran destroy at mos2 nonhole grams, and two operations
inverted-list index by discarding some of its lists. Thatfi@ can destroy at most 4 nonhole grams. Figure 3 shows two
all the grams from the strings iy, we only keep inverted deletion operations that can destroy the largest number of
lists for some of the grams, while we do not store those of thaonhole grams, namely. Thus, a tighter lower bound is
other grams. A gram whose inverted list has been discardecand we can avoid the panic case. This example shows
is called ahole gram, and the corresponding discarded list ishat we can exploit the positions of hole grams in the query
called itshole list. Notice that a hole gram is different fromstring to compute a tighter threshold. We develop a dynamic
a gram that has an empty inverted list. The former means thv@gramming algorithm to compute a tight lower bound on the
ids of the strings with this gram are not stored in the inderumber of common nonhole grams @s) an answer string
while the latter means no string in the data set has this graneeds to share with the query striagwith an edit-distance

We study the effect of hole grams on query answering. thresholdk (a similar idea is also adopted in an algorithm
Section IV-A we analyze how they affect the merging threshn [29] in the context of the VGRAM technique [21]). Our
old, the list merging and post-processing, and discuss hew £xperiments have shown that this algorithm can increase/que

hole grams, the id of could have appeared on some of the
Compressed List hole lists. But we do not know on how many hole listsould

Segment Index

Fig. 2. Inverted-list compression with segmenting and inaigxi

IV. DISCARDING INVERTED LISTS

*i_rDiletei_; o158 number of candidates after solving tifleoccurrence problem.
‘ This problem has been studied in the literature recently, [22
[S [16], [19]. While these techniques could be used in our
‘ context, they have two limitations. First, their estimatis
not 100% accurate, and an inaccurate result could greatly
Fig. 3. A query stringirvine with two hole grams. A solid horizontal line affect the accuracy of the estimated post-processing tinu,
denotes a nonhole gram, and a dashed line denotes a hole gramardtvs ~ affecting the quality of the selected nonhole lists. Sec¢adimid
denote character deletions. estimation may need to be domepeatedly when choosing
lists to discard, and therefore needs to be very efficient.
performance by tightening the bound. More details about theWe develop an efficientincremental algorithm that can
algorithm and experiments are in [4]. compute avery accurate number of candidates for query

2) List-Merging Time: The running time of some mergingif list /; is discarded. The algorithm is calld&C, which
algorithms (e.gHeapMerge, ScanCount [20]) is insensitive stands for “Incremental-Scan-Count.” Its idea comes fram a
to the merging threshol@ and mainly depends on the totalalgorithm calledScanCount developed in [20]. Although the
number of elements in all inverted lists. Therefore, thetriginal ScanCount is not the most efficient one for tHg-
running time can only decrease by discarding some listsccurrence problem, it has the nice property that it can be
Other merging algorithms (e.gMlergeOpt, DivideSkip [20]) run incrementally. Figure 4 shows the intuition behind this
separate the inverted lists into a group of long lists ancdbagr ISC algorithm. First, we analyze the que€y on the original
of short lists, and process them separately. The perforenangdexing structure without any lists discarded. For eacimgt
of these algorithms depends on how the two groups adrkin the collection, we remember how many times it occurs on
formed, which is related tdl. Thus their performance is all the inverted lists of the grams in the query and store them
sensitive to changes ifi. Another class of algorithms suchin an arrayC. Now we want to know if a list is discarded,
MergeSkip and DivideSkip [20] utilize T to skip irrelevant how it affects the number of occurrences of each string id.
elements on the lists. Decreasifigby discarding some lists For each string idr on list [belonging to gramg to be
might negatively affect their performance. Meanwhile, wdiscarded, we decrease the corresponding vél{té in the
might have fewer lists to process, possibly resulting in aarray by the number of occurrences @in the query string,
improvement of the query performance. since this string- will no longer haveg as a nonhole gram.

3) Post-Processing Time: For a given query, introducing After discarding this list for grang, we first compute the new
hole grams may only increase the number of candidatesnmrging threshold”. We find the new candidates by scanning
post-process if we use Equation 2. Surprisingly, if we udbe arrayC and recording those positions (corresponding to
the dynamic programming algorithm to derive a tighf®; string ids) whose value is at least.
then the number of candidates for post-processing might eve
decrease [4]. Take the example given in Fig. 3. Suppose the f;cgfa"rjtq
edit-distance thresholél = 2. Say that some string id only
appears on the inverted lists atv and ine. SinceT = 2,
it is a candidate result. If we choose to discard the grams
irv andine as shown in Fig. 3, as discussed earlier, the new
thresholdT” = 2. After discarding the lists, the Striﬁgis not Fig. 4. Intuition behind the Incremental-Scan-Cou®Q) algorithm.

a candidate anymore, since all the lists containing it haenb

discarded. Thus we can reduce the post-processing cos. Not

that any string id which appears only amv and ine cannot For instance, in Fig. 5, the hole list includes string ids O,
be an answer to the query and would have been removed frénP. @nd 9. For each of them, we decrease the corresponding
the results during post-processing. value in the array byl (assuming the hole gram occurs once

4) Estimating Time Effects on a Query: Since we are in the query). Suppose the new thresh®tdis 3. We scan the
evaluating whether it is a wise choice to discard a speciic linew array to find those string ids whose occurrence among
1;, we want to know, by discarding ligt, how the performance all non-hole lists is at least. These strings, which are 0, 1,
of a single queryQ will be affected using the indexing @nd 9 (in bold face in the figure), are candidates for the query
structure. We now quantify these effects discussed above Y§ing the new threshold after this list is discarded.
estimating the running time of a query with hole grams. In [4
we discuss how to estimate the merging time and scan ti
We focus on estimating the post-processing time. We now study how to wisely choose lists to discard in

For each candidate from tliéoccurrence problem, we needorder to satisfy a given space constraint. The following are
to compute the corresponding distance to the query to remmeveral simple approaches: choosing the longest liststauti
the false positives. This time can be estimated as the numfleongList), choosing the shortest lists to disca®hortList),
of candidates multiplied by the average edit-distance .timer choosing random lists to discardRgndomList). These
Therefore, the main problem becomes how to estimate thaive approaches blindly discard lists without considgtime

Decrease by the number of
occurrence of q in the query

of common grams string r
C[r] shares with the query

String ids String ids

_Choosing Inverted-Lists to Discard

of common grams before discarding

Hole list 's[3]2]0]0]1]0[1]2]4]0] since they will still have the same set of nonhole grams as
0l 01 2 3 435 67 8 9 10suigics before. The_refore, we onl_y need to re-_evaluate the perfocma
22 ﬂ'l B B . qf the queries whose_ s_trlngs have th|s gra_rm-oﬁn or(_jer _to
£]5 find these strings efficiently, we build an inverted-list éxd
“lol[4]3]1]o]o]o]o[1]2][3]0] structure for thequeries, similar to the way we construct
01 2 3 4 5 67 8 9 10Stingids inverted lists for the strings in the collection. When distiag

the list [;, we can just consider those queries on tuery
inverted list of the gram foi;. (2) We run the algorithm on
a random subset of the strings. As a consequence, (i) we can
make sure the entire inverted lists of these sample striags c
effects on query performance. Clearly, a good choice of lisit into a given amount of memory. (i) We can reduce the
to discard depends on the query workload. Based on duiay size in theéSC algorithm, as well as its scan time to find
previous analysis, we present a cost-based algorithmdcalkandidates. (iii) We can reduce the number of lists to canmsid
DiscardLists, as shown in Figure 6. Given the initial set ofinitially since some infrequent grams may not appear in the
inverted lists, the algorithm iteratively selects listsdiscard, sample strings. (3) We run the algorithm on a random subset
based on the size of a list and its effect on the average quefythe queries in the workloa@, assuming this subset has
performance for a query workloa@ if it is discarded. The the same distribution as the workload. As a consequence, we
algorithm keeps selecting lists to discard until the toiz ®f can reduce the computation to estimate the scan time, ngergin
the remaining lists meets the given space constraint (jne 2ime, and post-processing time (using &£ algorithm). (4)

We do not discard those very short lists, thus we can reduce

Fig. 5. Running thdSC algorithm (" = 3).

Algorithm: DiscardLists the number of lists to consider initially. (5) In each itéoat
Input: Inverted listsL = {l1,...,l,} of the algorithm, we choose multiple lists to discard based o
ConstraintB on the total list size the effect on the index size and overall query performance.
Query workloadQ = {Q1,...,Qm} In addition, for those lists that have very poor time effects
ﬁléiﬁléta;A setD of lists in L that are discarded (i.e., they affect the overall performance too negativelyg
1. D=0 do not consider them in future iterations, i.e., we havedksti
2. WHILE (B < (total list size ofL)) { to keep them in the index structure. In this way we can reduce
3 FOR (each listl; € L) { the number of iterations significantly.
4. Compute size reductioA?,, . if discardingl;
5 Compute difference of average query tiché;,,,. V. COMBINING INVERTED LISTS
) for queries inQ if discardingl: In this section, we study how to reduce the size of an
6. UseA’,..'s and Ai, s of the lists to decide wha inverted-list index bycombining some of the lists. Intuitively,
lists to discard when the lists of two grams are similar to each other, using a
7. Add discarded lists td single inverted list to store the union of the original twstdi
8. Remove the discarded lists from for both grams could save some space. One subtlety in this
! approach is that the string ids on a list are treated asta
9. RETURN D . . .
of ordered elements (without duplicates), instead bbg of

Fig. 6. Cost-based algorithm for choosing inverted listgliscard. elements. By combining two lists we mean taking tiréon
of the two lists so that space can be saved. Notice that the

In each iteration (lines 3-8), the algorithm needs to euwalual’ lower bound in thel-occurrence problem is derived from
the quality of each remaining ligf, based on the expectedthe perspective of the grams in the query. (See Equation 1
effect of discarding this list. The effect includes the retibn in Section Il as an example.) Therefore, if a gram appears
Al,.. on the total index size, which is the length of this listmultiple times in a data string in the collection (with diféat
It also includes the changA!, ~ on the average query timepositions), on the corresponding list of this gram the gtiih
for the workload Q after discarding this list. (Surprisingly, appears only once. If we want to use the positional filtering
Al can be both positive and negative, since in some cageshnique (mainly for the edit distance function) desatibe
discarding lists can even reduce the average running time fio [10], [20], for each string id on the list of a gram, we
the queries.) In each iteration (line 6), we need to use tban keep a range of the positions of this gram in the string, so
Al s and Al s of the lists to decide what lists shouldthat we can utilize this range to do filtering. When taking the
be really discarded. There are many different ways to makeion of two lists, we need to accordingly update the pasitio
this decision. One way is to choose a list with the smallesinge for each string id.
Al value (notice that it could be negative). Another way We will first discuss the data structure and the algorithm for
is to choose a list with the smalleat;;, /A% .. ratio. efficiently combining lists in Section V-A, and then analyhe

There are several ways to reduce the computation time effects of combining lists on query performance in Sectien V
the estimation: (1) When discarding the list those queries B. We also show that an index with combined inverted

whose strings do not have the gramipfwill not be affected, lists gives us a new opportunity to improve the performance

of list-merging algorithms (Section V-B.1). We propose atimes on these (possibly shared) lists. We can improve the
algorithm for choosing lists to combine in the presence gierformance of the algorithm as follows. We first identif th
space constraints (Section V-C). shared lists for the grams i@(s). For eachdistinct list I;, we
.) also pass to the algorithm the number of grams sharing this
A. Data Structures for Combining Lists list, denoted byw;. Correspondingly, the algorithm needs to
In the original inverted-list structure, different gramave consider thesev; values when counting string occurrences. In
different lists. Combining two listg; and !/, will produce a particular, if a string id appears on the ligt the number
new listl,e,, = l1 Ulo. The size reduction of combining twoof occurrences should increase hy;, instead of “1” in
lists I; andl, can be computed as the traditional setting. Thus we can reduce the number of
12 B lists passed to the algorithm, thus possibly even redudmg i
Aszze [l + lla] = |l U l2| = [l O], running time. The algorithms in [27] already consider difet
All grams that shared, and!, (there could be several gramdist weights, and the algorithms in [20] can be modified dligh
due to earlier combining operations) will now share list,. {0 consider these weights.
In this fashion we can support combining more than two lists 2) Post-processing Time: We want to compute the number
iteratively. We use a data structure callBisjoint-Set with ~ Of candidates generated from the list-merging algorithme- B
the algorithmUnion-Find [8] to efficiently combine more than fore combining any lists, the candidate set generated from a

two lists, as illustrated in Figure 7. More details are in.[4] list-merging algorithm contains all correct answers ancheo
false positives. We are particularly interested to know how

91 many new false positives will be generated by combining two
After the 9 listsl; andls. ThelSC algorithm described in Section IV-A.4
combination g can be modified to adapt to this setting.
In the algorithm, a ScanCount vector is maintained for a

It Ul Ul Ul query @ to store the number of gram@ shares with each
string id in the collection. The strings whose correspogdin
values in the ScanCount vector are at |I&astill be candidate
answers. By combining two list§ andl,, the lists of those
o) grams that are mapped th or [, will be conceptually
B. Effects of Combining Lists on Query Performance extended. Every gram previously mapped it@r I, will now

We study how combining lists affects query performancée mapped td; Uls. The extended part &f is ext(l1) = lo\1;.
For a similarity query with a string, if the lists of the grams in Let w(@, (1) denote the number of times grams(@feference
G(s) are combined (possibly with lists of grams notGfis)), [;. The ScanCount value of each string ident(l;) will be
then the performance of this query can be affected in timcreased byw(@Q,!;). Since for each reference, all string ids
following ways. (1) Different from the approach of discargi in ext(l;) should have their ScanCount value increased by one,
lists, the lower bound” in the T-occurrence problem remainsthe total incrementation will bev(Q, ;) (not w(@Q,I2)). The
the same, since an answer still needs to appear at least fzime operation needs to be done éat(ly) symmetrically.
number of times on the lists. Therefore, if a query was not i is easy to see the ScanCount values are monotonically
a panic case before, then it will not be in a panic case aftecreasing as lists are combined. The strings whose ScartCou
combining inverted lists. (2) The lists will become long&s values increase from belo to at leastl” become new false
a consequence, it will take more time to traverse thesethstspositives after;; andl, are combined.
find candidates during list merging, and more false postive Figure 8 shows an example, in whidh = {0,2,8,9},
may be produced to be post-processed. lo = {0,2,3,5,8}. Before combiningl; and [y, two grams

1) List-Merging Time: As inverted lists get combined, someof) are mapped td; and three grams are mapped /to
of them will become longer. In this sense it appears th@herefore,w(Q,l;) = 2 andw(Q,l2) = 3. For every string
combining lists can only increase the list-merging time iid in ext(ly) = {3,5}, their corresponding values in the
query answering. However, the following observation opgms ScanCount vector will be increased byQ, [;). Let C denote
opportunities for us to further decrease the list-merginget the ScanCount vectof![3] will be increased from 6 to 8, while
given an index structure with combined lists. We notice #hatC[5] will be increased from 4 to 6. Given the threshéld= 6,
gram could appear in the query stringnultiple times (with the change on C[5] indicates that string 5 will become a new
different positions), thus these grams share common lists.false positive. The same operation is carried oukot(ls).
the presence of combined lists, it becomes possible for even . . .
different grams inG(s) to share lists. This sharing suggests” Choosing Lists to Combine
a way to improve the performance of existing |ist-merging We use two Steps to combine lists: discovering candidate
algorithms for solving thel-occurrence problem [27], [20]. 9ram pairs, and selecting some of them to combine.

A simple way to use one of these algorithms is to pass, .)
Interestingly, our experiments showed that, even for the e@s do not

it a list for ?aCh gram "ﬂ(s) Thus we DaS3G(S)| lists combine lists, this optimization can already reduce the nomtime of existing
to the algorithm to find string ids that appear at ledst list-merging algorithms by up to 20%.

Fig. 7. Combining list ofg with list of g3 using Union-Find

Query grams G(Q)

SRR REERERE when choosing lists to combine. It iteratively selects pair

to combine, based on the space saving and the impact on
the average query performance of a query worklgadThe

ScanCount Vector

a2 ? f ﬂ algorithm keeps selecting pairs to combine until the totzd s
e . of the inverted lists meets a given space constrBirfor each
g? New false gram pair(g;, g;), we need to get their current corresponding
6[0 positive lists, since their lists could have been combined with other
Listl Listl, ;%M 1 lists (lines 3 and 4). We check whether these two lists are
= “s% : the same list as reference (line 5), and also whether their

correlation is above the threshold (line 6). Then we compute
the size reduction (line 8) and estimate the average quasy i
Fig. 8. Example ofSC for computing new false positives after combiningdifference and théSC algorithm (line 9), based on which we
lists I, and!,. decide the next list pair to combine (lines 10 and 11).

—

Merging threshold T = 6

Algorithm: CombineLists

Step 1: Discovering Candidate Gram Pairs We are only | Input: Candidate gram pair® = {(g, g;)}
interested in combiningorrelated lists. We can use Jaccard gﬁgftragtrﬁo?dg'it?gl list sge)
similarity to measure the correlation of two lists, definedOutput Corr¥bined lists. T Uehm
as jaccard(ly,ly) = 'ﬁﬂ;: Two lists are considered to be|Method:
combined only if their correlation is greater than a thrégho | 1. WHILE ((expected total index size} B') {
Clearly it is computationally prohibitive to consider alhips | 2- FOR (each gram paig;, g;) € P) {

of grams. There are different ways for generating such pairg‘?" Li = current list ofg;
6.
7.
8.
9.
a

. .) .) l; = current list ofg;
One way is using adjacent grams. We only consider pairs if (1; andl, are the same list as reference
adjacent grams in the strings. If we usggrams to construct or corr(li, ;) < 6)
the inverted lists, we can just consider thage+ 1)-grams. remove(g;, g;) from P and continue
Each such gram corresponds to a paig-gframs. For instance, Compute size reductioﬁiljz’?) if combining ;, I,
if ¢ = 3, then the4-gram tion corresponds to the pair iols)
(tio,ion). For each such adjacent pair, we treat it as

Compute difference of average query tite; "’
for queries inQ if combining l;, I;
candidate pair if the Jaccard similarity of their corresiog

. . . H (L355), (L3505),s - .
lists is greater than a predefined threshold. One limitatigitO- Useﬁ_siﬁe] S_a”dAmB_é s of the gram pairs to decide
of this approach is that it cannot find strongly correlate:i11 Covnvwblicne Ft)ﬁg :\?VOC(ﬁrSnt&lr;endl- based on the decision
grams _that are no_t adjacent in _strmgs. In the I|teratureeth§ 12. Remove the combined granrj1 pair frofh

are efficient techniques for finding strongly correlatedrpai }

of lists. One of them is called Locality-Sensitive Hashing
(LSH) [14]. Using a small number of so-called MinHash

S|g_natures for_ each l.'St’ we can use LSH tp find th_o_s_e 9raMwe can use similar optimization techniques as described in
pairs whose I'.SFS satisfy the above correlation conditioth w Section IV to improve the performance GombineLists.
a high probability.
Step 2: Selecting Candidate Pairs to Combine The VI. EXPERIMENTS
second step is selecting candidate pairs to combine. OnéVe used three real data sets. (NIDB Actor Names:
basic algorithm is the following. We iteratively pick gramit consists of the actor names downloaded from the IMDB
pairs and combine their lists if their correlation satisfiee website (http://www.imdb.com). There were 1,199,299 neme
threshold. Notice that each time we process a new candida@tee average string-length was 17 charactersWgB Corpus
gram pair, since the list of each of them could have be&kbrd Grams: This data set (http://www.ldc.upenn.edu/Catalog,
combined with other lists, we still need to verify their (sddy number LDC2006T13) contained word grams and their ob-
new) correlation before deciding whether we should combiserved frequency counts on the Web. We randomly chose 2
them. After processing all these pairs, we check if the indewillion records with a size of 48.3MB. The number of words
size meets a given space constraint. If so, the process. stgsa string varied from 3 to 5. The average string-length was
Otherwise, we decrease the correlation threshold and trep24. (3) DBLP Paper Titles: It includes paper titles downloaded
the process above, until the new index size meets the giieom the DBLP Bibliography site (http://www.informatikair
space constraint. trier.de~ley/db). It had 274,788 paper titles. The average
This basic algorithm does not consider the effect of combistring-length was 65.
ing two lists on the overall query performance. We propose aFor all experiments the gram lengjtwas3, and we applied
cost-based algorithm to wisely choose lists to combine @ thength filtering [10]. The inverted-list index was held in ima
second step. Figure 9 shows the cost-based algorithm whinbmory. Also, for the cost-basediscardLists and Com-
takes the estimated cost of a query workload into considerat binelLists approaches, by doing sampling we guaranteed that

Fig. 9. Cost-based algorithm to select gram pairs to combine.

the index structures of sample strings fit into memory. Weluse ,wgi wen. BB —— = L
.. ‘eb-Corpus —&— [eb-Corpus —&-—
the DivideSkip algorithm described in [20] to solve tHE- Ex E®
. . .« . () [)
occurrence problem due to its high efficiency. From each data gz E®
T . . . e = c
set we used 1 million strings to construct the inverteditidex giz 2z
(unless specified otherwise). We tested query workloadgusi Z's }, Cemewa® Ei]
0 5

different distributions, e.g., a Zipfian distribution or aiform o o1 o2 o3 o1 o5 os S 50 5000 20000 B0000
distribution. To do so, we randomly selected 1,000 stringsf Index-Size Reduction Cache Size (slot number)
each data set and generated a workload of 10,000 querie®) Effect of index compression (b) Effect of caching
according to some distribution. We conducted experiments
using edit distance, Jaccard similarity, and cosine shityla
We mainly focused on the results of edit distance (with a
threshold2). We report additional results of other functionsmallest number of additional panic cases, disregardieg th
in Section VI-D. All the algorithms were implemented usingjst length. (2) TimeCost: It is similar to PanicCost, except
GNU C++ and run on a Dell PC with 2GB main memory, anthat we use the ratio between the list size and the total time

Fig. 10. Carryover-12 compression.

a 3.4GHz Dual Core CPU running the Ubuntu OS. effect of discarding a list (instead of the number of addisib
.]] panics). Similarly, an approach call&imeCost™ discards the
A. Evaluating the Carryover-12 Compression Technique list with the smallest time effect.

We adopted theCarryover-12 compression technique as The index-construction time consisted of two major parts:
discussed in Section IIl into our problem setting. We variesklecting lists to discard and generating the final invelistd
the segment size to achieve different index-size reductistructure. The time for generating samples was negligfae.
ratios. We measured the corresponding query performantee LongList, ShortList, and RandomList approaches, the
Figure 10(a) shows the results for the IMDB and Web Corptigne for selecting lists to discard was small, whereas in the
datasets as the reduction ratio increased. (Notice thatmbe cost-based approaches the list-selection time was prevéate
data sets used different reduction ratios because of thalimgeneral, increasing the size-reduction ratio also inedke
tion of the technique.) Consider the Web Corpus dataset. Tlis-selection time. For instance, for the IMDB dataset,aat
original average query running time (without compressiom0% reduction ratio, the total index-construction time tioe
was about 1.6ms. After compressing the index, the query tirsenple methods was about half a minute. The construction
increased significantly. For example, when the reductidio ratime for PanicCost and PanicCost™ was similar. The more
was about 41%, the query time increased to 5.7ms. The tim@mplex TimeCost and TimeCost™ methods needed 108s
kept increasing as we compressed the index further. and 353s, respectively.

Figure 10(b) shows how the query time was affected as \lfferent Methods to Choose Lists to Discard: We first con-
increased the cache size. (The cache size was significasilyered the three simple methods, namebngList, Short-
smaller than the compressed index size.) On the WebCorpust, RandomList. Experiments [4] showed that in most cases,
data set, when we used no cache, the average query time LongList method gave us the best query performance,
was 64.4ms, which is more than 8 times the average queviile theRandomList method was the best for high reduction
time with a cache of 5000 slots. Since the whole purpose @ftios. TheShortList was always the worst.
compressing inverted list is to save space, it is contragidb For those cost-based approaches, we used a sampling ratio
improve query performance by increasing the cache size t0b 0.1% for the data strings and a ratio of 25% for the
much. As we allocated more cache to the compressed indgueries. Figure 11(b) shows the benefits of employing the cos
the query time did decrease. Notice that if we allocate ehougased methods to select lists to discard. Most noteworthy of
cache for the entire compressed index, the performance eamich is theTimeCost™ method, which consistently delivered
become almost the same as that of the original index (withaymod query performance. As shown in Fig. 11(b), the method
considering the cache lookup overhead). As the cache sahieved a 70% reduction ratio while increasing the query
is typically much smaller than the original index size, therocessing time from the original 5.8ms to 7.4ms only. All
performance should always be worse than the original cabe other methods increased the time up to at least 96ms for
due to the online decompression cost. that reduction ratio. Notice thafimeCost™ ignored the list

]]]] size when selecting a list to discaffimeCost™ over-topped
B. Evaluating the DiscardLists Algorithm all the other methods because it can balance the merging time

In this section we evaluate the performance of fis- post-processing time, and scan time.
cardLists algorithm for choosing inverted-lists to discard. IrSurprising Improvement on Performance: Figs. 12(a) shows
addition to the three basic methods to choose lists to discanore details when the reduction ratio was smaller (less than
(LongList, ShortList, RandomList), we also implemented 40%). A surprising finding is that, for low to moderate
the following cost-based methods. (PanicCost: In each reduction ratios, discarding lists could even improve thery
iteration we discard the list with the smallest ratio betweeperformance! All the methods reduced the average query time
the list size and the number of additional panic cases. Aatotirom the original 5.8ms to 3.5ms for a 10% reduction ratio.
similar approach, calleBanicCost™, discards the list with the The main reason of the performance improvement is that

140 - 10 LongList —— 14 16
— LongList —+— m TimeCost —x— e) DivideSkip —*— DivideSkip —*—
0120 1 TimeCost —x— £ 8 fimeCost+ 8 Val w13 Improved —&— 014 Improved &
\Eﬂoo TimeCost+ —& = Original - E12 £
° PanicCost —o 5 Qg X 11 e
£ 80 [PanicCost+ —-a- g e V“,,vv-"" £ 1 E10
€ 0 S X gy S S8
E & . g 09 E
o4 2, e T B 08 of
g >21 .7 e S >,
T 20 T Lo7 Z
0F i 0 0.6 2
0 01 02 03 04 05 06 0 01 02 03
0 Ingézx—Sizg‘lll?{edu(?t‘i%n 08 12 Satazlset%izg (1700% o 10 Index-Size Reduction Index-Size Reduction
(a) Choosing lists to discard (b) Scalability (a) DBLP titles (b) IMDB actors
Fig. 11. Reducing index size by discarding lists (IMDB). Fig. 13. Reducing query time using improved list-merging dtpar.

160

[
I

3) i A X . =140 Basic —*— — Basic ——
by discarding long lists we can help list-merging algorithm g5, [©eed ==~ éli e o
solve theT-occurrence problem more efficiently. We see that g0 g,
. B . . = 80 =
significantly reducing the number of total list-elements to > ¢ R
process can overcompensate for the decrease in the thdeshol g B gn‘z‘ o
< 20 A g < 55 fal
LongList —+— 9 OO IdOIZS' ROAd i 5° 01 z D3t4 tSS‘6 1700li3 s
— ongLis - =
255 _Time%ost - - COSIBE;ZZIS = n.ex |.ze eduction . atase |ze.(')
=" mecost: o E (a) Choosing lists to combine (b) Scalability
) anicCost —© =
E 5 PanicCost+ --—-&--- GE)G J
.5 X Fig. 14. Reducing index size by combining lists (IMDB).
x A
o L 4
! E _
3 T T o3 s 2o > o for both algorithms. We observe that on all three data sets, t
Index-Size Reduction Index-Size Reduction query running time for both algorithms increased very sjowl
(a) DiscardLists (b) CombineLists as we increased the index size reduction ratio, until abo%s 4

to 50%. That means, this technique can reduce the index size
without increasing the query time! As we further increadesl t
Scalability: For each data set, we increased its numbé&rdex size reduction, the query time started to increase. Fo
of strings, and used 50% as the index-size-reduction ratibe cost-based algorithm, the time increased slowly, éslhec
Fig. 11(d) shows that thdimeCostt method performed on the IMDB data set. The reason is that this cost-based
consistently well, even outperforming the corresponding ualgorithm avoided choosing bad lists to combine, while the
compressed indexes (indicated by “original”). At 100,000asic algorithm blindly chose lists to combine.

data strings, the average query time increased from 0.61mg$igure 12(b) shows that when the reduction ratio is less
to 0.78ms for TimeCost™. As the data size increasedthan 40%, the query time even decreased. This improve-
TimeCost™ began outperforming the uncompressed index. ment is mainly due to the improved list-merging algorithms.
Figure 14(b) shows how the algorithms of combining lists

C. Bvaluating the CombineLists Algorithm affected query performance as we increased the data size, fo
We evaluated the performance of tB®@mbineLists algo- a reduction ratio of 40%.

rithm on the same three data sets. In step 1, we generated] o]

candidate list pairs by using botfy + 1)-grams and LSH. D- Extension to Other Smilarity Functions

In step 2, we implemented both the basic and the cost-baseéor simplicity, our discussion so far mainly focused on the
algorithms for iteratively selecting list pairs to comhine edit distance metric. We can generalize the results to com-
Benefits of Improved List-Merging Algorithms: We first monly used similarity measures such as Jaccard and cosine.
evaluated the benefits of using the improved list-mergintp reduce the size of inverted lists based on those sinyilarit
algorithms to solve th&-occurrence problem for queries orfunctions, the main procedure of algorithgcardLists and
combined inverted lists, as described in Section V-B. As @ombineLists remains the same. The only difference is that in
example, we compared thgivideSkip algorithm in [20] and DiscardLists, to compute the merging threshditfor a query

its improved version that considers duplicated invertstslin after discarding some lists, we need to subtract the number o
a query. We used the basic algorithm to select lists to combimole lists for the query from the formulas proposed in [20].
Figure 13 shows the average running time for the algorithm addition, for the estimation of the post-processing fime

and its improved version (marked as “Improved”). When thalso need to replace the estimation of the edit distance time
reduction ratio increased, more lists were combined, ard thith that of Jaccard and cosine time respectively. Figure 15
improved algorithm did reduce the average query time. shows the average running time for the DBLP data using
Choosing Lists to Combine We compared the basic al-variants of theTimeCost* algorithm for these two functions.
gorithm with the cost-based algorithm for choosing lists tdhe results on the other two data sets were similar. We see
combine, and the results are shown in Figure 14(a). Theat the average running time continuously decreased when
average query time was plotted over different reductioivgat the reduction ratio increased to up to 40%. For example, at a

Fig. 12. Improving query performance using two new approa¢tébB).

Original m— DiscardLists £===3

40% reduction ratio for the cosine function, the runningetim caryover-12 —— CombineLists === Original mmmm DiscardLists ===

oy 1.8 6
decreased from 1.7ms to 0.8ms. 27 30 @i
;’6 25 El14 5
0.75 LongList —— 17 LongList —— £5 20 g 12 4
@ 07% TimeCost - 16 TimeCost - =t = 1 3
e TimeCost+ & £15 TimeCost+ & S3 e 15 % 0.8
~ 0.65 PanicCost —o ~14 PanicCost —o& o _ & 10 06 2
g 06 PanicCost+ --—-&--- g 13 anicCost+ --—-&--- of o 0.4
= - = i PR | :
€ 055 0 . P o 0
X o5 WebCorpus IMDB WebCorpus IMDB
= 0
>
K 045 (a) Carryover-12 (b) VGRAM
0.4

01 02 03 04 01 02 03 04 05
Index-Size Reduction Index-Size Reduction Fig. 16. Comparing DiscardLists and CombineLists with emgstiechniques
(a) Jaccard function (b) Cosine function at the same reduction ratio. In each figure, the left scaleespands to the
WebCorpus data set, and the right scale corresponds to tbd I¥ata set.
Fig. 15. Jaccard and Cosine functions (DiscardLists, DBLtIEs)

all methods could outperform the original, uncompressed

Th.e performancc_a started degraqing at a 50% reduction "3ldex. As suspectedy GRAM can considerably reduce the
and increased rapidly at a ratio higher than 60%. For a 70r%’nning time for both datasets. For the IMDB dataset, it
ratio, the time for the cosine and jaccard functions inadde reduced the time from an original 5.85ms to 4.02ms, and

150ms and 115ms fdrongList. For high reduction ratios the ¢, yhe \wehCorpus dataset from 1.76ms 1.55ms. Surprisingly
T|m_eCost and TimeCost method§ became vyorse_than tée CombineLists method reduced the running time even
panic-based methods, due to the inaccuracy in estimatég [, e thanyGRAM to 3.34ms for the IMDB dataset and to

expensive to.com.pute, thgrefore the puni'shm.ent (in t_ermsﬁgrformed competitively for the IMDB dataset at 3.93ms
post-processing time) for inaccurately estimating thegmer .y gjightly faster than the original index (1.67ms) on the
time can be much more severe than that for the edit d'StanWebCorpus dataset

E. Comparing Different Compression Techniques Summary: (1) CombineLists and DiscardLists can signif-

We implemented the compression techniques discussed'%acpﬂy outperformCarryover—lZ "’_‘t the same memory re-
far as well as th&/ GRAM technique. Sinc€arryover-12 and duction ratio because of the online decompress!on required
VGRAM do not allow explicit control of the compression ratioby Cgrryover-lZ. (2) For small compression ratioSom-
for each of them we reduced the size of the inverted-lisbind@iNELiSts performs best, even outperformikGRAM. (3) For
and computed their compression ratio. Then we compressgP€ compression ratidsiscardLists delivers the best query
the index usingDiscardLists and CombineLists separately Periormance. (4) Whil€arryover-12 can achieve reductions
to achieve the same compression ratio. up to 60% and/GRAM up 'to 30%, neﬁher allows e>$pI|C|.t con-
Comparison with Carryover-12: Figure 16(a) compares thetrol over the r_eq_uctlo_n ratiddiscardLists and CombineLists
performance of the two new techniques witlarryover-12. offer this flexibility with good query performance.

For Carryover-12, to achieve a good balance between thg | ina Several A h

query performance and the index size, we used fixed-size ntegrating Several Approaches

segments of 128 4-byte integers and a synchronization poinfThe methods studied in this paper are indeed orthogonal,
for each segment. The cache contained 20,000 segment dlots we could even use their combinations to further reduee t
(approximately 10MB). It achieved a compression ratio ohdex size and/or improve query performance. As an example,
58% for the IMDB dataset and 48% for the WebCorpuwge integratedCombineLists with Carryover-12. We first
dataset. We see that its online decompression has a profooothpressed the index usir@ombineLists approach with a
impact on the performance. It increased the average runnimgluction«, and then appliecCarryover-12 on the resulting
time from an original 5.85ms to 30.1ms for the IMDB dataseindex. We variedr from 0 (no reduction folCombineLists)

and from an original 1.76ms to 7.32ms for the WebCorpus 60% in 10% increments. The results of the overall re-
dataset. TheCombineLists method performed significantly duction ratio and the average query time are shown in the
better at 22.15ms for the IMDB dataset and 2.3ms for tH€L+Carryover-12” curve in Figure 17. The leftmost point
WebCorpus dataset. ThBiscardLists method could even on the curve corresponds to the case where= 0. For
slightly decrease the running time compared to the originebmparison purposes, we also plotted the results of usiag th
index to 5.81ms and 1.75ms for the IMDB and WebCorpuSombineLists alone shown on the other curve. The results
datasets, respectively. clearly show that using both methods we can achieve high
Comparison with VGRAM : Figure 16(b) compares the per-reduction ratios with a better query performance than using
formance of two new techniques wWiiGRAM. We set its CombineLists alone. Consider the first point that only uses
gmin Parameter to 4. We did not take into account the memo@arryover-12. It could achieve a 48% reduction with an
requirement for the dictionary trie structure because it waverage query time of 7.3ms. By first usi@pmbineLists
negligible. The compression ratio was 30% for the IMDBEt a 30% ratio (4th point on the curve) we could achieve a
dataset and 27% for the WebCorpus dataset. Interestindgligher reduction ratio (61%) at a lower query time (6.34ms).

w
o

—_ CombineLists —*— [3]
no5 CL+Carryover-12 - H
£ 4
20
£ j
£ 4
x10 [5]
g
<°)

0 (6]

02 04 0.6 0.8
Index-Size Reduction 7]

Fig. 17. el

Reducing index size using CombinelLists with Careyel?.

: . .]9
One way to integrate multiple methods is to distribute

the global memory constraint among several methods. Notiéél
sinceCarryover-12 andVGRAM do not allow explicit control
of the index size, it is not easy to use them to satisfy gm]
arbitrary space constraint. Several open challengingl@naud
need more future research. First, we need to decide how,
distribute the global memory constraint among differenttme
ods. Second, we need to decide in which order to use them.
For example, if we us€CombineLists first, then we never 13]
consider discarding merged listsiscardLists. Similarly, if [14]
we runDiscardLists first, then we never consider combinin
any discarded list irCombineLists.
Additional Experiments: In [4] we included many additional [16]
experimental results, including experiments on more detis, s
performance of different methods to choose candidate pa[llrg
to combine, and how the techniques perform in the presence
of query-workload changes. We also discuss how to utilizt8!
filtering techniques for compression.

[19]

VIl. CONCLUSIONS
In this paper, we studied how to reduce the size o]

inverted-list index structures of string collections tgppart
approximate string queries. We studied how to adopt e)g'sti#l]
inverted-list compression techniques to achieve the god,
proposed two novel methods for achieving the goal: ort€?l
is based on discarding lists, and one based on combining
correlated lists. They are both orthogonal to existing comnes]
pression techniques, exploit a unique property of our regtti
and offer new opportunities for improving query performanc
We studied technical challenges in each method, and prdpogs)
efficient, cost-based algorithms for solving related peais.
Our extensive experiments on real data sets show that J)zl?ﬂ
approaches provide applications the flexibility in decigthe [27]
tradeoff between query performance and indexing size and ca
outperform existing compression techniques. (28]

[29]
Acknowledgements: The work was partially supported by
the National Science Foundation of China under Grant Ngg
60828004.

(24]

REFERENCES (31]
[1] V. N. Anh and A. Moffat. Inverted index compression usingra-
aligned binary codeslnf. Retr., 8(1):151-166, 2005.
[2] A. Arasu, V. Ganti, and R. Kaushik. Efficient exact sensarity joins.
In VLDB, pages 918-929, 2006.

15] H. V. Jagadish, R. T. Ng, and D. Srivastava.

R. J. Bayardo, Y. Ma, and R. Srikant. Scaling up all pairsikarity
search. INWWWV, pages 131-140, 2007.

A. Behm, S. Ji, C. Li, and J. Lu. Space-constrained granetasdexing
for efficient approximate string search (full version). Teiclal report,
Department of Computer Science, UC Irvine, June 2008.

S. Chaudhuri, K. Ganjam, V. Ganti, and R. Motwani. Robustl a
efficient fuzzy match for online data cleaning. $#GMOD Conference,
pages 313-324, 2003.

S. Chaudhuri, V. Ganti, and R. Kaushik. A primitive opermafor
similarity joins in data cleaning. IhCDE, page 5, 2006.

P. Elias. Universal codeword sets and representatidribeointegers.
Information Theory, |IEEE Transactions on, 21(2):194—-203, Mar 1975.
Z. Galil and G. F. Italiano. Data structures and algarithfor disjoint
set union problemsACM Comput. Surv., 23(3):319-344, 1991.

S. Golomb. Run-length encodings (corresprformation Theory, |IEEE
Transactions on, 12(3):399-401, Jul 1966.

L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudadyli8thukrishnan,
and D. Srivastava. Approximate string joins in a databasedst) for
free. InVLDB, pages 491-500, 2001.

M. Hadjieleftheriou, A. Chandel, N. Koudas, and D. @&stava. Fast
indexes and algorithms for set similarity selection queriés.|ICDE,
pages 267-276, 2008.

fﬂ M. Hadijieleftheriou, X. Yu, N. Koudas, and D. Srivastav Hashed

samples: Selectivity estimators for set similarity selectipreries. In
VLDB, 2008.

B. Hore, H. Hacigimis, B. R. lyer, and S. Mehrotra. Indexing text data
under space constraints. €IKM, pages 198-207, 2004.

P. Indyk and R. Motwani. Approximate nearest neighbdmswards
removing the curse of dimensionality. 8TOC Conference, 1998.
Substrintpctigity
estimation. InPODS, pages 249-260, 1999.

L. Jin and C. Li. Selectivity estimation for fuzzy stringredicates in
large data sets. INLDB, pages 397-408, 2005.

M.-S. Kim, K.-Y. Whang, J.-G. Lee, and M.-J. Lee. n-Granm/2Lspace
and time efficient two-level n-gram inverted index structulre VLDB,
pages 325-336, 2005.

P. Krishnan, J. S. Vitter, and B. R. lyer. Estimating apbmeric
selectivity in the presence of wildcards. /GMOD Conference, pages
282-293, 1996.

H. Lee, R. T. Ng, and K. Shim. Extending g-grams to estimatecivity
of string matching with low edit distance. MLDB, pages 195-206,
2007.

C. Li, J. Lu, and Y. Lu. Efficient merging and filtering aldgthms for
approximate string searches. IIBDE, pages 257-266, 2008.

C. Li, B. Wang, and X. Yang. VGRAM: Improving performancé o
approximate queries on string collections using variabfggth grams.
In VLDB, pages 303-314, 2007.

A. Mazeika, M. H. Bdhlen, N. Koudas, and D. Srivastava. Estimating
the selectivity of approximate string querieCM Trans. Database
Yyst., 32(2):12, 2007.

M. D. Mclllroy. Development of a spelling listtEEE Transactions on
Communications, 30(1):91-99, 1998.

A. Moffat and J. Zobel. Self-indexing inverted files fiast text retrieval.
ACM Trans. Inf. Syst., 14(4):349-379, 1996.

G. Navarro. A guided tour to approximate string matchingCM
Comput. Surv., 33(1):31-88, 2001. R

S. C. Sahinalp, M. Tasan, J. Macker, and Z. ®ksoyoglu. Distance
based indexing for string proximity search. IlGDE, pages 125-, 2003.
S. Sarawagi and A. Kirpal. Efficient set joins on simitgrpredicates.
In SGMOD Conference, pages 743—-754, 2004.

C. Xiao, W. Wang, X. Lin, and J. X. Yu. Efficient similaritpins for
near duplicate detection. MAWW, pages 131-140, 2008.

X. Yang, B. Wang, and C. Li. Cost-based variable-lengithm selection
for string collections to support approximate queries effitdy. In
SIGMOD Conference, 2008.

J. Zivand A. Lempel. Compression of individual sequendasariable-
rate coding.|EEE Transactions on Information Theory, 24(5):530-536,
1978.

J. Zobel and A. Moffat. Inverted files for text search emy. ACM
Comput. Surv., 38(2):6, 2006.

